ORTHOGONALITIES AND CHARACTERIZATIONS OF 2-INNER PRODUCT SPACES

Y. J. Cho and S. S. Kim

1. Introduction

Let X be a real linear space of dimension greater than 1. Let ($\cdot, \cdot / \cdot$) be a real-valued function on $X \times X \times X$ which satisfies the following conditions:

$$
\begin{aligned}
&\left(I_{1}\right) \quad(x, x \mid z) \geq 0, \\
&(x, x \mid z)=0 \text { if and only if } x \text { and } z \text { are linearly de- } \\
& \text { pendent, } \\
&\left(I_{2}\right) \quad(x, x \mid z)=(z, z \mid x) \\
&\left(I_{3}\right) \quad(x, y \mid z)=(y, x \mid z), \\
&\left(I_{4}\right) \quad(\alpha x, y \mid z)=\alpha(x, y \mid z), \\
&\left(I_{5}\right) \quad\left(x+x^{\prime}, y \mid z\right)=(x, y \mid z)+\left(x^{\prime}, y \mid z\right)
\end{aligned}
$$

for every x, x^{\prime}, y, z in X and for real number α. Then $(\cdot, \cdot \mid \cdot)$ is called a 2 -inner product and $(X,(\cdot, \cdot \mid \cdot))$ a 2 inner product space ([4]). The concepts of 2 -inner product and 2 -inner product space are 2 -dimensional analogy of the concepts of inner product and inner product space. R.E. Ehret [4] proved that on any 2 -inner product space $(X,(\cdot, \cdot \mid \cdot)),\|x, z\|^{2}=(x, x \mid z)$ defines a 2 -norm for which

$$
(x, y \mid z)=\frac{1}{4}\left(\|x+y, z\|^{2}-\|x-y, z\|^{2}\right)
$$

and

$$
\|x+y, z\|^{2}+\|x-y, z\|^{2}=2\left(\|x, z\|^{2}+\|y, z\|^{2}\right)
$$

for every $x, y, z(\neq 0)$ in X and $z \notin V(x, y)$.
One of the following (A) \sim (C) listed below is a condition which is necessary and sufficient condition for a linear 2 -normed space X to be a 2 -inner product space. These characterization (A) $\sim(C)$ of 2 -inner product spaces were proved by C. Diminnie, S. Gähler and A. White ([1]): let $z \in X$ be an arbitrary nonzero element.
(A) If $x, y \in X, \quad\|x, z\|=\|y, z\|=1$ and $z \notin V(x, y)$, then $\|x+y, z\|^{2}+\|x-y, z\|^{2}=4$,
(B) If $x, y \fallingdotseq X$ atd a nonzero real mumber $k,\|x, z\|=$ $\|y, z\|$, then $\left\|k x+k^{-1} y, z\right\| \geq\|x+y, z\|$,
(C) If $x, y \in X$ and $\|x, z\|=\|y, z\|$, then $\|k x+y, z\|=$ $\|x+k y, z\|$ for all real number k.

The main purpose of this paper is to give some new characterizations of 2 -inner product spaces and to provide simpler proofs of existing similar characterization.

2. Orthogonalities

Throughout this note, X will denote a linear 2 -normed space, x, y, z in X with $z \neq 0$ and $z \notin V(x, y)$.

Definition 2.1. For linear 2 -normed space an element x of X is isosceles orthogonal to an element y (written $\left.x \perp_{i} y\right)$ if $\|x+y, z\|=\|x-y, z\|$.

Definition 2.2. For a linear 2 -normed space an element x of X is pythagorean orthogonal to an element y (written $x \perp, y$) if $\|x-y, z\|^{2}=\|x, z\|^{2}+\|y, z\| \|^{2}$.

Definition 2.3. For a linear 2 -normed space an element x of X is J-orthogonal to an element y (written $x \perp_{J} y$) if $\|x+k y, z\| \geq\|x, z\|$ for every real number k.

From [5] we know the following theorem:
Theorem 2.1. If $x \neq 0, y$ in a linear 2 -normed space, then there exist numbers a, b, c and d such that $x L_{1}(a x+y)$, $x \perp_{p}(b x+y), x \perp_{s}(c x+y)$ and $(d x+y) \perp_{s} x$. Further, if $\|y\| \leq\|x\|$, then $\mid a\|\leq\| y\|/\| x \|$.

