ON CERTAIN INTEGRALS OF ANALYTIC FUNCTION

OHSANG KWON, NAKEUN CHO AND SHIGEYOSHI OWA

Abstract

The object of the present paper is to derive some inequalities for certain integrals of functions belonging to the classes A(n), $S^*(n,\alpha)$ and $K(n,\alpha)$. As the special class of our theorems, we have the corresponding result shown by M. Obradović [2].

1. Introduction

Let A(n) be the class of functions of the form

(1.1)
$$f(z) = z + \sum_{n=1}^{\infty} a_k z^k \quad (n \in \mathbb{N} = \{1, 2, 3, \dots\})$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$.

A function f(z) belonging to A(n) is said to be in the class $S*(n, \alpha)$ if and only if

$$(1.2) \quad Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha$$

for some $\alpha(0 \le \alpha < 1)$ and for all $z \in U$.

A function f(z) belonging to A(n) is said to be in the

class $K(n, \alpha)$ if and only if

$$(1.3) \quad Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha$$

for some $\alpha(0 \le \alpha < 1)$ and for all $z \in U$. We note that $f(z) \in K(n, \alpha)$ if and only if $zf'(z) \in S^*(n, \alpha)$ for $0 \le \alpha < 1$, and that $K(n, \alpha) \subset S^*(n, \alpha)$ for $0 \le \alpha < 1$.

In the present paper, we prove some inequalities for certain integrals of functions f(z) belonging to the classes A(n), $S^*(n,\alpha)$ and $K(n,\alpha)$.

2. Inequalities for certain integrals

We begin with the statement of the following lemma due to Miller and Mocanu[1].

LEMMA. Let $\phi(u, v)$ be a complex valued function,

 $\phi: D \longrightarrow C$, $D \subset C \times C$ (C is the complex plane), and let $u=u_1+iu_2$, $v=v_1+iv_2$. Suppose that the function $\phi(u,v)$ satisfies the following conditions:

- (i) $\phi(u, v)$ is continuous in D;
- (ii) $(1,0) \in D$ and $Re\{\phi(1,0)\} > 0$;
- (iii) $Re\{\phi(iu_2,v_1)\} \leq 0$ for all $(iu_2,v_1) \in D$ and such that $v_1 \leq -n(1+u_2^2)/2$.

Let $p(z)=1+p_nz^n+p_{n+1}z^{n+1}+\cdots$ be regular in the open unit disk U such that $(p(z),zp'(z))\in D$ for all $z\in U$. If

$$Re\{\phi(p(z), zp'(z))\} > 0 \quad (z \in U),$$

then $Re\{p(z)\} > 0 \quad (z \in U).$

Now, we prove

THEOREM 1. Let the function f(z) defined by (1.1) be in the class A(n), $\alpha < 1$ and a > -1. If $Re\{f(z)/z\} > \alpha$, then

(2.1)
$$Re\left\{\frac{a+1}{z^{a+1}}\int_0^z t^{a-1}f(t)dt\right\} > \alpha + \frac{n(1-\alpha)}{2(a+1)+n}$$
 for $z \in U$.

PROOF. We define the function p(z) by

$$(2.2) \quad \frac{a+1}{z^{a+1}} \int_0^z t^{a-1} f(t) dt = \beta + (1-\beta) p(z),$$

where

(2.3)
$$\beta = \alpha + \frac{n(1-\alpha)}{2(a+1)+n}$$
.

Then the function $p(z)=1+p_nz^n+p_{n+1}z^{n+1}+\cdots$ is regular in U. It follows from (2,2) that

(2.4)
$$\int_0^z t^{a-1} f(t)dt = \frac{z^{a+1}}{a+1} (\beta + (1-\beta) p(z)).$$

Further, taking the idifferentiations of both sides in (2.4), we see that

(2.5)
$$\frac{f(z)}{z} = \beta + (1-\beta)p(z) + \frac{1-\beta}{a+1}zp'(z),$$

that is, that

$$(2.6) \quad Re\left\{\frac{f(z)}{z} - \alpha\right\} = Re\left\{\beta - \alpha + (1-\beta)p(z)\right\} + \frac{1-\beta}{a+1}zp'(z) > 0 \quad \text{for } z \in U.$$

Let $p(z) = u = u_1 + iu_2$, $zp'(z) = v = v_1 + iv_2$, and

(2.7)
$$\phi(u,v) = \beta - \alpha + (1-\beta)u + \frac{1-\beta}{a+1}v$$
.

Then the function $\phi(u, v)$ satisfies;

- (i) $\phi(u, v)$ is continuous in $D = C \times C$,
- (ii) $(1,0) \in D$ and $Re\{\phi(1,0)\} = 1 \alpha > 0$,
- (iii) for all $(iu_2, v_1) \in D$ such that $v_1 \leq -n(1+u_2^2)/2$,

$$Re\{\phi(iu_{2}, v_{1})\} = \beta - \alpha + \frac{1 - \beta}{a + 1}v_{1}$$

$$\leq \beta - \alpha - \frac{n(1 - \beta)(1 + u_{2}^{2})}{2(a + 1)}$$

$$\leq 0$$

for given by (2.3). Therefore, the function $\phi(u, v)$ satisfies the condition in Lemma.

