뱀장어 Pleistophora 症의 感染實験과病理組織學的 研究

徐壯雨－田世圭
釜山水産大尊－水族病理县科

The Infection Experiment of Pleistophora to eels， Anguilla japonica and the Histopathological Investigation of the Infection Development

Jang－Woo SUH，Seh－Kyu CHUN
Department of Fish Pathology
National Fisheries University of Pusan，Pusan 608－023，Korea

Pleistophora disease is well known as microsporidiosis at eel cultural farms in Korea in recent years．

Major objects of this study were to undertake the induction of Pleistophora infection experimentally and to carry out histopathological investigation from December 1984 to June 1986.

Experimental infection of Pleistophora spores into young eels was carried out by oral and immersed administration．

Both methods induced the same symptom successfully as that in naturally occurring diseased fish．

Remarkable whitish lesions developed mainly on the body surface around the abdo－ men when orally administrated．On the other hand，they were scattered over the whole body when administrated through immersion．

Histopathological investigation revealed that some cysts in the muscle were observed 21 days after administration．

Spores were developed within the cyst．Each sporont has undergone several nuclear divisions to form a pair of multinucleate cells（Sporoblasts）enclosed within a common coat （Pansporoblast）．

All stages were surrounded by cyst．The cysts were destroyed and mature spores were scattered in the muscle．

緒 論

우리나라 内水面 飬殖魚類中 뱀장어는 高級 蛋白質供給源으로서 重要한 養殖魚類이다．이 뱀장어 羲殖은近來 全或的으로 盛行하고 있지만，國内需要诊 增加로

供給이 不足한 實情이다．그러한 가운데서도 뱀장어湌殖에 따른 疾病의 㟲散으로 말미암아 㢣死量이 增加하여 供給의 不足은 加重되어 蛋白質供給的인 面에 서나 羲旗業者䊈 收入面에서 큰 損害量 입고 있다．
ㄱ 中에서도 不治의 病으로 알려진 胞子量類인
被害는 대다히 크다．이 病은 Pleistophora 犀의 溦胞
 에 병백한 ㄸ凸現像이 나타나며 當年生이나 2 年生뱀 장어에 發生하는데 商品㑑値가 떨어지고 먹이를 먹지 않기 때문에 致命的인 被害를 받는다．

이와같은 微胞子軎 Pleistophora 病에 對한 詳細한研究가 아직 이루어져 있지 않은 惯倩이므로 本 研究 는 感梁方法斗 感染量，感染率解 關係，病理組絨學的 인 樊化를 밝히고，나아가 治療 및 豫防唱 위한 基礎研究로서 行한 寅験을 報告하는 바이다．

材料 및 方法

本 䔈験은 1984年12月24日早터 1986年6月24日仆지 釜山水産大煘 角病診断研究空에서 行하였으며實験方法은 다음과 같다．
實験魚：實験에 使用한 뱀장어（Anguilla japonica） 는 魚病診断研究室에서 制育中이던 末感染뒨 뺌장어 （平均膡重 1.6 g ）를 使用하였다．
感染貝験用 胞子：感染萁験에 使用한 胞子는 여러養虝場에서 Pleistophora 病症狀이 뚜렷한 뺌장어의筋肉患部量 切取하여 脇肉患部속의 cyst에서 胞子量多量얻었고 筋内組織을 除去하기 위하여 生理食監水 를 加한 後 가아제로 濾過하였다．이 墭過液権 3,000
墭水邕 加한 後 冷藏庫（ $5^{\circ} \mathrm{C}$ ）에 保存하면서 感染費験 에 使用하였다．胞子數는 形態上 成熟胞子로 보이는個體만을 혜아려 求하였다．本 實験에 使用한 胞子들中에서 小胞子에 해당하는 것은 觀察되지 않았고，成熟된 大胞子의 形態는 $\operatorname{Hoshina}$（1951）가 報告한 것과同一하였으며 크기는 $5.0 \sim 10.5 \times 3.5 \sim 6.0 \mu \mathrm{~m}$ 로서 약간 의 차이가 있었다．
感染方法：感染實験에亡 經口感染斗 沈漬感染의 2 가지方法올 使用하였다．
（1）絟口感染
平均觡重 1.6 g 의 뱀장어를 20 마리 收容한 $60 \times 30 \times$ 45 cm （물 70ℓ ）크기의 水槽에 魚體重事 $1 \sim 2 \%$ 예 해당 하는 铜料로 胞子混合鉰料 $\left(1.0 \times 10^{6}, 5.0 \times 10^{4}, 2.5 \times\right.$ 10^{3} cells／魚重重 $1 \sim 2 \%$ 의 制料（g））를 만들어 投與하여感染시켰다．
（2）波渍感染
胞子数总 $1 \times 10^{2}, 5 \times 10^{2}, 2 \times 10^{3}, 1 \times 10^{4}, 2 \times 10^{4}, 5$ $\times 10^{4}, 1 \times 10^{5}, 2 \times 10^{5} 70$ 说 7 되도록 段階別로 懸濁시 킨 水槽에 뱀장어 치어量 收容하여 感染시켰다．感染

