A STUDY ON THE GENERALIZED NONLINEAR COMPLEMENTARITY PROBLEM

Chang Wook Kim

1. Introduction

The nonlinear complementarity problem (CP) is wellknown. It can be stated as follows.
(CP): Given a mapping $f: R_{+}^{n} \longrightarrow R$, find an n-vector x_{0} such that

$$
x_{0} \in \mathrm{R}_{+}^{n}, f\left(x_{0}\right) \in R_{+}^{n}, \text { and }\left\langle x_{0}, f\left(x_{0}\right)\right\rangle=0
$$

Several authors including Eaves([2]), Karamardian([3], [4]), and N. Megiddo and M. Kojima([5]) have studied existence and uniqueness theorems for (CP).

In this paper, we consider the following generalized nonlinear complementarity problem (GCP);
(GCP): Let C be a closed convex cone in R^{n} and C^{*} be the positive polar cone of C. Given a mapping $f: C \longrightarrow R^{n}$, find an n-vector x_{0} such that

$$
x_{0} \in C, f\left(x_{0}\right) \in C^{*} \text { and }\left\langle x_{0} . f\left(x_{0}\right)\right\rangle=0
$$

with establishing existence and uniquenss theorems for (GCP).

2. Preliminaries

Let C be a closed convex cone in R, C^{*} be the positive polar cone of C and $f: C \longrightarrow R^{n}$ be a mapping.

Definition 2.1. f is said to be strictly monotone if $\langle x-y, f(x)-f(y)\rangle \geq 0$ for all $x, y \in C$ and strict inequality Lolds whenever $x \neq y$.

Definitiga 2.2. f is called strongly monotone if there is a constant $c>0$ such that $\langle x-y, f(x)-f(y)\rangle \geq c\|x-y\|^{2}$, for all $x, y \in C$.

Definition 2.3. f is said to be Lipschitzian if there is a constant $k>0$ such that $\|f(x)-f(y)\| \leq k\|x-y\|$ for all $x, y \in C$.

Definition 2.4. f is said to be hemicontinuous if for all $x, y \in C$, the map $t \longrightarrow f\left([t y+(1-t) x]\right.$ of $[0,1]$ to R^{n} is contimuous.

Definition 2.5. f is said to be bounded if there is a constant $k>0$ such that $\|f(x)\| \leq k\|x\|$ for all $x \in C$.

Lemma 2. I ([1]). Let $f: C \longrightarrow R^{n}$ be hemicontinuous, strictly monotone and bounded and let $\left\{V_{r}\right\}$ be a family of nonempty closed convex sets in C. Then, for each r, there is a unique $x_{r} \in V_{r}$ such that $\left\langle x, f\left(x_{r}\right)\right\rangle \leq\left\langle z, f\left(x_{r}\right)\right\rangle$ for
all $z \in V$.

3. Main Results

Now we established existence and uniqueness theorems for (GCP) under certain assumptions.

Theorem 3.1. Let $f: C \rightarrow R^{n}$ be hemicontinuous, strictly monotone and bounded. Then 0 is the unique solution of (GCP).

Proof. For each $r \geq 0$, we write $B=\{x \in C .\|x\| \leq r)$. B is a nonempty closed set in C.

By Lemma 2.1, for each $r \geq 0$ there is a unique $x_{r} \in B_{r}$ such that $\left\langle x_{r}, f\left(x_{r}\right)\right\rangle \leq\left\{\varepsilon, f\left(x_{r}\right)\right\rangle$ for all $z \in B_{v}$. Since $0 \in B_{r},\left\langle x_{r}, f\left(x_{i}\right)\right\rangle \leq 0$. We can define a function θ from $[0 . \infty)$ to $(-\infty, 0]$ by the rule $\theta(r)=\left\langle x_{r}, f\left(x_{r}\right)\right\rangle$. Now suppose that $r \neq 0$ and $r<s$. Then there are unique $x_{r} \in B$, and $x_{s} \in B$, such that

$$
\left\langle x, f\left(x_{r}\right)\right\rangle \leq\left\langle z, f\left(x_{r}\right)\right\rangle \text { for all } z \subseteq B_{r} .
$$

and

$$
\left\langle x_{s}, f\left(x_{s}\right)\right\rangle \leq\left\langle z, f\left(x_{s}\right)\right\rangle \text { for all } z \in B_{s} .
$$

