ON HILBERT SEMIGROUP RINGS*

Choion Kim

A ring R is called a Hilbert ring if every prime ideal of R is an intersection of primitive ideals. When R is commutative, Gilmer [3] shows that equivalent conditions for $R\left[\left\{x_{1}\right\}_{i \in I}\right]$ to be a Hilbert ring. But the weakness of his results is including commutativity.
In this paper, we shall discuss Hilbert semigroup ring with noncommutative coefficients rings. Actually, when S is a cancellative monoid and the coefficient ring R is a $P I$ ring, the condition that the semigroup ring $R[S]$ to be Hilbert will be observed. All monoid considered are assumed to be commutative.

We begin the following.
Lemma 1. Let R bea $P I$ ring and P be an ideal of R. Then P is a primitive ideal if and only if P is a maximal ideal.

Proof. Suppose P is a maximal ideal of R. Then the factor ring R / P is a simple ring. So it is primitive and

[^0]therefore P is a primitive ideal.
Conversely, if P is a primitive ideal of R, then R / P is a primitive ring. Since R is $P I, R / P$ is $P I$. Thus the factor ring R / P is a primitive $P I$ ring and so it is simple by Kaplansky's Theorem [4].

We denote the center and the classical quotient ring of R by $Z(R)$ and $Q(R)$, respectively.

Lemma 2. Let R be a prime $P I$ ring and $Q(R)$ the classical quotient ring of R. Then $Q(R)=R\left[a^{-1}\right\rfloor$ for some $0 \neq a$ in $Z(R)$ if and only if $A \cap R=0$ for some maximal A of $R[x]$.

Proof. Suppose $Q(R)=R\left[a^{-1}\right]$ with $0 \neq a \in Z(R)$. Then the map σ from $R[x]$ to $R\left[a^{-1}\right]$ induced from the map sending x to a^{-1} is a ring epimorphism. Now since $Q(R)=$ $R\left[a^{-1}\right]$ is simple Artinian, $A=\operatorname{ker} \sigma$ is a maximal ideal of $R[x]$. In this case $R[x] / A \cong R\left[a^{-1}\right]=Q(R)$ and $A \cap R=0$ since the map sending r to $r+A$ is one to one.

Conversely, assume that $A \cap R=0$ for some maximal ideal A of $R[x]$. Let $u=x+A$ in the ring $R[x] / A$. Then since $A \cap R=0, R \subseteq R[u]$ and $R[u]=R[x] / A$ is simple Artinian. So $Q(R)[u]=R[u]=Q(R[u])$. If $u=0$, then $R=R[x]$ is simple Artinian and so we are done. Hence we may assume that $u \neq 0$. Since u is a central element of the simple Artinian ring $R[u], u$ is in the center of $R[u]$. Bu note that the center of a simple Artinian ring is a field. So u is invertible in $R[u]$. Actually $u^{-1} \in Z(R[u])=Z(Q(R)[u])$. say

$$
u^{-1}=\alpha_{\theta}+\alpha_{1} u+\cdots+\alpha_{n} u^{n}
$$

with $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n} \in Q(R)$ and $\alpha_{n} \neq 0$. But since $Q(R)$ is simple, $Q(R) \alpha_{n} Q(R)=Q(R)$ and so there exist $q_{1}, q_{1}, \cdots, q_{s}$ and $q_{1}{ }^{\prime}, q_{2}{ }^{\prime}, \cdots, q_{s}{ }^{\prime}$ in $Q(R)$ such that

$$
\sum_{i=1}^{\sum} q_{1} \alpha_{n} q_{i}^{\prime}=1
$$

Thus $\sum_{i=1}^{s} q_{i}\left(\alpha_{i} u^{n+1}+\cdots+\alpha_{1} u^{2}+\alpha_{0} u-1\right) q_{i}=0$. Therefore $\beta_{0}+$ $\beta_{1} u+\cdots+\beta_{n} u^{n}+u^{n+1}=0$ with some $\beta_{r} \in Q(R)$. Now let k be the least positive integer such that