試險用 水槽 $(60 \times 30 \times 45 \mathrm{~cm}$ ，풀 $70 \ell)$ 에는 胞子가 通
 뱀장어 치어률 100 尾씩 넣었다．水温은 $23 \sim 25^{\circ} \mathrm{C}$ 로 유지시켰고， pH 는 $6.9 \sim 7.1$ 이었다．铜育期間中 換水는 하지 않았다．

感染魚乎 判定：感染狀態拜 確認은 肉眼的 哭 病理
日早터 77日仆지의 惯験期間 中 肉眼的으로 體表에
的으로 数察하여 1個의 cyst라도 보이는 個澧는 感染魚로 判定하였다．
査하기위하여 使用된 感染뱀장어는 60日동안에 7日間谝으로 2 마리씩 10% 中性 formalin에 固定하고 常法

에 따라 $4 \mu \mathrm{~m}$ paraffin 切片을 만든후 Hematoxylin－ Eosin stain 染色하여 敛鏡하였다．

結 果

1．感染方法畢 感染率

經口感染賣験 結果는 Table 2에 나타낸 바와 같이投與站 胞子數가 $2.5 \times 10^{3} \sim 1.0 \times 10^{6} \mathrm{cells} /$ 魚體重 $[1 \sim 2 \%$ 의 铜料 (g) ］범위에서는 3 實験區 또두 100% 의 感染率을 보였다．経口感染魚는 胞子가 感染되 後 20日傾부터腹部筋肉에 흰 病變部를 形成하였고，이런 症狀은 投與胞子數가 增加핲에 따라 많은 個體에서 나타났노．症狀이 나타나는 時間岳 $1.0 \sim 10^{6}$ cells 投與區는 20 日傾， 2.5×10^{3} cells 投與區는 30 日傾에 나타났다．

Table 2．Infection test by oral administration of Plei－ stophora anguillarum spores to ell

＊No．of spores administrated	No．of fish tested	Rate of infection（ $\%$ ） （30 days after administration）
1.0×10^{6}	20	100
5.0×10^{4}	20	100
2.5×10^{3}	20	100
Control 6	20	0

Note ：Administrated orally one time the first day of the experiment．
＊：Mixed with feed of $1-2 \%$ body weight．
沈漬感染賔験 結果는 Fig．2에 나타낸 바와 같다． 2 $\times 10^{5} \mathrm{~m} \ell$ 胞子葍 懸濁시킨 水槽의 뱀장어는 7 日以内에 100% 感染되었고， 14 日以内에 100% 僌死되었다． $1 \times$ $10^{5} \mathrm{~m} \ell$ 胞子를 懸㵧시킨 水棈의 뱀장어는 7 日以内에 80 $\%$ 가 感染되었고， 14 日以内 100% 鷩死되었다． $2 \times$ $10^{4} \mathrm{ml}$ 胞子层 懸濁시키 水槽의 뱀장어는 7日과 14 日以内에 各各 $50 \%, 90 \%$ 의 感染率을 보였고 21 日以内에 100% 整死되었다． 1×10^{4} m胞子异 㗭濿시킨 水槽의 뱀장어는 7日， 14 日， 21 日以内에 各各 $50 \%, 90 \%, 100$ $\%$ 의 感染率올 보였고 28 日以内에 100% 制死되었다． 2×10^{3} 囦胞子邕 照嘱시킨 水槽의 뱀장어는 21 日， 28日， 35 日， 42 日以内에 各各 $5 \%, 25 \%, 80 \%, 100 \%$ 의感染率을 보였다．그리고 49 日以内에 100% 整死되었 다． $5 \times 10^{2} \mathrm{~m}$ 되도록 胞子률 照渴시킨 水槽의 뱀장어는 49日， 56 日， 63 日以内에 各各 $40 \%, 60 \%, 100 \%$ 의 感染