Since $\langle r / s) x_{s} \in B_{r},\left\langle x_{r}, f\left(x_{r}\right)\right\rangle \leq(r / s\rangle\left\langle x_{s}, f\left(x_{r}\right)\right\rangle$. Since $(s / r) x_{r} \in B_{s},\left\langle x_{s}, f\left(x_{s}\right)\right\rangle \leq(s / r)\left\langle x_{r,} f\left(x_{s}\right)\right\rangle$. Hence we have

$$
\begin{aligned}
\left\langle x_{r}-x_{s}, f\left(x_{r}\right)\right\rangle= & \left\langle x_{r}, f\left(x_{r}\right)\right\rangle+\left\langle x_{s}, f\left(x_{s}\right)\right\rangle \\
& -\left\langle x_{s}, f\left(x_{r}\right)\right\rangle-\left\langle x_{r}, f\left(x_{s}\right)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left\langle x_{r}, f\left(x_{r}\right)\right\rangle+\left\langle x_{s}, f\left(x_{s}\right)\right\rangle \\
& -(s / r)\left\langle x_{r}, f\left(x_{r}\right)\right\rangle-(r / s)\left\langle x_{s}, f\left(x_{s}\right)\right\rangle \\
= & {[1-(s / r)] \theta(r)+[1-(r / s)] \theta(s) } \\
= & (s-r)\{[\theta(s) / s]-[\theta(r) / r]\}
\end{aligned}
$$

Since $s>r$ and f is monotone, $\theta(s) / s \geq \theta(r) / r$. Therefore $\theta(r) / r$ is montonically increasing on ($0, \infty$). Since f is Bounded, $|\theta(r)|=\left\langle x_{r}, f\left(x_{r}\right)\right\rangle \leq\left\|x_{r}\right\| \cdot\left\|f\left(x_{r}\right)\right\| \leq k\left\|\mid x_{r}\right\|^{2}$. Hence $|\theta(r)| \leq k_{r}{ }^{2}$. Since $\theta(r)<0,-\theta(r) \leq k_{r}{ }^{2}$, Consequently, $-k r<\theta(r) / r \leq 0$ for all $r \in(0, \infty)$. Since $\lim _{r \rightarrow 0^{+}}[\theta(r) / r]=0$ and $\theta(r) / r$ is monotonically increasing, it follows that $\theta(r)=0$ and hence $\theta(r)=0$ for all $r \in(0, \infty)$. So we have $\left\langle z, f\left(x_{r}\right) \geq\right\rangle 0$ for all $z \in B_{r}$. Since C is a cone, $\langle z$, $\left.f\left(x_{r}\right)\right\rangle \geq 0$ for all $z \in C$. Therefore, for each $r \in(0, \infty), x_{r}$ is a solution of (GCP). Now f is strictly monotone, (GCP) can have at most one solution, say $x_{0} . \quad x_{0}=x_{r} \in B_{v}$ for each r and $\left\|x_{0}\right\|=\left\|x_{r}\right\| \leq r$ for each r. So $x_{0}=0$.

Corollary 3.1. Let $f: R_{+}^{n} \longrightarrow R$ be hemicontinuous, strictly monotone and bounded. Then 0 is the unique solution of (CP).

Proof. R_{+}^{n} is a closed convex cone in R^{n}. By Theorem
3.1, the above result holds.

Theorem 3.2. Let $f: C \rightarrow R^{n}$ be strongly monotone and Lipschitzian with $k^{2}<2 c<k^{2}+1$. Then there is the unique solution of (GCP).

Proof. Since C is a nonempty closed convex set in R^{n}, for every $x \in C$ there is a unique $y \in C$ closest to
$x-f(x)$; that is $\|y-x+f(x)\| \leq\|z-x+f(x)\|$ for all $z \in C$.

Let the correspondence $x \longrightarrow y$ be denoted by θ. Let z be any element of C and let $0 \leq \lambda \leq 1$.
Since C is convex, $(1-\lambda) y+\lambda z \in C$. We define a map $h:[0,1] \longrightarrow R_{+}$by the rule

$$
h(\lambda)=\|x-f(x)-(1-\lambda) y-\lambda z\|^{2} .
$$

Then h is a twice continuously differentiable function of λ and $h^{\prime}(\lambda)=2\langle x-f(x)-\lambda z-(1-\lambda) y, \quad y-z\rangle$. Since y is the unique element closet to $x-f(x), \quad h^{\prime}(a) \geq 0$. So we have
(1) $\langle x-f(x)-y, y-z\rangle \geq 0$ for all $z \in C$.