$$
u^{k}+\beta_{k-1} u^{k-1}+\cdots+\beta_{1} u+\beta_{0}=0
$$

with $\beta_{1} \in Q(R), i=0,1, \cdots, k-1$. In this case our claim is that $\beta_{v,}, \beta_{1}, \cdots, \beta_{k-1}$ are in the center $Z(Q(R))$ of $Q(R)$. Now for $r \in Q(R)$, we have

$$
\begin{aligned}
0= & r\left(u^{k}+\beta_{k-1} u^{k-1}+\cdots+\beta_{1} u+\beta_{0}\right) \\
& -\left(u^{k}+\beta_{k-1} u^{k-1}+\cdots+\beta_{1} u+\beta_{0}\right) r \\
= & \left(r \beta_{k-1}-\beta_{k-1} r\right) u^{k-1}+\cdots+\left(r \beta_{1}-\beta_{1} r\right) u+\left(r \beta_{0}-\beta_{0} r\right) .
\end{aligned}
$$

If $r \beta_{k-1}-\beta_{k-1} r \neq 0$, then since $Q(R)$ is simple, we have

$$
Q(R)\left(r \beta_{k-1}-\beta_{k-1} r\right) Q(R)=Q(R) .
$$

So there exist $l_{1}, l_{2}, \cdots, l_{n}$ and $l_{1}{ }^{\prime}, l_{2}^{\prime}, \cdots, l_{n}^{\prime}$ in $Q(R)$ such that

$$
\sum_{i=1}^{n} l_{s}\left(r \beta_{k-1}-\beta_{k-1} r\right) l_{i}^{\prime}=1 .
$$

So we have

$$
0=\sum_{i=1}^{n} l_{2}\left(r \beta_{k-1} \beta-\beta_{k-1} r\right) l_{\mathrm{i}}^{\prime} u^{k-1}+\cdots+\sum_{i=1}^{n} l_{1}\left(r \beta_{0}-\beta_{0} r\right) l_{i}^{\prime} .
$$

Therefore

$$
0=u^{k-1}+\cdots+\varepsilon_{1} t \psi+\varepsilon_{0}
$$

with $\varepsilon_{0}, \varepsilon_{1}, \cdots, \varepsilon_{k-1}$ in $Q(R)$. But thit is impossible by the choice of k. Hence $r \beta_{k-1}-\beta_{k-1} r=0$. Similarly $r \beta_{k-2}-\beta_{k-2} r$ $=0, \cdots$, and $r \beta_{0}-\beta_{0} r=0$. Therefore $r \beta_{t}=\beta_{t} r$ for evers $r \in Q(R)$ and $i=0,1, \cdots, k-1$. This means that

$$
u^{k}+\beta_{k-1} u^{k-1}+\cdots+\beta_{1} u+\beta_{0}=0
$$

with $\beta_{1} \in Z(Q(R)), i=0,1, \cdots, k-1$.
Now since $F[u]$ is central in $R[u], F[u]$ is a domain. But since u is algebraic over $F, F[u]$ is an algebraic domain over the field F. So $F[u]$ is a field. Consider the canonical map σ from $Q(R) \otimes_{F} F[u]$ onto $Q(R)[u]$:

$$
Q(R) \otimes_{p} F[u] \tau \longrightarrow Q(B)[u]
$$

$$
\Sigma q_{i} \otimes a_{t} \longrightarrow \Sigma q_{i} a_{t}
$$

Then since $Q(R)$ is a central simple F-algebra and $F[u]$ is also simple F-algebra, $Q(R) \otimes_{F} F[u]$ is a simple F algebra by Therefore the nonzero map σ has the zero kernel. Thus σ is an isomorphism. So we have $Q(R) \otimes_{F} F[u]$ $\equiv Q(R)[u]$. Since $F=Z(Q(R))$ is the field of fractions of $Z(R)$, we have

$$
a_{k} u^{k}+a_{k-1} u^{k-1}+\cdots+a_{1} u+a_{0}=0,
$$

with $a_{i} \in Z(R)$ and $a_{k} \neq 0$ from the realtion

$$
u^{k}+\beta_{k-1} u^{k-1}+\cdots+\beta_{1} u+\beta_{0}=0 .
$$

Observe the ring $R\left[a_{k}^{-1}\right]$. Since

$$
u^{k}=\left(a_{k}^{-1}\right) a_{k-1} u^{k-1}+\cdots+\left(a_{k}^{-1}\right) a_{0}
$$

