PUSAN KYÖNGNAM MATHEMATICAL JOURNAL Vol. 4, 25~31, 1988

A STUDY ON THE GENERALIZED NONLINEAR COMPLEMENTARITY PROBLEM

CHANG WOOK KIM

1. Introduction

The nonlinear complementarity problem (CP) is wellknown. It can be stated as follows.

(CP): Given a mapping $f: \mathbb{R}^n_+ \longrightarrow \mathbb{R}$, find an *n*-vector x_0 such that

$$x_0\!\in\! {
m R}^n_{ op}$$
 , $f(x_0)\!\in\! {
m R}^n_{ op}$, and $\langle x_0,\; f(x_0)
angle \!=\! 0$

Several authors including Eaves([2]), Karamardian([3], [4]), and N. Megiddo and M. Kojima([5]) have studied existence and uniqueness theorems for(CP).

In this paper, we consider the following generalized nonlinear complementarity problem (GCP);

(GCP): Let C be a closed convex cone in R^* and C* be the positive polar cone of C. Given a mapping $f: C \longrightarrow R^*$, find an *n*-vector x_0 such that

$$x_0 \in C$$
, $f(x_0) \in C^*$ and $\langle x_0, f(x_0) \rangle = 0$,

with establishing existence and uniquenss theorems for (GCP).

2. Preliminaries

Let C be a closed convex cone in R, C* be the positive polar cone of C and $f: C \longrightarrow R^*$ be a mapping.

DEFINITION 2.1. f is said to be strictly monotone if $\langle x-y, f(x)-f(y)\rangle \ge 0$ for all $x, y \in C$ and strict inequality holds whenever $x \ne y$.

DEFINITION 2.2. f is called strongly monotone if there is a constant c > 0 such that $\langle x-y, f(x)-f(y) \rangle \ge c ||x-y||^2$, for all $x, y \in C$.

DEFINITION 2.3. f is said to be Lipschitzian if there is a constant k > 0 such that $||f(x)-f(y)|| \le k||x-y||$ for all $x, y \in C$.

DEFINITION 2.4. f is said to be *hemicontinuous* if for all $x, y \in C$, the map $t \longrightarrow f([ty+(1-t)x])$ of [0, 1] to \mathbb{R}^n is continuous.

DEFINITION 2.5. f is said to be bounded if there is a constant k > 0 such that $||f(x)|| \le k||x||$ for all $x \in C$.

LEMMA 2.1 ([1]). Let $f: C \longrightarrow \mathbb{R}^n$ be hemicontinuous, strictly monotone and bounded and let $\{V_r\}$ be a family of nonempty closed convex sets in C. Then, for each r, there is a unique $x_r \in V_r$ such that $\langle x, f(x_r) \rangle \leq \langle z, f(x_r) \rangle$ for all $z \in V_r$.

3. Main Results

Now we established existence and uniqueness theorems for (GCP) under certain assumptions.

THEOREM 3.1. Let $f: C \longrightarrow R^n$ be hemicontinuous, strictly monotone and bounded. Then 0 is the unique solution of (GCP).

PROOF. For each $r \ge 0$, we write $B = \{x \in C, ||x|| \le r\}$. B is a nonempty closed set in C.

By Lemma 2.1, for each $r \ge 0$ there is a unique $x_r \in B$, such that $\langle x_r, f(x_r) \rangle \le \langle z, f(x_r) \rangle$ for all $z \in B$. Since $0 \in B_r, \langle x_r, f(x_r) \rangle \le 0$. We can define a function θ from $[0, \infty)$ to $(-\infty, 0]$ by the rule $\theta(r) = \langle x_r, f(x_r) \rangle$. Now suppose that $r \ne 0$ and r < s. Then there are unique $x_r \in B$, and $x_s \in B$, such that

$$\langle x_i, f(x_i)
angle \leq \langle z, f(x_i)
angle$$
 for all $z \in B_i$.

and

$$\langle x_{s_s} | f(x_s) \rangle \leq \langle z, f(x_s) \rangle$$
 for all $z \in B_{s_s}$.