Let x_{1} and x_{2} be two elements of C with $x_{1} \neq x_{2}$. Put $\theta\left(x_{1}\right)=y_{1}$ and $\theta\left(x_{2}\right)=y_{2}$. From (1), we get

$$
\left\langle x_{1}-f\left(x_{1}\right)-\theta\left(x_{1}\right\rangle, \theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\rangle \geq 0
$$

and

$$
\left\langle x_{2}-f\left(x_{2}\right)-\theta\left(x_{2}\right), \theta\left(x_{2}\right)-\theta\left(x_{1}\right)\right\rangle \geq 0 .
$$

From these two inequalities, we have

$$
\begin{aligned}
& \left\langle x_{1}-f\left(x_{1}\right)-\theta\left(x_{1}\right)-x_{2}+f\left(x_{2}\right)+\theta\left(x_{2}\right),\right. \\
& \left.\theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\rangle \geq 0 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left\langle x_{1}-f\left(x_{1}\right)-x_{2}+f\left(x_{2}\right), \theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\rangle \\
& \geq\left\langle\theta\left(x_{1}\right)-\theta\left(x_{2}\right), \theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\rangle \\
& \quad=\left\|\theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\|^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|\theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\|^{2} \leq & \mid\left\langle x_{1}-f\left(x_{1}\right)-x_{2}+f\left(x_{2}\right),\right. \\
& \left.\theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\rangle \mid \\
\leq & \left\|x_{1}-f\left(x_{1}\right)-x_{2}+f\left(x_{2}\right)\right\| \cdot \\
& \left\|\theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\|
\end{aligned}
$$

Thus, $\left\|\theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\| \leq\left\|f\left(x_{1}\right)-f\left(x_{2}\right)-x_{1}+x_{2}\right\|$.
Since f is strongly monotone and Lipschitzian, we have

$$
\begin{aligned}
\left\|\theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\|^{2} \leq & f\left(x_{1}\right)-f\left(x_{2}\right) x_{1}+x_{2} \|^{2} \\
= & \left\langle f\left(x_{1}\right)-f\left(x_{2}\right)-x_{1}+x_{2},\right. \\
& \left.f\left(x_{1}\right)-f\left(x_{2}\right)-x_{1}+x_{2}\right\rangle \\
= & \left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|^{2}+\left\|x_{1}-x_{2}\right\|^{2} \\
& -2\left\langle x_{1}-x_{2}, f\left(x_{1}\right)-f\left(x_{2}\right)\right\rangle \\
\leq & k^{2}\left\|x_{1}-x_{2}\right\|^{2}+\left\|x_{1}-x_{2}\right\|^{2} \\
& -2 c\left\|x_{1}-x_{2}\right\|^{2} \\
= & \left(k^{2}+1-2 c\right)\left\|x_{1}-x_{2}\right\|^{2}
\end{aligned}
$$

Since $k^{2}<2 c<k^{2}+1$, we have $0<k^{2}+1-2 c<1$.
Letting $\alpha=k^{2}+1-2 c$ in the above inequality, we obtain $\left\|\theta\left(x_{1}\right)-\theta\left(x_{2}\right)\right\| \leq \alpha\left\|x_{1}-x_{2}\right\|$ with $0<\alpha<1$.

By the Banach contraction principle, θ has the unique fixed point, say x_{0}. Now putting $x=x_{0}$ in (1), We get $\left\langle z-x_{0}, f\left(x_{0}\right)\right\rangle>0$ for all $z \in C$. Since $0 \in C,\left\langle x_{0}, f\left(x_{0}\right)\right\rangle$ ≤ 0. Since C is a cone, $2 x_{0} \in C$ and $\left\langle x_{0}, f\left(x_{0}\right)\right\rangle \geq 0$. So $\left\langle x_{0}, f\left(x_{0}\right)\right\rangle=0$ and $\left\langle z, f\left(x_{0}\right)\right\rangle>0$ for all $z \in C$. Therefore, x_{0} is the unique solution of (GCP).

Corollary 3.2. Let $f: R_{+}^{n} \longrightarrow R$ be strongly monotone and Lipschitzian with $k^{2}<2 c<k^{2}+1$. Then there is the unique solution of (CP).

Proof. R_{+}^{n} is a closed convex cone in R. By Theorem 3. I, the above result holds.

References

1. M.S. Bazaraa, J.J. Goode and M.Z. Nashed, A nonlitear complemetarity problem in mathematical programming in Banach space, Proc. Amer. Math. Soc. 35 (1972), 165-170.
2. B.C. Eaves, On the basic theorem of complementarity, Math. Programming 1(1971), 68-75.
3. S. Karamardian, The nonlinear complementarity problem with applcations, Part 1, J.Optim. Theory Appl. 4 (1969), 8 i-98.
4. S. Karamardan, The nonlinear complementarity problem with apphcations, Part 2, J. Opum. Theory Appl. 4 (1969), 167181.
5. N. Megiddo and M. Kojima, On the existence and uniqueness of solutions in nonlinear complementarity theory, Math. Programming 12 (1977), 110-130.

Korca Maritime University Pusan 606

Korea
Supported in part by the Basic Research Institute Program, Ministry of Education, 1987~1988.

Received January 4, 1988