with $a_{k}{ }^{-1} a_{i} \in R\left[a_{k}{ }^{-1}\right]$, we have that $R\left[a_{k}{ }^{-1}\right][u]$ is a finitely generated $R\left[a_{k}^{-1}\right]$-module by $\left\{\mathrm{I}, u, \cdots, u^{k-1}\right\}$. Of course in the case $Q(R)[u]=R\left[a_{k}{ }^{-1}\right][u]$. Since $\operatorname{dim}_{F} F[u]=k$,
$Q(R) \otimes_{F} F[u] \equiv Q(R)[u \bar{j}$ is a free $Q(R)$-module with basis $\left\{\mathrm{I}, u, \cdots, u^{k-1}\right\}$ by the standard tenssor product property.

Now finally let $q \in Q(R)$. Then $q \in Q(R)[u]=R\left[a_{k}^{-1}\right][u]$. Then we have

$$
q=\alpha_{0}+\alpha_{1} u+\cdots+\alpha_{k-1} u^{k-1}
$$

with $\alpha_{1} \in R\left[a_{k}{ }^{-1}\right] \subseteq Q(R)$. But since $Q(R)[u]$ is free over $Q(R)$ with basis $\left\{1, u, \cdot \cdot, u^{k-1}\right\}$, we have

$$
0=\left(\alpha_{0}-q\right)+\alpha_{1} u+\cdots+\alpha_{k-1} u^{k-1} .
$$

Hence $\alpha_{0}-q=0, \alpha_{1}=\cdots=\alpha_{k-1}=0$. Thus $q=\alpha_{0}$ is in $R\left[a_{k}^{-1}\right]$. So we have $Q(R)=R\left[a_{k}{ }^{-1}\right]$ completing our tedious proof.

For a $P I$ ring R, an ideal Q of R is called G-ideal if $Q=M \cap R$ for some maximal ideal M of $R[x]$. A ring R is called G-ring if 0 is G-ideal. By Lemma 2, we easily have the following.

Lemma 3. A prime $P I$ ring R is G-ring if and oniy if $Q(R)=R[u]$ for some u in $Q(Z(R))$.

The following may already be well known but for completeness we collect some characterizations of Hilberts rings.

Proposition 4. Let R be $P I$ ring. Then the following conditions are equivalent.
(1) R is a Hilbert ring.
(2) Every maximal ideal A of $R[x], A \cap R$ is maximal ideal of R.
(3) Every simple $R[x]$-module is finitely generated R-module.
(4) Every G-ideal of R is maximal.

Proof. (1) implies (2): Suppose R is a Hilbert ring. For a maximal ideal A of $R[x], A \cap R$ is a prime ideal of R. Now by passing R to $R / A \cap R$, we may assume that $A \cap R=0$ and R is a prime $P I$ ring. But since R is Hilbert, so its homomorphic image $R / A \cap R$ is Hilbert. So again we may assume that R is a prime $P I$ Hilbert ring. Therefore R is semiprimitive and hence the intersection of maximal ideals $\cap_{a} M_{c}$ is zero. Since $A \cap R=0, Q(R)=$ $R_{[}^{\left[a^{-1}\right]}$ for some $0 \neq a$ in $Z(R)$ by Lemma 2.

Assume $M_{\alpha} \neq 0$ for every α. Then since R is prime $P I_{0}$ $M_{\alpha} \cap Z(R) \neq 0$ for every α by Rowen [5]. Take $0 \neq b_{\alpha}$ in $M_{a} \cap Z(R)$. Then $b_{z}^{-1} \subseteq Q(R)=R\left[a^{-1}\right]$. So there is a positive integer $n(\alpha)$ such that $b_{a}^{-1}=c_{q} a^{-n(a)}$ with $c_{n} \leqslant R$. Therefore $a^{n(c)}=b_{\varepsilon} c_{\theta}$ is in M_{α}. Since M_{s} is a maximal ideal and a is central, we have $a \cong M_{a}$ for every α. For, since $a^{n(\alpha)} \in M_{2}$, $R a^{n(\alpha)} \subseteq M$. Thus

$$
R a^{n(\alpha)} R=(R a R) \cdots(R a R) \subseteq M_{\alpha .}^{(\alpha) \text {-times }} .
$$

