e Journal of the Korean Institute
A of Industrial Engineers
Veol. 13, No. 2, Dec, 1987

A Software Design Methodology for Designing APS
(Activity Planning System)

Dco-Kwon Baijk*

Abstract

The main purpose of this paper is to design a simple interactive software system for planning
activities, called APS. We discuss the importance of informal and formal specifications of the
system design, and survey a number of promissing design methodologies. To design APS, we
present a methodology based upon the hierarchical decomposition of the system, and illustrate
the methodology as applied to the design of an activity planning system.

2¢
=19 T8 532 APS (Activity Plann- A, =3 Bobal Mgk A aq) DA wwE
ing System}2tx B2t EALS 43 7 < ZASkeh z2eln APSS AdA|slr 816
chet efshal AL E o] AlAg g A Eul of A2 AFF2E oo & shiel 4
ok od7lelA g, Alaw) dAl gles uly AL ESE A4 sgin, o W ES S Laie
Aol g et gl wlgel Fa48 sl APSS AAsdct

— RS <

1. Introduction

The activity planning system (APS) is an interactive software system that lets uscrs use
computers to create and schedule their activities over a period of time. In this basic form the
program has a very limited, but convenient, interface for entering a textual description of an
upcomning activity, its importance and a deadline by which it should be done. Such activity
descriptions are suggested by the program according to an urgency measure that takes account of
both proximity to deadline and importance. Since a future deadline becomes more imminent as
time passes. the urgency ordering of activities changes daily so that an activity rises to the top of
the order as its deadline approaches.

Atany time, the user may request a listing of the most urgent impending activities. When an
activity has been accomplished, this can be easily communicated to the program. Such an activity
will no longer appear in the urgency listing, but will be retained in a calendar and marked as

% Department of Computer Secience, Korea University

__4?_

done. By viewing the calendar, the user can see the past or future activities that have been done
or are still pending. Thus an automatic record of activity status is also maintained. This is helpful
when one has forgotten whether an activity has ever been done, or desires to know the date that it
was done, etc.

The concept of a scheduling calendar, in manual or electronic form is not new. What
distinguishes APS is its concept of urgency, which relieves the user of the burden of deciding what
to do next, vet does not remove the flexibility in performing activities that a strict scheduling
concept does. A second feature of APS is the incorporation of a user friendly interface, that
makes the few operations required to communicate with the program extremely simple to
perform.

There are currently available scheduling systems which do not have the concept of urgency
and a user-friendly iterface required few operations to communicate with the systems. For
exampie, the project planning system(PPS) {12] was designed to aid project supervisors and to
level management in the design of a work schedule during the planning phase of a large project.
It is one of the PERT/CPM oricnted scheduling system [1, 8], but it is not convenient to handle
the system, because it does not have a user-friendly interface to communicate interactively with
the system. Another type of the PERT/CPM oriented scheduling systems in the ManageMint[3]
which is 2 modularized. menu-driven system.and tracks schedules, budgets and resources. It is
designed to provide an integrated project management system. The Softrend company
introduced the Time Scheduler [3] which is a comprehensive time management system. It may be
used for appointment or project scheduling. It has some special features such as automatic time
conflict checking fer any activity and menu-driven function selection.

To produce a model or representation of an entity, we shall use the existing system design
methodologies, which introduce techniques for the systematic design of well-structured and
refiable system architecture. Zeigler [16] encourages conceptual development of the mode! prior
to program writing. The conceptual development starts with an informal model specification and
proceeds in stages to more formal specifications. Wymere [13, 14] introduced the process of
system design in the context of the life history of system. The design process takes place between
the client and the environment. Using this method, we shall focus on the external system design
specification in terms of an input/output specification, a technology, and merit orderings, and to
decompose the subsystems with coupling recipes of the system.

One of the major concepts of system design methodologies is the hierarchical system
decomposition [2, 5, 6] which is associated with the principle of compiexity decomposition. It is
supported by the concepts of abstract operations, abstract data types, and abstract machines.
Parnas has developed a technique and notation for writing implicit specifications by describing
the states of an abstract state machine. The basic idea is to separate the operations into two
groups: those which do not cause a state change but allow some aspect of the state to be observed
and those which cause a change of state. Using the state machine model, we shall describe the
internal specification of the system in order to know how the state of the object changes and a
result of the applications of some of the operations.

2. Software Design Methodology
Software design is a process through which reguirements are translated intoa representation
of software. Pressman [9] prescnied the guideline for establishing a good design criteria. That is,

a design should (1) exhibit a hierarchical organization, (2) be modular, (3) lead to modules that
cxhibit independent functional characteristics, and (4) be derived using a repeatable method.