By using the techniques in C. Diminnie, S. Gahler and A. White (2]), we have the following results: let $z \in X$ and X_{z} denoted the quotient space $X / V(z)$. For $(x)_{\text {, }}(y)_{z}$ in X_{z} define $(x)_{2}+(y)_{z}=(x+y)_{z}, \quad(a x)_{2}=a(x)_{z} \quad$ and $\left\|(x)_{z}\right\|_{2}=\|x, z\|$. Then $\left(X_{2},\|\cdot\|_{2}\right)$ is a normed linear space. X will denote this linear space.

Thus it follows that;
Theorem 2.2. If $x \neq 0, y$ in X, then there exist numbers a, b, c and d such that $\left.x \perp_{2}(a x+y), x\right\rfloor_{-p}(b x+y), x \perp_{_}$ $(c x+d)$ and $(d x+y) \perp_{J} x$. Further if $\|y, z\| \leq\|x, z\|$, then $|a| \leq\|y, z\| /\|x, z\|$.

An orthogonality \perp is called left(right) unique if for $x \neq 0, y$ in X, there exist only one a such that $(a x+y) \perp x$ $(x \perp(a x+y))$.

Remark. For isosceles and pythagorean orthogonalities, left and right uniqueness are equivalent.

For J-orthogonality, the following was proved
Theorem 2.3 ([6]). J-orthogonality, \perp_{J}, is left(right)
unique if and only if X is strictly convex (smooth).
Definition 2.4([3]). X is strictly convex if $\|x, z\|=$ $\|y, z\|=\| \frac{x+y}{2}, z \mid=1$ imply $y=x$.

Theorem 2.4. An isosceles orthogonality, L_{1}, in X is unique if and only if X is strictly convex.

Proof. Suppose that X is not strictly convex and isosceles orthogonality is not unique. Then, by Theorem 2.2, there exist $x \neq 0, y$ in X and a real number $a>0$ such that $x \perp_{i} y$ and $x \perp_{i}(a x+y)$. The function $f(t)=\|y+t x, z\|$, $-\infty<t<\infty$, is a strictly convex function with $f(1)=f(-1)$ and $f(a+1)=f(a-1)$ becausc \perp is isosceles arthogonality.

In the case $0<a \leq 2$, we have

$$
\begin{aligned}
f(a-1) & =f\left(\frac{2-a}{2}(-1)+\frac{a}{2}\right) \\
& <\frac{2-a}{2} f(-1)+\frac{a}{2} f(1)=f(1) \\
& =f\left(-\frac{a}{2}(a-1)+\left(1-\frac{a}{2}\right)(a+1)\right)<f(a+1)
\end{aligned}
$$

This contradicts $f(a-1)=f(a+1)$.
In other case $a>2, f$ will have two distinct local minima, one each in $[-1,1]$ and $[a-1, a+1]$. This contradicts that f is strictly convex function.

Conversely, suppose that X is not strictly convex. Then there exist x, y in X such that $\|x, z\|=\|y, z\|=\left\|\frac{x+y}{2}, z\right\|=1$ implies $y \neq x$. We get $\|x+y, z\|=\|x+y+(x-y), z\|=\| x+$ $y-(x-y), z \|$. Put $x^{\prime}=x+y$ and $y^{\prime}=x-y$. Then we have $\left\|x^{\prime}, z\right\|=\left\|x^{\prime}+y^{\prime}, z\right\|=\left\|x^{\prime}-y^{\prime}, z\right\|, y^{\prime} \neq 0$. Hence,

$$
\left\{x^{\prime}+\frac{y^{\prime}}{2}-\frac{y^{\prime}}{2}, z\left\|=\left\lvert\, x^{\prime}+\frac{y^{\prime}}{2}+\frac{y^{\prime}}{2}\right., z\right\|=\| x^{\prime}-\frac{y^{\prime}}{2}-\frac{y^{\prime}}{2}, z\right.
$$

Thus

$$
\frac{y^{\prime}}{2} \perp_{i}\left(x^{\prime}+\frac{y^{\prime}}{2}\right) \quad \text { and } \quad \frac{y^{\prime}}{2} \perp_{i}\left(x^{\prime}-\frac{y^{\prime}}{2}\right)
$$

This contradicts the uniqueness of \perp_{i}.