But since M_{a} is maximal, M_{u} is prime and so $R a R=a R$ $\subseteq M_{u}$. Thus $a \in M_{a}$ for every α. Therefore $a \in \cap_{\alpha} M_{x}=0$ is a contradiction. So $M_{a}=0$ for some α. That is, 0 is a maximal ideal of R and so R is a simple ring. In other words, $A \cap R$ is a maximal ideal.
(2) implies (3): Let N be a simple $R[x]$-module. Then there is a maximal right ideal I of $R[x]$ such that $N=R[x] / I$. In this case, we can choose a two-sided ideal I_{0} of $R[x]$ which is maximal with respect to the fact that I_{0} is sitting inside I. Indeed I_{0} is the right annihilator of
N in $R[x]$. So I_{0} is a primitive ideal of $R[x]$ with N as a faithful irreducible $R[x] / I_{0} \sim$ module. But since $R[x]$ is a PI ring, I_{0} is a maximal ideal by Lemma 1. and obviously it is nonzero. Furtheremore $R[x] / I_{0}$ is simple Artinian and $R[x] / I$ is isomorphic to a minimal right ideal which is of course a direct summand of the ring $R[x] / I_{0}$. Now by our assumption (2), $R \cap I_{0}$ is a maximal ideal and so we have $R[x] / I_{0}=\bar{R}[x] / \bar{I}_{0}$, where $R=R / R \cap I_{0}$ and $I_{0}=I_{0} /\left(R \cap I_{0}\right)[x]$. But since R is simple, $R[x] / I_{0}=\bar{R}[x] / \bar{I}_{0}$ is finitely generated as R module. So $R[x] / I_{0}$ is finitely generated as R-module which shows (3) holds.
(3) Impiles (5): Assume that every $R x_{\text {; }}^{\text {; moduie is a }}$ finiteiy generated R-module. For a given prime ideal of R by passing to its factor ring, we may assume that R is prime PI. In this situation we need to show that the intersection of maximal ideals (equivalently, primitive ideals) is 0 from the definition of Hilbert ring.

Let $\left\{M_{a}\right\}$ be the set of all maximal ideals of R. Suppose $\bigcap_{r} M_{a} \neq 0$. Then $\cap M_{a} Z(R) \neq 0$. Take $0 \neq a \in \cap M_{a} \cap Z(R)$. Then $\left\{a^{r}\right\}_{n=0}^{\infty}$ is an m-system with $a^{2} \neq 0$ for every i, because $Z(R)$ is a commutative domain. Let P be an ideal of R with $P \cap\left\{a^{n}\right\}_{n=0}^{\infty}=\phi$ and P is maximal with such property. Then as we already noted, P is a prime ideal of R. Of course the exstence of such P is assured by Zorn's lemma. Let \bar{a} be the image of a in the factor ring $R=R / P$. Then \bar{a} is in the center of R. For a nonzero \bar{b} in $Z(R)$, $\bar{b} R$ is a nonzero ideal of R. Now by the definition of P, we have $\bar{a}^{k} \in \bar{b} R$ for some positive integer k. Hence $\bar{a}^{k}=\bar{b} \bar{c}$ with \vec{c} in R and so $\bar{c}=\vec{b}^{-1} \bar{a}^{k} \in Q(Z(R)) \cap R=Z(R)$. So \vec{b}^{-1}
$=\bar{a}^{-n} \in R\left[\bar{a}^{-1}\right]$. Therefore $R\left[\bar{a}^{-1}\right]=Q(R)$. So R is a $G-$ ring. Thus P is a G-ideal and hence $P=A \cap R$ for some maximal ideal A of $R[x]$. So P is a maximal ideal of R. Since $a \notin P$, we have $a \notin M_{a}$ for some α. But this is a contradiction since $a \in Z(R) \cap \cap M_{a}$. So $Z(R) \cap \cap M_{a}=0$. Thus we have $\bigcap_{\alpha} M_{\sigma}=0$. Hence R is a Hilbert ring. (2) implies (4) and (4) implies (2): Obvious.