率을 보였고 77 日以内에 100% 整死되었다． $1 \times 10^{2} \mathrm{~m} \ell$ 되도록 胞子를 懸濁시킨 水槽의 냄 장어는 49日，56日， 63 日以内에 各各 $20 \%, 20 \%, 100 \%$ 의 䯮染率을 보였 고 77 日以内에 100% 憼死되었다．

2．病理組織罟的 觀察

胞子를 感染价킨後 뱀 장어 病理細織䒚的인 變化過程 과 肉眼的 觀察結果를 보면 다음과 같다．

感染 後 21日㠷의 個體의 筋肉에서는 侵入한 Pleis－ tophora anguillarum 胞子와 核方敕이 일어난 球形，方錘形拥初期schizont（多核性分裂全體）号分裂成長中인 schizont 를 觀察할 수 있었다（Fig．3，4）．이 때 뱀장어의 潅涾能力은 조돔씩 低下됨과 同時에 바닥에停滯하여 있는 個體가 增加하였다．

感染 後 28日佰이 되면，뱁장어의 體依面에 횐 病緻部가 생기는 佃體가 나타나끼 시작하게 되는데，病理組織標本에선 竻肉維織内에 求刑 또는 卵形의 pansporobast膜이 形成乵고 I 内部에는 schizont로 부터 核分殁㣉 增興生殖過程을 서첫 生成된 多數의 sporont（胞子 扫細胞）가 들어있었다（Figs．5，6）．

感染 後 42日이 経過하면 뱁 장어의 笏肉組織内예서 는 cyst가 너욱더 크게 자라게 되고 cyst内部는 大部分 sporoblast（胞子細胞）와 胞子로 차있었다．그리고 cyst 는 크기는 40～50 10 m 정 도에 이르덨다（Fig．7）．휜病變部의 的肉組織은 變形되어 横紋이 不分明해지고 흩으러겼으며 硝子變性을 일으기늨 섯도 있었다．奇生狀態가 너 진행되면 횐 病變部는 全表皮로 擴散되 면서 몸통首肉 조ㅅㅗㅗㅅㅇㅔ 不規則한 陸起部分이 생기기 시작하였다．이런 부분의 筋肉의 cyst의 成熱으로 인 하여 崩壊되었으며 胞于가 分散되어 周圍의 大部分의筋肉組織을 融解시켰고 遊走細胞的 浸潤現像도 볼 수 있었다．이러한 症狀을 나타내는 뱀장어는 죽기 시작 하였는데 I 整死比率은 時間의 經過와 함께 增加되 어 56 日이 經過하였을때는 150 尾中 13 媓（ 8.6% ）만 살 아남았다．Cyst内部에는 成熟乐 胞子가 充滿되어 肥大하게 되고 콘 cyst는 $70 \sim 80 \mu \mathrm{~m}$ 에 달하는 것도 觀察되었다（Fig．8）．이러 拝狀이 惡化되면 먹이도 잘 먹지 않았으며 등부위가 굽어지는 個體도 생겼다．重病의 個體气 筋肉組織이 完全京 崩壞되었고 이 때부 터 힘없이 非正常的인 游泳을 하게 되었다．그리고緭口的으로 感染시킨 個體에서느 腹部周邊에 cyst层品이 形成한 반면，沈漬感染신 個體에서는 自然感染魚斗 같이 全身에서 cyst量 觀窾할 수 있었다．

考 察

本 實験에 使用하기 위하여 pleistophora症에 感染

Fig. 2. Spore infection rate and accumulative mortality of infected eel by waterborne method.

