PUSAN KYÖNGNAM MATHEAMTICAL JOURNAL Vol. 4, 75~85, 1988.

ORTHOGONALITIES AND CHARACTERIZATIONS OF 2-INNER PRODUCT SPACES

Y. J. CHO AND S. S. KIM

1. Introduction

Let X be a real linear space of dimension greater than 1. Let $(\cdot, \cdot|\cdot)$ be a real-valued function on $X \times X \times X$ which satisfies the following conditions:

- (I1) (x, x|z)≥0,
 (x, x|z)=0 if and only if x and z are linearly dependent,
- (I_2) (x, x|z) = (z, z|x),
- (I_3) (x, y|z) = (y, x|z),
- $(I_4) \quad (\alpha x, y|z) = \alpha(x, y|z),$
- (I_5) (x+x', y|z) = (x, y|z) + (x', y|z)

for every x, x', y, z in X and for real number α . Then $(\cdot, \cdot | \cdot)$ is called a 2-inner product and $(X, (\cdot, \cdot | \cdot))$ a 2inner product space ([4]). The concepts of 2-inner product and 2-inner product space are 2-dimensional analogy of the concepts of inner product and inner product space. R. E. Ehret [4] proved that on any 2-inner product space $(X, (\cdot, \cdot | \cdot)), ||x, z||^2 = (x, x|z)$ defines a 2-norm for which $(x, y|z) = \frac{1}{4}(||x+y, z||^2 - ||x-y, z||^2)$ and

$$||x+y,z||^2+||x-y,z||^2=2(||x,z||^2+||y,z||^2)$$

for every $x, y, z \neq 0$ in X and $z \notin V(x,y)$.

One of the following $(A) \sim (C)$ listed below is a condition which is necessary and sufficient condition for a linear 2-normed space X to be a 2-inner product space. These characterization $(A) \sim (C)$ of 2-inner product spaces were proved by C. Diminnie, S. Gähler and A. White ([1]): let $z \in X$ be an arbitrary nonzero element.

- (A) If $x, y \in X$, ||x, z|| = ||y, z|| = 1 and $z \notin V(x, y)$, then $||x+y, z||^2 + ||x-y, z||^2 = 4$,
- (B) If $x, y \in X$ and a nonzero real number k, ||x, z|| = ||y, z||, then $||kx+k^{-1}y, z|| \ge ||x+y, z||$,
- (C) If $x, y \in X$ and ||x, z|| = ||y, z||, then ||kx+y, z|| = ||x+ky, z|| for all real number k.

The main purpose of this paper is to give some new characterizations of 2-inner product spaces and to provide simpler proofs of existing similar characterization.

2. Orthogonalities

Throughout this note, X will denote a linear 2-normed space, x, y, z in X with $z \neq 0$ and $z \notin V(x, y)$.

DEFINITION 2.1. For linear 2-normed space an element x of X is *isosceles orthogonal* to an element y (written $x \perp_i y$) if ||x+y,z|| = ||x-y,z||.

DEFINITION 2.2. For a linear 2-normed space an element x of X is pythagorean orthogonal to an element y (written $x \perp_{\rho} y$) if $||x-y,z||^2 = ||x,z||^2 + ||y,z||^2$.

76

DEFINITION 2.3. For a linear 2-normed space an element x of X is *J*-orthogonal to an element y (written $x \perp_J y$) if $||x+ky,z|| \ge ||x,z||$ for every real number k.

From [5] we know the following theorem:

THEOREM 2.1. If $x \neq 0$, y in a linear 2-normed space, then there exist numbers a, b, c and d such that $x \mid \lfloor_1(ax+y), x \mid \lfloor_p(bx+y), x \perp_J(cx+y)$ and $(dx+y) \perp_J x$. Further, if $||y|| \leq ||x||$, then $|a| \leq ||y||/||x||$.

By using the techniques in C. Diminnie, S. Gahler and A. White ([2]), we have the following results: let $z \in X$ and X_z denoted the quotient space X/V(z). For $(x)_z$, $(y)_z$ in X_z define $(x)_z + (y)_z = (x+y)_z$, $(ax)_z = a(x)_z$ and $||(x)_z||_z = ||x, z||$. Then $(X_z, ||\cdot||_z)$ is a normed linear space. X_z will denote this linear space.

Thus it follows that;

THEOREM 2.2. If $x \neq 0$, y in X, then there exist numbers a, b, c and d such that $x \perp_i (ax+y)$, $x \perp_i (bx+y)$, $x \perp_j (cx+d)$ and $(dx+y) \perp_j x$. Further if $||y, z|| \leq ||x, z||$, then $|a| \leq ||y, z||/||x, z||$.