We recall that the pseudoradical of the ring R is the intersection of all nonzero prime ideals of R. Now we are in the situation to characterize Hilbert ring $R[x]$ that the coefficient ring R satisfies a polynomial identity.

Theorem 5. Assume that $X=\left\{x_{i}\right\}$ is a set of commuting indeterminates of cardinality α over the $P I$ ring R. Denote by Z^{*} the direct sum of α copiesof the additive group Z of integers. Then the following conditions are equivalent.
(1) $R[X]$ is not a Hilbert ring.
(2) There exists a prime ideal P of R such that R / P admist an α-generated extension ring that is a G ring but not a simple.
(3) The group ring $R\left[Z^{\alpha}\right]$ is not a Hilbert ring.

Proof. (1) implies (2): Let $R[X]$ be not a Hilbert ring. Then there is G-ideal A of $R[X]$ that is not maximal. So there a maximalideal M of $R[X][y]$ such that $A=M \cap$ $R[X]$. Since R is a $P I$ ring, $R[X][y]$ is a PI ring. Of $V=\{x+A \mid x \in A\}$, then $|V| \leq \alpha$ and $R[X] / A=(R / R \cap A)[V]$ is G-ring because A is G-ideal clealy $R \cap A$ is prime idea! of R. Of $P=R \cap A$, then $(R / P)[V]=R[X] / M \cap R[X]$ is an
α-generated extension ring of R / P because x is the set of commuting indeterminates. Since $M \cap R[X]$ is not maximal. it is not simple.
(2) imples (3): Let $D=R / P$ and let $J=D\left[\left\{a_{i}\right\}_{2 \varepsilon I}\right]$ be α generated extension of D that is a G-ring but not simple. We will show that if T is a subring of $D\left[\left\{x_{i}\right\},\left\{x_{2}^{-1}\right\}\right] \cong$ $D\left[Z^{\alpha}\right]$ containing $D[X]$, then T is not a Hilbert ring. Since J is a G-ring, it has nonzero pseudoradical by gilmer [2]. Of J has a zero maximal ideal, then J is simple. Thus the pseudoradical of J is contained in the intersection of nonzero maximal ideal of J choose a nonzero element b in the pseudoradical. Then, for each $i, 1+b a$, is invertible in J because the pseudoradical of J is in Rad J by Lemma 1. So

$$
D\left[\{1+b a i\}, \quad\left\{(1+b a i)^{-1}\right\}\right] \subseteq J
$$

The D-homomorphism of $D[X]=D\left[\left\{x_{2}\right\}\right]$ onto $D\left[\left\{1+b a_{i}\right\}\right]$ determined by $i \longrightarrow 1+b a_{i}$ and $d \longrightarrow d$ forall $d \in D$ induces a D-homomorphism σ of $D\left[\left\{x_{\mathrm{r}}\right\},\left\{x_{\mathrm{r}}^{-1}\right\}=D\left[Z^{a}\right]\right.$ onto

$$
D\left[\left\{1+b a_{i}\right],\left\{\left(1+b a_{i}\right)^{-1}\right\}\right]
$$

and under σ we have

$$
J \supseteq \sigma(T) \supseteq D\left[\left\{1+b a_{1}\right\}\right]=D\left[\left\{b a_{1}\right\}\right] .
$$

Now

$$
\begin{aligned}
J\left[b^{-1}\right] \supseteq \sigma(T)\left[b^{-1}\right] \supseteq & D\left[\left\{b a_{\mathrm{t}}\right\}, b^{-1}\right]=D\left[\left\{a_{1}\right\}, b^{-1}\right] \\
& =D\left[\left\{a_{i}\right\}\right]\left[b^{-1}\right]=J\left[b^{-1}\right]=Q(J)
\end{aligned}
$$

Consequently,

$$
J\left[b^{-1}\right]=\sigma(T)\left[b^{-1}\right]=Q(J)
$$

We clain that $\sigma(T)$ is not simple. To do this, if $\sigma(T)$ is simple, then $\sigma(T)$ is a simple $P I$ ring. Since the quotient ring of simple $P I$ is itself,

$$
Q(\sigma(T))=\sigma(T)=J\left[b^{-1}\right] \subseteq J
$$

Hence

$$
J=J\left[b^{-1}\right]=Q(J)
$$

It means that J is simple and this contradicts the fact that J is not simple. Therefore, $\sigma(T)$, and hence T, is not a Hilbert ring.