These characteristics of a good design can be obtained through the advanced software design
methodologies. Myers [4] recognized the need for advanced softare methods. His observations
demonstrate problems with conventional software design practices, reflect the implications of
changing technology on requirements for future design methods, and motivate the development
of advanced software design methodologies.

The major cause of design errors is a lack of communication between the client and the
designer concerning the requirements and between the designer and the implementor on what is
expected of the implementation. It is important to detect design errors as early as possible,
because design errors are costly to rectify, often requiring major changes to the system
organization. Formal specifications can be useful for exposing design errors in the system
development process[15].

In this section we shall introduce the advanced software design methodologies such as
Wymore's system theoretic approach and Parnas’ abstract model approach which will be used 1o
deveiop the design. This formal specifications are superior to informal cnes as a communication
medium among the designers and the implementors, while the informal specifications are used
for communication among the clients and the designers.

2,1 System Theoretic Approach

The system theoretic methodology derived from the tricotyledon theory of system design
[13, 14] is useful for interdisciplinary teams at the mathematical level. Using the methodology
one can define the problem as precisely and completely as possible, because the methodology is
powerful enough to state any systemn design or analysis problem. Wymore presented the process
of system design, in which there are seven steps called problem definition, preliminary design,
final design, implementation, acceptance testing, operation, and retirement. The ultimate goal of
the problem definition is the definition of the system design problem in terms of an input/output
specification, a technology, merit orderings, which are over the input/output cotyledon, the
technology cotyledon, and the feasibility cotyledon, and the system test plan. These are
representing the questions asked of the client as the following:

“...What is the system supposed to do basically? How is the systems performance to be
judged? What can be used to build the system? How is the use of resources to be judged? How
are conflicts between performance and resource utilization to be resolved? How is the system to
be tested?...”[13]

The parts of the problem definition are applied to define APS design problem. Fo build a
model of a system, it is much easier to identify and model simpler sysiem components, and
identify input/output relations ameng the compenents, and then deduce the resultant system
model, than to develop a model of the overall system directly, The basic manipulation of
systems is that of putting components together to build a more complex model with the in-
put/output coupling recipe.

2.2 Abstract Medel Appoach

In the past few years some techniques for the systematic design of well-structured software
architecture have beendeveloped. Most techniques use the concept of modularity. The notion of
abstraction has emerged for the construction of useful modules. To reduce the compiexity, the
principle of abstraction is concerned with selecting essential properties and omitting inessential
ones.

Parnas [5, 6] has developed a technique and notation for writing implicit specifications by

49

describing the state of an abstract machine. In this approach, the machine is identified with a
single object, and the specification describes how the state of machine changes. An abstract
machine specification characterizes the value rcturned and the new state for each possible
operation invocation and cach possible state of the machine. The specification describes the
functional bechavior of a systemn. A machine can sometimes be decomposed into smaller modules.
Modules have operations and a state. A module specificationis similar to that of a machine execpt
that its specification can reference the state of other modules in its machine.

Depending on whether its invocation returns a value or causcs a state change. an operation is
declared to be one of the two functions, V-function (returns a value, but causes no change) or
O-function (causes a state change. but does not return a value).

The specifications arc given by indicating the effect of each O-function on the result of all the
V-functions. This determines the smallest class of states necessary to distinguish the observable
variations in the values of the V-functions, and also deiermines the transitions amoeng these states
caused by the O-functions. Each V-function’s specification contains a definition of its initial value
and exception conditions under which it may not be successfully called. Each O-function’s
specification contains exception conditions, and a dcseription of the effects of a call to the
O-function. If an exception condition is satisfied. no value is returned in the case of a V-function.
and no effects are executed in the case of an O-function. In both cases control is returned to the
calling program.

3. Design of APS

A busy executive would like to have his/her work schedule planned so that he/she is freed of
the annoving problem of deciding which activity must be completed next. An even larger
problem can accrue if the individual overestimates or underestimates the amount of time
required for each activity. This may lead to a situation where it is impossible to comtplete tasks on
schedule. In the ideal case such scheduling of activities could be automated so that a busy
executive is freed of the cumbersome job of scheduling activities. To relieve the exccutive of this
task. we can design a computer-aided activity planning system, which will organize time morc
effectively. Such a system is a natural extension of the current trends toward increased use of
computers in management areas.

In any activity planning system, there are ccrtain minimal requirements specified by the
potential user. For example, (1) The systermn must be effective. It should provide a schedule of
user activities that can be completed at the times specified by the user, (2) The system must be
simple to usc. At worst, it should require no more effort to use than the current system. (3) The
system and the user should communicate readily. It means that there is a good user-system
interface, which will minimize potential confusion.