An orthogonality \perp is called left(right) unique if for $x \neq 0$, y in X, there exist only one a such that $(ax+y) \perp x$ $(x \perp (ax+y))$.

REMARK. For isosceles and pythagorean orthogonalities, left and right uniqueness are equivalent.

For J-orthogonality, the following was proved

THEOREM 2.3 ([6]). J-orthogonality, \perp_J , is left(right)

unique if and only if X is strictly convex (smooth).

DEFINITION 2.4([3]). X is strictly convex if ||x,z|| = $||y,z|| = \left|\frac{x+y}{2}, z\right| = 1$ imply y=x.

THEOREM 2.4. An isosceles orthogonality, \perp_{i} , in X is unique if and only if X is strictly convex.

PROOF. Suppose that X is not strictly convex and isosceles orthogonality is not unique. Then, by Theorem 2.2, there exist $x \neq 0$, y in X and a real number a > 0 such that $x \perp_i y$ and $x \perp_i (ax+y)$. The function f(t) = ||y+tx, z||, $-\infty < t < \infty$, is a strictly convex function with f(1) = f(-1)and f(a+1) = f(a-1) because \perp is isosceles orthogonality.

In the case $0 < a \leq 2$, we have

$$f(a-1) = f\left(\frac{2-a}{2}(-1) + \frac{a}{2}\right)$$

$$< \frac{2-a}{2}f(-1) + \frac{a}{2}f(1) = f(1)$$

$$= f\left(\frac{a}{2}(a-1) + (1-\frac{a}{2})(a+1)\right) < f(a+1)$$

This contradicts f(a-1) = f(a+1).

In other case a > 2, f will have two distinct local minima, one each in [-1,1] and [a-1, a+1]. This contradicts that f is strictly convex function.

Conversely, suppose that X is not strictly convex. Then there exist x, y in X such that $||x,z|| = ||y,z|| = \left|\frac{x+y}{2}, z\right|| = 1$ implies $y \neq x$. We get ||x+y,z|| = ||x+y+(x-y), z|| = ||x+y-(x-y), z||. Put x'=x+y and y'=x-y. Then we have $||x',z|| = ||x'+y',z|| = ||x'-y',z||, y' \neq 0$. Hence,

$$|x'+\frac{y'}{2}-\frac{y'}{2}, z| = |x'+\frac{y'}{2}+\frac{y'}{2}, z| = |x'-\frac{y'}{2}-\frac{y'}{2}, z|.$$

Thus

$$\frac{y'}{2} \perp_i \left(x' + \frac{y'}{2}\right)$$
 and $\frac{y'}{2} \perp_i \left(x' - \frac{y'}{2}\right)$.

This contradicts the uniqueness of \perp ,.

3. Characterizations of 2-inner product spaces

THEOREM 3.1. For a linear 2-normed space X, the following statements are equivalent:

(1) X is a 2-inner product space,
 (2) x, y in X, x⊥, y imply x⊥, y,
 (3) x, y in X, x⊥, y imply x⊥, y.

At first, we shall prove lemma.

LEMMA 3.2. If pythagorean orthogonality implies isosceles orthogonality in a linear 2-normed space X, then Xis strictly convex.

PROOF. Suppose that X is not strictly convex. Then there exist x, y in X such that $||x, z|| = ||y, z|| = \left|\left|\frac{x+y}{2}, z\right|\right| = 1$ implies $y \neq x$ and $x \neq_p y$ (called x is not pythagorean orthogonality to y). By Theorem 2.2., there exists a nonzero real number a such that $x \perp_p ax + y$, that is,

$$||x - (ax + y), z||^{2} = ||x, z||^{2} + ||ax + y, z||^{2}$$
$$= 1 + ||ax + y, z||^{2} \dots \dots \dots (*)$$

and by the fact that \perp_p implies $\perp_n x \perp_n (ax+y)$. Further, $|a| \leq 1$ by Theorem 2.2. From (*), we get

$$\begin{split} & 1 \leq 1 + ||ax + y, z||^{2} \\ &= (2+a)^{2} \left\| \frac{ax + x + y}{2+a}, z \right\|^{2} \\ &= ||ax + x + y, z||^{2} \\ &\leq \{ ||ax + x, z|| + ||y, z||\}^{2} \\ &= (a+1)^{2} ||x, z||^{2} + 2|a+1| ||x, z|| ||y, z|| + ||y, z||^{2} \\ &= (a+2)^{2}. \end{split}$$

Thus, we obtain a=-1. Apply a=-1 to (*). Then $1=||y,z||^2=||x-y,z||^2+1$ and therefore ||x-y,z||=0. Hence x-y and z are linearly dependent. That is, $z=\alpha(x-y)$ for some $\alpha \in R$, or x-y=0.