Finally, let $T=D\left[\left\{x_{t}\right\},\left\{x_{t}^{-1}\right\}\right]=D\left[Z^{a}\right]$. Then

$$
\sigma(T)=D\left[\{1+b a i\},\left\{(1+b a i)^{-1}\right\}\right] \subseteq J
$$

is not simple. Since

$$
Q(\sigma(T))=\sigma(T)\left[b^{-1}\right] \subseteq J\left[b^{-1}\right]=Q(J)
$$

by Lemma 3, $\sigma(T)$ is a G-ring. Now if $\sigma(T)$ is a Hilbert ring, then so is its homomorphic image $\sigma(T)$ and zero is maximal ideal of $\sigma(T)$. Hence $\sigma(T)$ is simple. Therefore, in particular $T=D\left[Z^{\sigma}\right], D\left[Z^{\alpha}\right]$ is not a Hilbert ring.
(3) implies (1): By Armendariz, Koo and Park [I?.

An overring S of a ring R with the same identity is called a finite centralizing extension of R if there is a finite subset $\left\{u_{1}, u_{2}, \cdots u_{n}\right\}$ of S such that $S=u_{1} R+u_{2} R+\cdots+u_{n} R$ and $n_{1} r=r u_{2}$ to all $i=1,2, \cdots, n$ and $r \in R$. Schelter [6] shows that every finite centralizing extension of a $P I$ ring R is an integral extensions. Also he proves that such extensions enjoy Lying over, Going up and Incomparablity. So for a finite centralizing extension S of R, S is Hilbert
if and only if R is Hilbert. By the help of Theorem 5 we can investigate monoid rings over $P I$ rings.

Theorem 6. Let R be a $P I$ ring, S be a cancellative monoid of torsion-free rank α and $G=S S^{-1}$ be its quotient group. The the following anditions are equivalent:
(1) $R \lesssim x j$ is a Hilbert ring with $|x|=\alpha$.
(2) $\left.R_{\downarrow}^{-} G\right]$ is a Hilbert ring.
(3) $\left.R_{L}^{-} S\right]$ is a Hilbert ring.

Proof. For α we consider two cases:
Case 1. α is infinite.
(1) implies (2): Suppore that $R[x]$ is a Hilbert ring. Let H be the sub group of G generatedby a maximal free subset $\left\{f_{i}\right\}_{t \varepsilon I}$ of $G=S S^{-1}$. Then $I I=\alpha$ and G / H is a torsion abelian group. Let $\beta=r_{1} g_{1}+r_{2} g_{2}+\cdots+r_{r} g_{n}$ be an element of $R[G]$ with $r_{i} \in R$ and $g_{i} \in G, i=1,2, \cdots, n$. Consider the subgroup H_{0} generated by H and $g_{1}, g_{2}, \cdots, g_{n}$. Then H_{0} / H is finite and b is in $R\left[H_{0}\right]$. Observing that $R\left[H_{0}\right]$ is a finite centralizing extension of $R[H], R\left[H_{0}\right]$ is an intergral extension of $R[H]$ by Schelter $[6]$. So b is integral over $R[H\rfloor$ and hence $R[G]$ is integral over $R[H]$. In fact, since $R[H]$ is free abelian group of rank α, $H \cong Z_{c}$. By Theorem, $R[H]$ is a Hilbert ring. By application of previous mentioned Schelter's result, $R[G]$ is a Hilbert ring.
(2) implies(3): Suppore that $R[S]$ is not a Hilbert ring. Since α is infinite, $|S|=\alpha$. Observing that $R[S]$ is a epimorphic image of $R[x]$ by sending $x_{x} \rightarrow s_{x}$. Since $R[G]$ is integral over $R[H], R[G]$ is Hilbert ring if and only if
$R[H]$ is Hilbert. By Theorem $5, R[X]$ is a Hilbert ring because $R[G]$ is a Hilbert ring. But this contradicts the fact that $R[S]$ is not a Hilbert ring.
(3) implies (1): Let $F=\left\{f_{\iota}\right\}_{\text {er }}$ bea maximal free subset of G. But since $G=S S^{-1}$ we may assume that F is a subset of S. Let H be the subgroup of G generated by $\left\{f_{i}\right\}_{\text {.s }}$. Then ofcause, $H \cong Z^{\alpha}$ and $T=H \cap S$ is a free submonoid of S. First our claim is that $R[S]$ is integral over $R[T$. . For this argument, let $\beta=a_{1} s_{1}+a_{2} s_{2}+\cdots+a_{k} s_{k}$ be an element of $R[S]$ with $a_{1} \in R$ and $s_{1} \in S, i=1,2, \cdots, k$. Then for each s_{i}, there is a positive integer n_{2} such that $n_{1} s_{i} \in H$ and so $n_{1} s_{2} \in T$. So if we denote T_{0} as the submonoid generated by T and $s_{1}, s_{2}, \cdots, s_{k}$, then $R\left[T_{0}\right]$ is a finite centralizing extension of $R[T]$ generated by finite centralizing elements $\left\{m_{1} s_{1}+\cdots+m_{k} s_{k} \mid 1 \leq m_{1} \leq n_{i}, i=1,2, \cdots k\right\}$ over $R_{\llcorner }^{-} T_{-}^{-}$. Rut since β is in $R\left[T_{0-}\right], \beta$ is integral over $\left.R_{\llcorner }^{[} T\right]$. In other words, every element of $R[S]$ is integral over $R[T$, that is $R[S]$ is an integral extension of $R[T]$.