된 뱀장어에서 分離한 胞子의 크기（ $5.0 \sim 10.5 \times 3.5 \sim 6$ ． 0μ ）는 Canning（1980）등이 報告한 Pleistophora typica－ lis $(7.5 \times 3.0 \mu \mathrm{~m})$ ，Hoshina（1951）가 報告한 Pleisto－ phora anguillarum（ $6.7 \sim 9 \times 3.3 \sim 5.3 \mu \mathrm{~m}$ ）의 胞子그기와 비슷하였고 胞子形態는 Fig．1에 나터낸 바와 같이 Hoshina（1951）와 Hashimoto（1976）가 報告한 것과 같 은 모양이었다．

잘 알려진 胞子蟲에는 잉어의 아가미에 奇生하는 Myxobolus sp．，뱀장어의 表皮에 奇生하는 Myxidium sp ．등이 있으나，뱀장어의 筋肉内에 寄生하는 pleisto－ phra胞子虫乐는 奇生하는 場所와 胞子의 形態등으로 구별이 可能하였다．

Pleistophora 胞子느 水温에 따라 發育狀態가 달라서 15 C 以下 일 때는 거의 發育．發病되지 않고， $15 \sim 30$ ${ }^{\circ} \mathrm{C}$ 에서는 發育하여 症狀이 나타난다．그리고，水瑥이 돞을수록 빠르게 나타나며，水温이 $25^{\circ} \mathrm{C}$ 前後일 때는感染 20 日頃에 肉眼으로 晏 수 딨는 症狀이 나타나는：高水温性으로 알려져 있다．그런데，대부분의 뱀장어㝘殖은 加温循環濾過式이브로 年中 發病하기 때문에本 感染筫験에서도 賢験水温을 $23 \sim 25^{\circ} \mathrm{C}$ 에서 行하였 다．이것은 加納（1982）둥이 Pleistophora胞子竐生，成長，繁植䇣 過水温号 $20^{\circ} \mathrm{C}$ 라고 報告한 内容에 符合한 다고 할 수 있다．

經口感染이나 沈漬感染의 責験結果에 의하면 두 方法으로 모두 感染이 成立되었다．桱口的 感染浦口數 2.5×10^{3}／魚體重 $1 \sim 2 \%$ 의 飼料（g）平 沈潰感染胞子數 1 $\times 10^{2} \mathrm{~m} \ell$ 에서도 100% 感染되었다．

Hoshina（1951）가 밝힌 胞子形成課程斗 이번 病理組織學的 寊験結果는 거의 비숫하였다．Pleistophora胞子의 增殖課程은 筋肉組織内에서 核이 여러번 分裂 한 無性生殖期의 繁植髄인 schizont가 形成되었고，이 schizont $=2$ 分裂에 依하여 多數의 單核體를 形成하고 ㄱ 各各이 sporont로 되는 㔇育課程을 거쳤다．Spo－ ront는 I 核이 分裂하여 16 個以上의 sporoblast 로 만 들어지고 宿主細胞内에 形成된 pansporoblast内에서 spore가 形成되었다．

Pleistophora症의 代表的인 症狀中의 하나인 筋肉이 울퉁불퉁해지는 現像은 cyst가 筋肉을 大部分 崩㙹시 켜 正常的인 㬳肉組織이 거의 融解되었을때 肉眼的오 로 나타나는 症狀이었고 이 症狀은 表皮에 흰 病變部 가 생긴 後 나타넜다．울퉁불퉁해지는 症狀이 더 总化되었을때 表皮에 潰煬율 形成하였는데 이 漬疡을 통하여 战熟되 胞子가 外部로 배출되었으므로 蒌鰻场 에서 胞子의 撗散을 막기 위해서는 Pleistophora症에感染된 뱀장어는 곧 除去하는 것이 有益하다고 생자 된다．

