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ORTHOGONALITIES AND CHARACTERIZATIONS
OF 2-INNER PRODUCT SPACES

Y.J. CHo anDp S.S. Kim

1. Introduction

Let X be a real linear space of dimension greater than
1. Let (+, +|-) be a real-valued function on X X XX X which
satisfies the following conditions:

(1) (=z,2(z)>0,
(x, z|2) =0 if and only if £ and 2 are linearly de-
pendent,

(I} (=, zlz) = (2, 2|x),

(I) {x, ¥12)=(y, z|2).

(I (az, ylz)=alz, yl2),

(I (z+2, ylz)=(=x, yl2) + (2, y]2)

for every x,2’,y,2z in X and for real number «. Then
(+s «1+) is called a 2-inner product and (X, (-, +{<)) a 2-
inner product space ([41). The concepts of 2-inner product
and 2-inner product space are 2-dimensional analogy of the
concepts of inner product and inner product space. R.E.
Ehret [4] proved that on any 2-inner product space
(X, (-, 1)), la, z|1?=(x, z12) defines a 2-norm for which

(. y12) = (Nl +3, 211~ |z - 3, 211
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and
x4y, 2|2+ |lx—y, z|[2=2(l[x, 2[1?+]]y, 2[|})
for every z,y,2(#0) in X and z¢& V{zx,»).

One of the following (A)~(C) listed below is a condition
which is necessary and sufficient condition for a linear
2-normed space X to be a 2-inner product space. These
characterization (A)~(C) of 2-inner product spaces were
proved by C. Diminnie, S. Gahler and A. White ([11):
let 2 X be an arbitrary nonzero element.

(A If z,ye X, |z, zll=lly,zll=1 and 2z& V(zx,3),

then |lx+y,2]12 + le—y, 21> =4,

(B) Y x,y<=X and a nonzerc real number %, [[z,z{[=

Hy, zll, then |tex+& 1y, zlI>]lx+y, 2l

(C) If 2,y X and [lz,z||=Ily,=|l, then l[kx+y,2||=

llz+ky,2|| for all real number £.

The main purpose of this paper is to give some new cha-

racterizations of 2-inner product spaces and to provide
simpler proofs of existing similar characterization,

2. Orthogonalities

Throughout this note, X will denote a linear 2-pormed
space, X, y,2 in X with 2340 and 2 & V{(z, ).

DEFINITION 2.1. For linear 2-normed space an element x
of X is isosceles orthogonal to an element y (written
z ;) it llz+y,zli=llz—y, 2.

DEFINITION 2.2. For a linear 2-normed space an element
x of X is pythagorean orthogonal to an element y (written
z1, » if lz—y 2l2=tlz, 211? + Hy, 2112
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DEFINITION 2.3. For a linear 2-normed space an element
z of X is J-orthogonal to an element » (written x 1 ; 3)
if Hx+ky, zf|>]|x, 2]| for every real number 4.

From 5] we know the following theorem:

THEOREM 2.1, If x70, » in a linear 2-normed space,
then there exist numbers a, b, ¢ and d such that x | ,(ex+2y),
i, bx+y), x| (cx+y) and (dx+y)],x. Further, if
Uit <Hzll, then lal < Ilxll/z]].

By using the techniques in C. Diminnie, S. Gahler and
A. White ({27), we have the following results: let z & X
and X, denoted the quotient space X/V{z). For (x)., (¥).
in X, define (2).+(»).=(x+py).,, (ax).=a(x). and
1(x) M. =llx, 2ll. Then (X,, 11-1[.) is a normed linear space.
X. will denote this linear space.

Thus it follows that:

TueoreM 2.2. If 20, & in X, then there exist numbers
a,b,¢c and d such that z|{,(ax+y), zl,(bzx+y), zl,
(cx+d) and (dx+2) ! ,;x. Further if ||y, 2|l <z, 2!l
then [ai <1y, zil/llz, 2.

An orthogonality | is called left(right) unique if for

z#0, ¥ in X, there exist only one @ such that (ex+y) | x
(x| {az+y)).

REMARK. For isosceles and pythagorean orthogonalities,

left and right uniqueness are equivalent.

For J-orthogonality, the following was proved

THEOREM 2.3 ([6]). J-orthogonality, | ; is left(right)



78 Y.]. Cio anp S.8. Kim

unique if and only if X is strictly convex {(smooth).

DerinitioN 2.4({31). X is strictly convex if [|z,zli=

3, 2ll=ZEY, 2]=1 imply y=z.

THEOREM 2.4. An isosceles orthogonality, |, in X is
unique if and only if X is strictly convex.