3. Characterizations of 2 -inner product spaces

Theorem 3.1. For a linear 2 -normed space X, the following statements are equivalent:
(1) X is a 2 -inner product space,
(2) x, y in $x, x \perp_{p} y$ impiy $x \sum_{i} y$,
(3) x, y in $X, x \perp_{t} y$ imply $x \perp_{p} y$.

At first, we shall prove lemma.
Lemma 3.2. If pythagorean orthogonality implies isosceles orthogonality in a linear 2 -normed space X, then X is strictly convex.

Proof. Suppose that X is not strictly convex. Then there exist x, y in X such that $\|x, z\|=\|y, z\|=\left\|\frac{x+y}{2}, z\right\|=1$ implies $y \neq x$ and x 土 $_{p} y$ (called x is not pythagorean orthogonality to y). By Theorem 2.2., there exists a nonzero real number a such that $x \perp_{p} a x+y$, that is,

$$
\begin{align*}
\|x-(a x+y), z\|^{2} & =\|x, z\|^{2}+\|a x+y, z\|^{2} \\
& =1+\|a x+y, z\|^{2} \cdots \cdots \tag{*}
\end{align*}
$$

and by the fact that \perp_{p} implies $\perp_{i}, x \perp_{-1}(a x+y)$. Further, $|a| \leq 1$ by Theorem 2.2.

From (*), we get

$$
\begin{aligned}
1 & \leq 1+\|a x+y, z\|^{2} \\
& =(2+a)^{2}\left\|\frac{a x+x+y}{2+a}, z^{\prime \prime}\right\|^{2} \\
& =\|a x+x+y, z\|^{2} \\
& \leq\{\|a x+x, z\|+\|y, z\|\}^{2} \\
& =(a+1)^{2}\|x, z\|^{2}+2|a+1|\|x, z\|\|y, z\|+\|y, z\|^{2} \\
& =(a+2)^{2} .
\end{aligned}
$$

Thus, we obtain $a=-1$. Apply $a=-1$ to (*). Then $1=\|y, z\|^{2}=\|x-y, z\|^{2}+1$ and therefore $\|x-y, z\|=0$. Hence $x-y$ and z are linearly dependent. That is, $z=\alpha(x-y)$ for some $\alpha \in R$, or $x-y=0$.
(i) $\alpha=0$, then $z=0$. This contradicts $\|x, z\|=1=\|y, z\|$.
(ii) $\alpha \neq 0$ and $x-y \neq 0$, then $z=\alpha(x-y) \neq 0$.

This contradicts $z \notin V(x, y)$. Consequently, $x-y=0$ which contradicts $x \neq y$.

Proof of Theorem 3.1. (1) implies (2) is trivial, (2) implies (3): Suppose that (2) does not imply (3). Then there exist x, y in X such that $x \underline{1}_{i} y$ but x 土 $_{p} y$. By Theorem 2.2., choose a nonzero real number a such that $x \perp_{p}(a x+y)$. But by (2), $x \perp_{i}(a x+y)$. Hence, by Lemma 3.2 and (2), X is strictly convex. Also, by Theorem 2.4, an isosceles orthogonality, \perp_{i}, is unique. This contradicts $a \neq 0$.
(3) implies (1): Let $\|x, z\|=\|y, z\|=1$. Then, since $\|x+y+x-y, z\|=\|x+y-x+y, z\|, \quad x+y 1_{i} x-y$ and so $x+y \perp_{p} x-y$. Thus, we get $\|x+y, z\|^{2}+\|x-y, z\|^{2}=\| x+$ $y+x-y, z \|^{2}=4$. By (A), X is a 2 -inner product space.

Theorem 3.3. For a linear 2-normed space, the following statements are equivalent:
(1) X is a 2 -inner product space,
(2) x, y in $X, x \perp_{p} y$ implies $x \perp_{f} y$,
(3) x, y in $X, x \perp_{s} y$ implies $x \perp_{p} y$.

At first, we shall prove lemma.