- (i) $\alpha = 0$, then z = 0. This contradicts ||x, z|| = 1 = ||y, z||.
- (ii) $\alpha \neq 0$ and $x-y \neq 0$, then $z=\alpha(x-y) \neq 0$.

This contradicts $z \notin V(x, y)$. Consequently, x-y=0which contradicts $x \neq y$.

PROOF of THEOREM 3.1. (1) implies (2) is trivial, (2) implies (3): Suppose that (2) does not imply (3). Then there exist x, y in X such that $x \perp_i y$ but $x \perp_i y$. By Theorem 2.2., choose a nonzero real number a such that $x \perp_i (ax+y)$. But by (2), $x \perp_i (ax+y)$. Hence, by Lemma 3.2 and (2), X is strictly convex. Also, by Theorem 2.4, an isosceles orthogonality, \perp_i , is unique. This contradicts $a \neq 0$.

(3) implies (1): Let ||x,z|| = ||y,z|| = 1. Then, since ||x+y+x-y,z|| = ||x+y-x+y,z||, $x+y_{\perp i}x-y$ and so $x+y_{\perp j}x-y$. Thus, we get $||x+y,z||^2+||x-y,z||^2=||x+y+$

80

THEOREM 3.3. For a linear 2-normed space, the following statements are equivalent:

- (1) X is a 2-inner product space,
- (2) x, y in $X, x \perp_{\rho} y$ implies $x \perp_{J} y$,
- (3) x, y in $X, x \perp_{f} y$ implies $x \perp_{p} y$.

At first, we shall prove lemma.

LEMMA 3.4. If pythagorean orthogonality, \perp_{p} , implies *J*-orthogonality, \perp_{J} , in a linear 2-normed space, then X is strictly convex.

PROOF. Suppose that X is not strictly convex. Then there exist x, y in X such that $||x, z|| = ||y, z|| = \left| \frac{x+y}{2}, z \right| = 1$ implies $y \neq x$ and $x \neq_p \frac{x+y}{2}$. By Theorem 2.2, there exists a nonzero real number a such that $\frac{x+y}{2} \perp_p \left(a \frac{x+y}{2} + x \right)$, that is,

$$\frac{\left\|\frac{x+y}{2} - (a\frac{x+y}{2} + x), z\right\|^{2}}{\left\|\frac{x+y}{2}, z\right\|^{2}} + \left\|a\frac{x+y}{2} + x, z\right\|$$
$$= 1 + \left\|a\frac{x+y}{2} + x, z\right\|^{2} \cdots (**)$$

and since \perp_{ρ} implies \perp_{i} ,

$$\left\|\frac{x+y}{2}+k(a\frac{x+y}{2}+x), z\right\| \ge \left\|\frac{x+y}{2}, z\right\| = 1.....(***)$$

for every real k.

With $k=-\frac{1}{a}$, (***) yields $|a| \le 1$. Again putting $k=-\frac{1}{a+2}$, $\left\|\frac{x+y}{2}-\frac{1}{a+2}\left(a\frac{x+y}{2}+x\right),z\right\|$ $=\left\|\frac{1}{a+2}y,z\right\|$ $=\left|\frac{1}{a+2}\right|$ ≥ 1 .

Thus a = -1. We apply a = -1 to (**)

$$1 = \left\| \frac{x+y}{2} + \frac{x-y}{2}, z \right\|^{2}$$
$$= \left\| \frac{x+y}{2}, z \right\|^{2} + \left\| \frac{x-y}{2}, z \right\|^{2}$$
$$= 1 + \left\| \frac{x-y}{2}, z \right\|^{2}.$$

Therefore ||x-y,z||=0. The rest of the argument is same as in proof of lemma 3.2.

PROOF of THEOREM 3.3. (1) implies (2) is trivial. (2) implies (3): Suppose that (2) does not imply (3). Then there exist x, y in X such that $x \perp_J y$ but $x \perp_p y$. By Theorem 2.2, choose a nonzero real number a such that $(ay+x) \perp_p y$. By (2), $(ay+x) \perp_J y$. Also, by Lemma 3.4, X is strictly convex and by Theorem 2.3, J-orthogonality is a left unique. This contradicts $a \neq 0$.