PrOOF. Suppose that X is not strictly convex and iso-
sceles orthogonality is not unique. Then, by Theorem 2.2,
there exist x#0, ¥ in X and a real number ¢> 0 such
that z ] ; ¥ and = | ,(@ax+ ). The function f(¢)=||y+zx,zll,
—oo <Lt < oo, is a strictly convex function with f(1)=/(—1)
and fla+1)=f{a—1) becausc | is isosceles orthogomulity.

In the case 0 <{a <2, we have
fla-D=f(25% (- +-&)
<EZE S +-2f () =£1)
=f(-§-(a=D+ (1 £ (@+1)) < fla+1).

This contradicts fla—1)=f(a+1).
In other case a>2, f will have two distinct local minima,
one each in [—1,11 and [a—1, @+1]. This contradicts that

f is strictly convex function.

Conversely, suppose that X is not strictly convex. Then

\ _.
there exist x, ¥ in X such that [lx,z[lz”y,zH:%ix—Ey, zj?:]_

implies y7#%z. We get [z +y, z||=llz+y+(x—¥), zli=|lz+
y—(x—¥),z|l. Put 2’=x+y and y=x2—y. Then we have
”-If,zH:H-’E’+y',2“2”x'“y',2”,y'io- Hences
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:r R yf—yl _2
s A

Thus
Yy ry Y Iy (Y
2L<x+2> and 2-L‘<x 2)‘

This contradicts the uniqueness of | .

3. Characterizations of 2-inner product spaces

THEOREM 3. 1. For a linear 2-normed space X, the follow-
ing statements are equivalent:

(1) X is a 2-inner product space,
(2) z,y in X, =],y imply 1. ¥,
3) z,y in X, xl, y imply x 1,

At first, we shall prove lemma.

LEMMA 3.2. If pythagorean orthogonality implies isos-
celes orthogonality in a linear 2-normed space X, then X

is strictly convex.

Proor. Suppose that X is not strictly convex. Then there
exist z,y in X such that Hx,z]lzlly,zH:l]x;:y , z!:[z 1

implies y # x and x4, y (called x is not pythagorean
orthogonality to 3). By Theorem 2.2., there exists a
nonzero real number @ such that x|, ax+y, that is,

Hx—(az+3),2|I>=llz, 2|+ |lax +y, 21|
:1—’—”ax+y,z”2 ............... (*)

and by the fact that |, implies |, x| .(azx+y).
Further, |e]<1 by Theorem 2.2.
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From (%), we get
1< 1+ilax+ v, 2{|?
02

_ N ax+ x4y .
=@+a) Il 24a ° zil

=llax+x+y,2|}?

<{llax+z, z|| +||y, 2]} }?

={(a+1)¥jx, zli*+2la+ 1] ilz, 2]} [y, 2|l +1ly, 2112
=(a+2)2

Thus, we obtain a=—1. Apply a=—1 to (*). Then
1=y, zli2=|lx~¥,2]|?*+1 and therefore [|lz—y,z||=0.
Hence x—3% and =z are linearly dependent. That is,
z=of{x—y) for some a € R, or x—y=0.

(1) =0, then 2=0. This contradicts [|x, 2||=1={|y, z[|.
(Gi) a#0 and 2~y =0, then z=a{xz—y) F£0.

This contradicts 2z & V(z,y). Consequently, z—y=0
which contradicts z # 3.

ProoF of THEOREM 3. 1. (1) implies (2) is trivial, (2) implies
(3): Suppose that (2) does not imply (3). Then there exist
z,¥ in X such that =1,y but x4,y. By Theorem 2.2,
choose a nonzero reai number @ such that x| ,(ax+y).
But by (2), x| ;(ex+y). Hence, by Lemma 3.2 and (2),
X is strictly convex. Also, by Theorem 2.4, an isosceles
orthogonality, | ; is unique. This contradicts a #0.

(3) implies (1): Let [lz,zl{=|ly,2z|l=1. Then, since
llz+y+z—y.2{l=llz+y—2+y3,2]ll, +yl.x—y and so
x+y],x2—3y. Thus, we get {lx+y,z|*+|lx—y,2[|2=|[x+
y+x—4,z(|*=4. By (A), X is a 2-inner product space.
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THEOREM 3.3. For a linear 2-normed space, the following

statements are equivalent:

(1) X is a 2-inner product space,
(2 z,y in X, x1,¥ implies x | ;v,
(3) x,y in X, x|,y implies x| ,y.

At first, we shall prove lemma.

LEmMMa 3.4. If pythagorean orthogonality, 1 s, implies
J-orthogonality, 14, in a linear 2-normed space, then X is
strictly convex.