Now for our proof that (3) implies (1), assume to the contrary that contrary that $R[x]$ is not a Hilbert ring. Then by Theorem 5, $R\left[Z^{a}\right]$ is not a Hilbert ring. By the condition (2) in Theorem 5, there is a prime ideal P of R such that the ring R / P admits an α-generated extension that is a G-ring but not simple. In this situation any ring sitting between $(R / P)\left[Z_{0}{ }^{\alpha}\right]$ and $(R / P)\left[Z^{\alpha}\right]$ can not be Hilbert, where $Z_{3}{ }^{a}$ denotes the monoid of nonnegative intergers. Now since

$$
(R / P)\left[Z_{0}{ }^{a}\right] \subseteq(R / P)[T] \subseteq(R / P)\left[Z^{\alpha}\right],
$$

$(R / P)[T]$ is not a Hilbert ring and hence $R\left[T_{-}\right.$is not
a Hilbert ring. But as we already proved since $R[S]$ integral over $R[T], R[S]$ is not a Hilbert ring, which is a contradiction So So $R[x]$ is Hilbert.

Case 2. α is finite
As in the proof of (3) impleis (1), still we can verify $R[S]$ is integral over $R-T]$ when α is finite. Now since T is a free submonoid and $|F|=\alpha$, we have that $R_{[}^{[T]}$ $=R[X]$. So we have $R[X]$ is Hilbert if and only if $\left.R_{[} T\right]$ is Hilbert if and only if $R\left[S_{-}^{7}\right.$ is Hilbert. On the other hand by Theorem $5, R[X]$ is Hilbert if and only if $R[G]$ is Hilbert.

References

1. E.P. Armendariz, L.K. Koo and J.K. Park, Jacobson Rings with a polynomial identities, to appear in Conom in Algebra.
2. R. Gilmer, The pseudoradical of a acommutative ring. Panic J. Math. 19(1966), 275-284.
3. \qquad , Commutative monoid sings as Hilbert Rings, Proc. Amer. Math. Soc. 94(1985), 15-18.
4. D. S. Passman, "The Algebraic Structure of Group Rings", Whley, New York, 1977.
5. L. H. Rowen, "Polynomial identities in Ring Theory', Acad. Prese, New York, 1980.
6. W. Schelter, Integral extension of rings satısfyng a polynomal dentity, J. Algebra 49(1975) 245-257.
```
Pusan National University
Pusan 609-735
Korea
```

Received January 10, 1988.

[^0]: * Research supported by Ministry of Education Grant 87~88.