Iemma 3.4. If pythagorean orthogonality, \perp_{p}, implies J-orthogonality, \perp_{f}, in a linear 2 -normed space, then X is strictly convex.

Proof. Suppose that X is not strictly convex. Then there exist x, y in X such that $\|x, z\|=\|y, z\|=\frac{x+y}{2}, z \|=1$ implies $y \neq x$ and x 土 $_{p} \frac{x+y}{2}$. By Theorem 2.2, there exists a nonzero real number a such that $\frac{x+y}{2} \perp_{-p}\left(a \frac{x+y}{2}+x\right)$, that is,

$$
\begin{aligned}
\frac{x+y}{2}-\left(a \frac{x+y}{2}+x\right), z & =\frac{x+y}{2}, z_{1}^{2} \\
& +a \frac{x+y}{2}+x, z \\
& =1+a \frac{x+y}{2}+x, z z^{2} \cdots(* *)
\end{aligned}
$$

and since \perp_{p} implies \perp_{-i},

$$
\frac{x+y}{2}+k\left(a \frac{x+y}{2}+x\right), z\left\|\geq \frac{x+y}{2}, z\right\|=1 \cdots \cdots(* * *)
$$

for every real k.

With $k=-\frac{1}{a},(* * *)$ yields $|a| \leq 1$. Again putting

$$
\begin{aligned}
k=-\frac{1}{a+2}, & \quad \frac{x+y}{2}-\frac{1}{a+2}\left(a \frac{x+y}{2}+x\right), z \mid \\
& =\left|\frac{1}{a+2} y, z\right| \\
& =\left|\frac{1}{a+2}\right| \\
& \geq 1 .
\end{aligned}
$$

Thus $a=-1$. We apply $a=-1$ to (**)

$$
\begin{aligned}
1 & =\left\|\frac{x+y}{2}+\frac{x-y}{2}, z\right\|^{2} \\
& =\left\|\frac{x+y}{2}, z^{i^{2}}+\right\| \frac{x-y}{2}, z \|^{2} \\
& =1+\| \frac{x-y}{2}, z_{i}^{i} .
\end{aligned}
$$

Therefore $\|x-y, z\|=0$. The rest of the argument is same as in proof of lemma 3.2.

Proof of Theorem 3.3. (1) implies (2) is trivial. (2) implies (3): Suppose that (2) does not imply (3). Then there exist x, y in X such that $x \perp_{s} y$ but x 上 $_{p} y$. By Theorem 2.2, choose a nonzero real number a such that $(a y+x) \perp_{p} y$. By (2), $(a y+x) \perp_{y} y$. Also, by Lemma $3.4, X$ is strictly convex and by Theorem $2.3, J$-orthogonality is a left unique. This contradicts $a \neq 0$.
(3) implies (1): Let $\|x, z\|=\|y, z\|=1$. If $x \perp, y$ and $(x+y) \perp_{s}(x-y)$, then $4=\|x+y+x-y, z\|^{2}=\|x+y, z\|^{2}+$ $\|x-y, z\|^{2}$. Thus by (A), X is 2 -inner product space. If $x \not$ 土 y, then choose $w \in X$ such that $x \perp_{s} w$ and $(x+w) \perp_{s}(x-w)$. Hence

$$
\begin{aligned}
\|w, z\|^{2} & =\left\|\frac{(x+w)-(x-w)}{2}, z\right\|^{2} \\
& =\left\|\frac{x+w}{2}, z\right\|^{2}+\left\|\frac{x-w}{2}, z\right\|^{2} \\
& =\left\|\frac{x}{2}, z\right\|^{2}+\left\|\frac{w}{2}, z\right\|^{2}+\left\|\frac{x}{2}, z\right\|^{2}+\left\|\frac{w}{2}, z\right\|^{2} \cdot
\end{aligned}
$$

This means $\|x, z\|=\|w, z\|=1$. Let a and b be such that $y=a x+b w$. Then

$$
\begin{aligned}
& \|y, z\|^{2}=\|a x+b w, z\|^{2} \\
& =\|a x, z\|^{2}+\|b w, z\|^{2} \\
& =a^{2}+b^{2} \\
& \|x+y, z\|^{2}=\|(1+a) x+b w, z\|^{2} \\
& \\
& =(1+a)^{2}+b^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\|x-y, z\|^{2} & =\|(1-a) x-b w, z\|^{2} \\
& =(1-a)^{2}+b^{2} .
\end{aligned}
$$