Proor. Suppose that X is not strictly convex. Then there

S axy l}_

exist ,y in X such that ]]x,zH:[Iy,zH_—_;—?~—, 4
implies y % x and z.t, x;-y By Theorem 2.2, there exists

Ly z+
a nonzero real number a such that -32—:’_I_p(a _.z_y -!-x),

¢

that is,

i

v Y B
;—y (a Ty +x), zl r;-} o

1
|
E

i 2 :! L
N "
e dan s
i - ¢ (2
:14.-;.'4—31'53 +x,zi! « (%%)

and since |, implies A,

5 d oo+
Y keI ), 2| > [ £

for every real A.
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With k:d%-, (xxx) yields ja] < 1. Again putting

D | ii_x_ﬂﬁ 1 x4y {
k=— i ] a2 @3 '*xLz’
1 |
“iaxrz Y #

N 1
Tl a+

e
> 1.

Thus a=—1. We apply a=—1 to (%)

|ty z—y P
1 ] 7t 3 ’z!
izvy i iz—y P
=555 =+ o

=1+

 x— if2
;xyz.

2 3

—_—

Therefore ||x— ¥, 2||=0. The rest of the argument is same
as in proof of lemma 3.2,

Proor of THEOREM 3.3. (1) implies (2) is trivial. (2)
implies (3): Suppose that (2) does not imply (3). Then
there exist x,% in X such that x|,y but zt,y. By
Theorem 2.2, choose a nonzero real number & such that
(ey+z)1,y. By (), (ay+x)l;y. Also, by Lemma
3.4, X is strictly convex and by Theorem 2.3, J-orthogon-
ality is a left unique. This contradicts a+0.

(3) implies (1): Let ljx, zll=l{y,zl|=1. If x|,y and
(x+3) 1 ;(z—y), thend = {lz+y+x—y,2{1? = llx+y, =l{*+
lz—v, 2|12, Thus by (A), X is 2-inner product space.
If x4;vy, then choose w& X such that x| ,w and
{(z+w) | ;(x—w). Hence
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”w,z”z:iiﬁﬁ’)—;ﬁ:ﬂl_, e
jlz4+w 2 1l e— 2
= —2‘-, I] +” s Zl
- Al |1z Iw 2
5 H +“ > E !7 ‘ 2‘
This means ||z, z||=||lw, 2||=1. Let @« and & be such that
y=ax+bw. Then
o, z||?={lax+bw, z||?
=llax, z||*+{|bw, =|[*
= a2+ b?,
Hx+y, z|[2=][(1+a)x+bw, 2|2
={1+a)i+b
and
Hx—y, z[[2=|{{l—a)x—bw, 2|2
=(1-a)2+b2
Therefore, {{x+y,z|[2+Hx—y,2||?=2(a%+562)+2
=2[|y, 2[12+2

=4,
Hence, by(A), X is a 2-inner product space.

LemMma 3.5, If isosceles orthogonality is homogenous in
Jinear 2-normed space X , then X is a 2-inner product space,

Proor. If |lz,zll=liy,2ll, z,y in X, then |[z4+y+2—
v zll=llx+y—(x~y),z|| and so (x+y) | (xz—y). If isos-
celes orthogonality is homogenous in X, then

He+D(x+y) +(a—1)(xz—y), =]

=ll{a+D(z+y)—(a— 1 (z-y), zll
or

Nlezx+y,z||=|lx+ay,z|| for all real a.
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Hence, by(C), X is a 2-inner product space.

THEOREM 3.6. For a linear 2-normed space X, the follow-
ing statements are equivalent:

(1) X is a 2-inner product space,

(2) z,y in X, x| ;v implies x| ;y.

ProoF. (1) implies (2) is trivial. (2) implies (1): Let
70, ¥ in X, By [6, Theorem], there exists a real number
a such that x| ;(ex+y). Since J-orthogonality is homo-
genous, x| jk{ax+y) for every real number %2 Also, by
(2), x| k(ax+y) for every real number %k Thus by
Lemma 3.5, we obtain (2) implies (1).

THEOREM 3.7. For a linear 2-normed space X, the follow-
ing statements are equivalent:

(1) X is a 2-inner product space.

(2) z,y in X, x1, y implies x| ; .

Proor. (1) implies (2) is trivial. (2) implies (1): Suppose

that
llz, zl{=]ly, zl|
for every z,¥ in X. Then
Hz+y+zx—y,2||=llzx+y-(x-3), 2|l

that is, (x+3)..(z—»). Therefore (z+¥) |1 ;(z— ). Thus
we have ||x+y+E(z— ), z||>llx+ 2y, z|| for all real number
k. In particular for all @2>1 we have

L at—1
Hx+y+ a*+1

(x_y)’ zi 211$+y,2’!-

Therefore

a’+1
2a

>lx+y,z|] for all a>1.

llax+a™ty, z||>

Hzx+y, 2l
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Hence by (B), X is a 2-inner product space.

[\

:'J'J
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