病理組棭擧的 賔験에서 胞子가 形成되는 全體的인

進行課程은 加納（1982）둥이 實験한 것과 거의 같이 나타났다．
 져야 하겠으며 免疫에 對한 研究도 아울러 檢討되어 져야 할 課題이다．

要 約

 한 被害를 입고 있는 責情이다．Pleistophora症에 關한基礎研究至代 感染力法汘 感染量 感染率解 關係 및病理組織學的 觀察을 檢討한 젓으로 結果는 다음과 같다．

1．Pleistophora anguillarum 胞子를 經口感染시키거 나 沈漬感染시킨 結果，또두 感染이 成立되었다．䅝口感染의 경우 胞子雚 $2.5 \sim 10^{3}$ ；魚髅重 $1 \sim 2$ 多의 飼料（ g ）以上에서，浓清感染解 경우 胞子數 $1 \times 10^{2} 10 / \mathrm{ml}$ 以上에서感染시킨 個體는 100% 感染되었다．

2．病理組織學的 䝴験結果，胞于感染後 21日頃부터勄肉속에서 cyst 异 觀察할 수 있었다．䏲肉組織内에서胞子가 伤肉을 融解시켜 cyst를 形成하고 cyst는 成熟 하여 崩壞되었工，cyst内의 胞子：分散되었다．그리 고，健康한 㬳肉組織에 侵入하여 組織을 崩率하는 課程이 淮行됨에 따라 病魚는 徐徐히 죽게 되었다．

3．Pleistophora anguillarum 胞子量 䐵験的으로 感染시킨 뱀장어는 時間的인 差㓋：있으나 모두 鷩死 되었다．

文 樀

Canning，E．U．\＆J．P．Nicholas（1980）：Genus Pleis－ tophora（phylum Microspora）：Redescription of the type species，Pleistophora typicalis Gur－ ley， 1893 and ultrastructural characterization of the genus．J．Fish Diseases $3.317 \sim 338$ ．
田世专（1985）：奥病學（原䖪病）。第一文化社，pp． 187－190．
江草周三（1978）：魚の感染病．恒星垪 厚生閣，pp． 424～434．
橋本康平•佐佐木幸夫•瀧澤弘（1976）：ウナギに奇生する Pleistophora anguillarum胞子の極系弾出條件，日水志 $42,837-845$ ．
橋本康平•㴰波弘一－（1976）：ウナギに奇生するPlei－ stophora anguillarum胞子の電子顯微鏡的觀察。 Bull．Jap．Soc．Sci．Fish．（4），411～9．
保料利一（1972）㯻潡産種苗ソナギに見らたるPleisto－ phora anguillarum の減染．角病研究 6（2），120．

Hoshina，T．1952）：Notes on some myxosporidian parasites on fishes of Japan．J．Tokyo Univ． Fish．39，68－89．
偖木正三（1981）：原生動物圜監，講談行アユの グルギアア．pp．581－589．
加納熙正•福井睛朗（1982）：ウナギか ブリスゅ トホラ病に関する研究－I．

實験的感梁法の校討とフマジリンの効果 について魚病研究 16（4），193－200．
Richard，R．Kudo（1971）：Protozoology．CHARLES C THOMAS Publisher．pp．807－826．
高橋搞•江草周三（1977）：ァユのダルギア病に關 する研究－III．ダルギア病と水温の關倸。魚病研究11，195－200．

EXPLANATION OF PLATE

Fig．1．Fresh spores of Pleistophora anguillarum prepared for administration（x400）．
Fig．2．The spores in the muscle at 21 days after administration（ x 400 ）．
Fig．3．Schizonts with several nuclear divisions at 21 days after administration（ x 400 ）．
Fig．4．Multinuclear schizonts in the muscle at 21 days after administration（x400）．
Fig．5．Small cysts in the muscle at 28 days after administration（ x 400 ）．
Fig．6．Cysts containing schizonts，sporonts at 28 days after administration（ $x 400$ ）．
Fig．7．Panspotoblasts in the muscle containing sporoblasts，spores at 42 days aiter administra－ tion（ x 600 ）．
Fig．8．Well developed cysts containing spores at 56 days after administration（ x 400 ）．
Fig．9．Disintegrating cysts at 56 days after administration showing the degenerative muscle fibres and the scattered spores（x200）．