Therefore, $\|x+y, z\|^{2}+\|x-y, z\|^{2}=2\left(a^{2}+b^{2}\right)+2$

$$
\begin{aligned}
& =2\|y, z\|^{2}+2 \\
& =4
\end{aligned}
$$

Hence, by (A), X is a 2 -inner product space.
Lemma 3.5. If isosceles orthogonality is homogenous in linear 2 -normed space X, then X is a 2 -inner product space.

Proof. If $\|x, z\|=\|y, z\|, x, y$ in X, then $\| x+y+x-$ $y, z\|=\| x+y-(x-y), z \|$ and so $(x+y) \perp_{i}(x-y)$. If isosceles orthogonality is homogenous in X, then

$$
\begin{aligned}
& \|(a+1)(x+y)+(a-1)(x-y), z\| \\
= & \|(a+1)(x+y)-(a-1)(x-y), z\|
\end{aligned}
$$

or

$$
\|a x+y, z\|=\|x+a y, z\| \text { for all real } a \text {. }
$$

Hence, by (C), X is a 2 -inner product space.
Theorem 3.6. For a linear 2 -normed space X, the following statements are equivalent:
(1) X is a 2 -inner product space.
(2) x, y in $X, x \perp_{\mathrm{J}} y$ implies $x \perp_{i} y$.

Proof. (1) implies (2) is trivial. (2) implies (1): Let $x \neq 0, y$ in X. By [6, Theorem], there exists a real number a such that $x \perp_{J}(a x+y)$. Since J-orthogonality is homogenous, $x\rfloor_{\mathrm{s}} k(a x+y)$ for every real number k. Also, by (2), $x \perp_{\mathrm{s}} k(a x+y)$ for every real number k. Thus by Lemma 3.5, we obtain (2) implies (1).

Theorem 3.7. For a linear 2 -normed space X, the following statements are equivalent:
(1) X is a 2-inner product space.
(2) x, y in $X, x \perp_{\&} y$ implies $x \perp_{J} y$.

Proof. (1) implies (2) is trivial. (2) implies (1): Suppose that

$$
\|x, z\|=\|y, z\|
$$

for every x, y in X. Then

$$
\|x+y+x-y, z\|=\|x+y-(x-y), z\|
$$

that is, $(x+y) \perp_{2}(x-y)$. Therefore $(x+y) \perp_{s}(x-y)$. Thus we have $\|x+y+k(x-y), z\| \geq\|x+y, z\|$ for all real number k. In particular for all $a>1$ we have

$$
\left\|x+y+\frac{a^{2}-1}{a^{2}+1}(x-y), z \mid \geq\right\| x+y, z \|
$$

Therefore

$$
\begin{aligned}
\left\|a x+a^{-1} y, z\right\| & \geq \frac{a^{2}+1}{2 a}\|x+y, z\| \\
& \geq\|x+y, z\| \text { for all } a>1 .
\end{aligned}
$$

Hence by (B), X is a 2 -inner product space.

References

1. C. Diminue, S. Gahler and A. Whte, 2 -inner product spaces, Demonstractio Math. 2 (1973), 525-536.
2. C. Diminnie, S. Gahler and A. White, Strictly convex linear 2 -normed Spaces. Math. Nachr. 59(1974), 316-324.
3. C. Diminnie, S. Gahler and A. White, Remarks on strictly convex and strictly 2 -convex normed spaces, Math. Nachr. 88 (1979), 363-372.
4. r.E. Ehret, I.near 2-normed spaces, Doctoral Dissertation, St. Louis Univ., 1969.
5. R.C. James, Orthogonality and linear functionals, Trans. Amer. Math. Soc. 62(1947), 265-292.
b. A. Khan and A. Siddiqui, B-orthognality in 2 -normed spaces, Bull. Calcutta Math. Soc. 74(1982), 216-222.

Gyeongsang National Lniversity
Jinju 660-300
Korea
and
Dongeui University
Pusan 614-010
Korea

Received March 5, 1988