(3) implies (1): Let ||x,z|| = ||y,z|| = 1. If $x \perp_J y$ and $(x+y) \perp_J (x-y)$, then $4 = ||x+y+x-y,z||^2 = ||x+y,z||^2 + ||x-y,z||^2$. Thus by (A), X is 2-inner product space. If $x \perp_J y$, then choose $w \in X$ such that $x \perp_J w$ and $(x+w) \perp_J (x-w)$. Hence

$$||w, z||^{2} = \left\| \frac{(x+w) - (x-w)}{2}, z \right\|^{2}$$
$$= \left\| \frac{x+w}{2}, z \right\|^{2} + \left\| \frac{x-w}{2}, z \right\|^{2}$$
$$= \left\| \frac{x}{2}, z \right\|^{2} + \left\| \frac{w}{2}, z \right\|^{2} + \left\| \frac{x}{2}, z \right\|^{2} + \left\| \frac{w}{2}, z \right\|^{2}$$

This means ||x, z|| = ||w, z|| = 1. Let a and b be such that y = ax + bw. Then

$$||y, z||^{2} = ||ax+bw, z||^{2}$$

= ||ax, z||^{2} + ||bw, z||^{2}
= a^{2}+b^{2},
||x+y, z||^{2} = ||(1+a)x+bw, z||^{2}
= (1+a)^{2}+b^{2},

and

$$||x-y,z||^{2} = ||(1-a)x-bw,z||^{2}$$

= (1-a)²+b².

Therefore, $||x+y,z||^2 + ||x-y,z||^2 = 2(a^2+b^2) + 2$ = $2||y,z||^2 + 2$ = 4.

Hence, by(A), X is a 2-inner product space.

LEMMA 3.5. If isosceles orthogonality is homogenous in linear 2-normed space X, then X is a 2-inner product space.

PROOF. If ||x,z||=||y,z||, x, y in X, then ||x+y+x-y,z||=||x+y-(x-y),z|| and so $(x+y)\perp_i(x-y)$. If isosceles orthogonality is homogenous in X, then

$$||(a+1)(x+y) + (a-1)(x-y), z||$$

=||(a+1)(x+y) - (a-1)(x-y), z||

or

$$||ax+y,z||=||x+ay,z||$$
 for all real a.

Hence, by(C), X is a 2-inner product space.

THEOREM 3.6. For a linear 2-normed space X, the following statements are equivalent:

(1) X is a 2-inner product space.

(2) x, y in $X, x \perp_J y$ implies $x \perp_i y$.

PROOF. (1) implies (2) is trivial. (2) implies (1): Let $x \neq 0$, y in X. By [6, Theorem], there exists a real number a such that $x \perp_J (ax+y)$. Since J-orthogonality is homogenous, $x \perp_J k(ax+y)$ for every real number k. Also, by (2), $x \perp_i k(ax+y)$ for every real number k. Thus by Lemma 3.5, we obtain (2) implies (1).

THEOREM 3.7. For a linear 2-normed space X, the following statements are equivalent:

(1) X is a 2-inner product space.

(2) x, y in $X, x \perp_{I} y$ implies $x \perp_{J} y$.

PROOF. (1) implies (2) is trivial. (2) implies (1): Suppose that

$$||x,z|| = ||y,z||$$

for every x, y in X. Then

||x+y+x-y,z|| = ||x+y-(x-y),z||,

that is, $(x+y)\perp_i(x-y)$. Therefore $(x+y)\perp_j(x-y)$. Thus we have $||x+y+k(x-y), z|| \ge ||x+y, z||$ for all real number k. In particular for all a > 1 we have

$$\left\|x+y+\frac{a^2-1}{a^2+1}(x-y), z\right\| \ge \|x+y,z\|.$$

Therefore

$$||ax+a^{-1}y, z|| \ge \frac{a^2+1}{2a} ||x+y, z||$$

 $\ge ||x+y, z||$ for all $a > 1$.

84

Hence by (B), X is a 2-inner product space.

References

- I. C. Diminnie, S. Gahler and A. White, 2-inner product spaces, Demonstractio Math. 2 (1973), 525-536.
- C. Diminnie, S. Gähler and A. White, Strictly convex linear 2-normed Spaces. Math. Nachr. 59(1974), 316-324.
- C. Diminnie, S. Gahler and A. White, Remarks on strictly convex and strictly 2-convex normed spaces, Math. Nachr. 88 (1979), 363-372.
- R.E. Ehret, Linear 2-normed spaces, Doctoral Dissertation, St. Louis Univ., 1969.
- 5. R.C. James, Orthogonality and linear functionals, Trans. Amer. Math. Soc. 62(1947), 265-292.
- A. Khan and A. Siddiqui, B-orthognality in 2-normed spaces, Bull. Calcutta Math. Soc. 74(1982), 216-222.

Gyeongsang National University Jinju 660-300 Korea

and

Dongeui University Pusan 614-010 Korea

Received March 5, 1988