Applying Lemma, we have $Re\{p(z)\} > 0$ ($z \in U$), or

$$Re\left\{\frac{a+1}{z^{a+1}}\int_0^z t^{a-1}f(t)dt\right\} > \beta \quad (z \in U).$$

This completes the assertion of Theorem 1.

REMARK 1. Letting n=1 in Theorem 1, we have the corresponding result which was proved by Obradović [2].

Making zf'(z) instead of f(z), Theorem 1 gives

COROLLARY 1. Let the function f(z) defined by (1.1) be in the class A(n), $\alpha < 1$ and a > -1. If $Re\{f'(z)\} > \alpha$, then

$$(2.8) \quad Re\left\{\frac{a+1}{z^{a+1}}\int_0^z t^a f'(t)dt\right\} > \alpha + \frac{n(1-\alpha)}{2(a+1)+n} \text{ for } z \in U.$$

Next, we derive

THEOREM 2. Let the function f(z) defined by (1.1) be in the class $S^*(n,\alpha)$ and a>-1. Then we have

$$(2.9) \quad Re\left\{\frac{z^a f(z)}{\int_0^z t^{a-1} f(t) dt}\right\} > \beta \quad (z \in U),$$

where

(2.10)
$$\beta = \frac{2a + 2\alpha - 1 + \sqrt{(2a + 2\alpha - 1)^2 + 8n(a+1)}}{4}.$$

Proof. Define the function p(z) by

(2.11)
$$\frac{z^{a}f(z)}{(a+1)\int_{0}^{z}t^{a-1}f(t)dt} = \gamma + (1-\gamma)p(z),$$

where $\gamma = \beta/(a+1)$. Then p(z) is regular in U and $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \cdots$. Making the logarithmic differentiation of both sides in (2.11), we have

(2.12)
$$\frac{zf'(z)}{f(z)} = (a+1)\gamma - a + (a+1)(1-\gamma)p(z)$$

$$+ \frac{(1-\gamma)zp'(z)}{\gamma + (1-\gamma)p(z)},$$

or

(2.13)
$$Re\left\{(a+1)\gamma - a - \alpha + (a+1)(1-\gamma)p(z) + \frac{(1-\gamma)zp'(z)}{\gamma + (1-\gamma)p(z)}\right\} > 0.$$

Letting $p(z) = u = u_1 + iu_2$, $zp'(z) = v = v_1 + iv_2$, and

(2.14)
$$\phi(u,v) = (a+1)\gamma - a - \alpha + (a+1)(1-\gamma)u + \frac{(1-\gamma)v}{\gamma + (1-\gamma)u}$$
,

we see that

(i)
$$\phi(u, v)$$
 is continuous in $D = \left(C - \left\{\frac{\gamma}{\gamma - 1}\right\}\right) \times C$,

(ii)
$$(1,0) \in D$$
 and $Re\{\phi(1,0)\} = 1 - \alpha > 0$,

(iii) for all
$$(iu_2,v_1)\in D$$
 such that $v_1\leq -n(1+u_2^2)/2$,

$$Re\{\phi(iu_{2}, v_{1})\} = (a+1)\gamma - a - \alpha + \frac{\gamma(1-\gamma)v_{1}}{\gamma^{2} + (1-\gamma)^{2}u_{2}^{2}}$$

$$\leq (a+1)\gamma - a - \alpha - \frac{n\gamma(1-\gamma)(1+u_{2}^{2})}{2\{\gamma^{2} + (1-\gamma)^{2}u_{2}^{2}\}}$$

$$\leq 0.$$

Since the function $\phi(u, v)$ satisfies the conditions in Lemma, we conclude that

$$(2.14) \quad Re\left\{\frac{z^a f(z)}{(a+1)\int_0^z t^{a-1} f(t) dt}\right\} > \gamma \quad (z \in U),$$

which implies (2.9).

COROLLARY 2. If the function f(z) defined by (1.1) is in the class $K(n, \alpha)$, then

(2.15)
$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \frac{-2\alpha - 1 + \sqrt{(2\alpha - 1)^2 + 8n}}{4} \ (z \in U).$$

PROOF. Note that $f(z) \in K(n, \alpha)$ if and only if $zf'(z) \in S^*(n, \alpha)$. Therefore, letting zf'(z) instead of f(z) and a=0 in Theorem 2, we have the assertion of Corollary 2.

Finally, we prove

THEOREM 3. Let the function f(z) defined by (1.1) be in the class $K(n, \alpha)$ and a > 1. Then

$$(2.16) \quad Re\left\{\frac{zf'(z)}{f(z)-\frac{a}{z^a}\int_0^z t^{a-1}f(t)dt}\right\} > \beta \quad (z \in U),$$

where β is given in (2.10).

PROOF. Noting that $f(z) \in K(n, \alpha)$ if and only if $zf'(z) \in S^*(n, \alpha)$, and using Theorem 2, we easily show the inequality (2.16).

REMARK 2. Letting a=0 in Theorem 3, we also have the same statement of Corollary 2.

References

- S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
- 2. M. Obradović, On certain inequalities for some regular functions in z < 1, Internat. J. Math. Sci. 8(1985), 677-681.

Sanub University Pusan 608 Korea

National Fisheries University Pusan 608 Korea

and

Kinki University Higashi-Osaka 577 Japan

Received February 15, 1988