Since $(r/s)x_s \in B_r$, $\langle x_r, f(x_r) \rangle \leq (r/s) \langle x_s, f(x_r) \rangle$. Since $(s/r)x_r \in B_s$, $\langle x_s, f(x_s) \rangle \leq (s/r) \langle x_r, f(x_s) \rangle$. Hence we have

$$\langle x_r - x_s, f(x_r) \rangle = \langle x_r, f(x_r) \rangle + \langle x_s, f(x_s) \rangle - \langle x_s, f(x_r) \rangle - \langle x_r, f(x_s) \rangle$$

CHANG WOOK KIM

$$\leq \langle x_{r}, f(x_{r}) \rangle + \langle x_{s}, f(x_{s}) \rangle$$

-(s/r) $\langle x_{r}, f(x_{r}) \rangle - (r/s) \langle x_{s}, f(x_{s}) \rangle$
=[1-(s/r)] $\theta(r)$ +[1-(r/s)] $\theta(s)$
=(s-r){[$\theta(s)/s$]-[$\theta(r)/r$]}

Since s > r and f is monotone, $\theta(s)/s \ge \theta(r)/r$. Therefore $\theta(r)/r$ is montonically increasing on $(0, \infty)$. Since f is bounded, $|\theta(r)| = \langle x_r, f(x_r) \rangle \le ||x_r|| \cdot ||f(x_r)|| \le k ||x_r||^2$. Hence $|\theta(r)| \le k_r^2$. Since $\theta(r) < 0, -\theta(r) \le k_r^2$, Consequently, $-kr < \theta(r)/r \le 0$ for all $r \in (0, \infty)$. Since $\lim_{r \to 0^+} [\theta(r)/r] = 0$ and $\theta(r)/r$ is monotonically increasing, it follows that $\theta(r) = 0$ and hence $\theta(r) = 0$ for all $r \in (0, \infty)$. So we have $\langle z, f(x_r) \ge \rangle 0$ for all $z \in B_r$. Since C is a cone, $\langle z, f(x_r) \ge \rangle 0$ for all $z \in C$. Therefore, for each $r \in (0, \infty), x_r$ is a solution of (GCP). Now f is strictly monotone, (GCP) can have at most one solution, say x_0 . $x_0 = x_r \in B$, for each r and $||x_0|| = ||x_r|| \le r$ for each r. So $x_0 = 0$.

COROLLARY 3.1. Let $f: \mathbb{R}^n_+ \longrightarrow \mathbb{R}$ be hemicontinuous, strictly monotone and bounded. Then 0 is the unique solution of (CP).

PROOF. R_{+}^{n} is a closed convex cone in R^{n} . By Theorem 3.1, the above result holds.

THEOREM 3.2. Let $f: C \to R^n$ be strongly monotone and Lipschitzian with $k^2 < 2c < k^2+1$. Then there is the unique solution of (GCP).

PROOF. Since C is a nonempty closed convex set in \mathbb{R}^n , for every $x \in C$ there is a unique $y \in C$ closest to

28

x-f(x); that is $||y-x+f(x)|| \le ||z-x+f(x)||$ for all $z \in C$.

Let the correspondence $x \longrightarrow y$ be denoted by θ . Let z be any element of C and let $0 \le \lambda \le 1$.

Since C is convex, $(1-\lambda)y+\lambda z \in C$. We define a map $h: [0,1] \longrightarrow R_+$ by the rule

$$h(\lambda) = ||x - f(x) - (1 - \lambda)y - \lambda z||^2.$$

Then h is a twice continuously differentiable function of λ and $h'(\lambda) = 2\langle x - f(x) - \lambda z - (1 - \lambda)y, y - z \rangle$. Since y is the unique element closet to x - f(x), $h'(a) \ge 0$. So we have

(1)
$$\langle x-f(x)-y, y-z\rangle \ge 0$$
 for all $z \in C$.

Let x_1 and x_2 be two elements of C with $x_1 \neq x_2$. Put $\theta(x_1) = y_1$ and $\theta(x_2) = y_2$. From (1), we get

 $\langle x_1 - f(x_1) - \theta(x_1), \theta(x_1) - \theta(x_2) \rangle \geq 0$

and

$$\langle x_2-f(x_2)- heta(x_2), \ \theta(x_2)- heta(x_1)\rangle \geq 0.$$

From these two inequalities, we have

$$egin{aligned} &\langle x_1-f(x_1)- heta(x_1)-x_2+f(x_2)+ heta(x_2),\ & heta(x_1)- heta(x_2)
angle\geq 0. \end{aligned}$$

Hence,

$$\begin{aligned} \langle x_1 - f(x_1) - x_2 + f(x_2), \ \theta(x_1) - \theta(x_2) \rangle \\ \geq \langle \theta(x_1) - \theta(x_2), \ \theta(x_1) - \theta(x_2) \rangle \\ = ||\theta(x_1) - \theta(x_2)||^2. \end{aligned}$$

Therefore,

$$||\theta(x_{1}) - \theta(x_{2})||^{2} \leq |\langle x_{1} - f(x_{1}) - x_{2} + f(x_{2}), \\ \theta(x_{1}) - \theta(x_{2})\rangle| \\ \leq ||x_{1} - f(x_{1}) - x_{2} + f(x_{2})|| \cdot ||\theta(x_{1}) - \theta(x_{2})||$$

Thus, $||\theta(x_1) - \theta(x_2)|| \le ||f(x_1) - f(x_2) - x_1 + x_2||.$

Since f is strongly monotone and Lipschitzian, we have

$$\begin{aligned} ||\theta(x_1) - \theta(x_2)||^2 &\leq f(x_1) - f(x_2)x_1 + x_2||^2 \\ &= \langle f(x_1) - f(x_2) - x_1 + x_2, \\ f(x_1) - f(x_2) - x_1 + x_2 \rangle \\ &= ||f(x_1) - f(x_2)||^2 + ||x_1 - x_2||^2 \\ &- 2\langle x_1 - x_2, f(x_1) - f(x_2) \rangle \\ &\leq k^2 ||x_1 - x_2||^2 + ||x_1 - x_2||^2 \\ &- 2c ||x_1 - x_2||^2 \\ &= (k^2 + 1 - 2c) ||x_1 - x_2||^2 \end{aligned}$$

Since $k^2 < 2c < k^2 + 1$, we have $0 < k^2 + 1 - 2c < 1$.

Letting $\alpha = k^2 + 1 - 2c$ in the above inequality, we obtain $||\theta(x_1) - \theta(x_2)|| \le \alpha ||x_1 - x_2||$ with $0 < \alpha < 1$.

By the Banach contraction principle, θ has the unique fixed point, say x_0 . Now putting $x=x_0$ in (1), We get $\langle z-x_0, f(x_0) \rangle > 0$ for all $z \in C$. Since $0 \in C$, $\langle x_0, f(x_0) \rangle \leq 0$. Since C is a cone, $2x_0 \in C$ and $\langle x_0, f(x_0) \rangle \geq 0$. So $\langle x_0, f(x_0) \rangle = 0$ and $\langle z, f(x_0) \rangle > 0$ for all $z \in C$. Therefore, x_0 is the unique solution (GCP).

COROLLARY 3.2. Let $f: \mathbb{R}^n_+ \longrightarrow \mathbb{R}$ be strongly monotone and Lipschitzian with $k^2 < 2c < k^2 + 1$. Then there is the unique solution of (CP).

30

PROOF. R_{+}^{n} is a closed convex cone in R. By Theorem 3.1, the above result holds.

References

- M. S. Bazaraa, J. J. Goode and M.Z. Nashed, A nonlinear complemetarity problem in mathematical programming in Banach space, Proc. Amer. Math. Soc. 35 (1972), 165-170.
- B.C. Eaves, On the basic theorem of complementarity, Math. Programming 1(1971), 68-75.
- 3. S. Karamardian, The nonlinear complementarity problem with applications, Part 1, J.Optim. Theory Appl. 4 (1969), 87-98.
- S. Karamardian, The nonlinear complementarity problem with applications, Part 2, J. Optim. Theory Appl. 4 (1969), 167-181.
- N. Megiddo and M. Kojima, On the existence and uniqueness of solutions in nonlinear complementarity theory, Math. Programming 12 (1977), 110-130.

Korca Maritime University Pusan 606 Korea

Supported in part by the Basic Research Institute Program, Ministry of Education, 1987~1988.

Received January 4, 1988