The purpose of a design is not ouly to create the desired system but also to provide such
results that fully satisfy or compromise both clicnts and designers’ requirements. Having been
given the set of requirements, the designers produce the overall optimal system. Such a design 15
chosen after the input/output (I/Q) and utilization of resources (U/R) merit orders are specified
and an overall merit order is defined in such a way that one is able to compare any two proposed
systems with respect to the tradeoff between IO performance and U/R performance.

In the next two sub-sections, we present a certain level which is suitable to a simple
interactive system for planning activities. At this level the user can store and update his activities.
display them in a chronological order or by urgency, and search a desired activity.

3.1 Informal Specification

From the given problem description we can build a model which satisfies the system
requirements. In this process, we present the essentials but not the details, which will help one 10
maintain a clear gestalt of the model as it develops. The informal specification[16] should help
both the users and the designers to see the basic outlines of the modetl and to visualize it within
the framework of their prior conceptions about how things work. Having achieved an informal
specification with the model structure, we can describe the formal specification of the model.

The way to informally present a model as shown in Figure 1 is to describe its components,
descriptive variables, and component interactions as the following:

Input System Output
IQUERY} {ACTIVITY! {RESPONSE}

v

Figure 1 The model of APS

(1} COMPONENTS are the parts from which the model as shown in Figure 1 is constructed.

+« QUERY.1l, QUERY.2, , QUERY.1

+ RESPONSE.1, RESPONSE.2, » RESPONSE.m
= ACTIVITY.1, ACTIVITY .2, , ACTIVITY.n

+ SYSTEM

(2} DESCRIPTIVE VARIABLES serve as tools to describe the conditions of the components at
points in time.
+ For QUERY.],

Q.ARR.TIME with range the positive reals; Q. ARR.TIME=y means the QUERY.
i arrives at v time units.
COMMAND with range ladd ACTIVITY k>, «done ACTIVITY. k>, anodify
ACTIVITY k», dist>, ccalendar (timel, time2}>, <search A.IDENTITY>l where
(timel, time2) is a period from timel to time2; It indicates the command type the
QUERY.i is containing.

= For RESPONSE.j,

OUTPUT with range |mnot found>, <no activity>} or the subsets of |ACTIVITY.1,
...... , ACTIVITY .nn} .

* For ACTIVITY Kk,

A IDENTITY with range the positive integers; A.ACTIVITY k=q indicates that
the identification of the ACTIVITY .k is g.

A PRIORITY with range the positive reals; A.PRIORITY=r indicates that the
importance of the ACTIVITY .k is 1.

A DEADLINE with range the positive reals; A.DEADLINE=s means the deadline
of the ACTIVITY .k is s.

A.LEFTTIME with range the positive reals; A.LEFTTIME=t means A.DEAD-
LINE—Q.ARR.TIME— t. '

_.51 -

— A.TEXT with range the set of character strings; A.TEXT =u indicates the descrip-
tion of the ACTIVITY .k is a.

— A.TRADEOFF with range the positive reals; A.TRADEOFF =v means that the
tradeoff of the ACTIVITY .k is v which is computed by a tradeoff function with
nputs(A.PRIORITY and A.DEADLINE of the ACTIVITY k).

* For the SYSTEM.

— TRADECFF, QUEUE with range the subsets of {ACTIVITY.1,, ACTIVITY.n; .
— DEADLINE QUEUE with range the subsets of !ACTIVITY.1, ACTIVITY.n!.
— PRIORITY, QUEUE with range the subsets of JACTIVITY.1, ACTIVITY .n/ .

(3) COMPONENT INTERACTIONS are the rules by which corﬁponents exert influence on
each other. altering their conditions and so determining the evolution of the model's
behavior over time.

— When QUERY.i arrives at thc time Q.ARR.TIME with the COMMAND, the
ACTIVITY k can be added, done, modified. or displayed. If the COMMAND is <add
ACTIVITY k-, the SYSTEM adds ACTIVITY .k to the DEADLINE.QUEUE ordered
by A.DEADLINE and the PRIORITY.QUEUE ordered by A.PRIORITY. and to the
TRADEOFF.QUEUE ordered by A. TRADEOFF by computing the A. TRADECFF of
the ACTIVITY k. If the COMMAND is «done ACTIVITY.k>, the SYSTEM takes
ACTIVITY .k out from the DEADLINE.QUEUE, the PRIORITY. QUEUE and the
TRADEOFF.QUEUE. If the COMMAND is anodify ACTIVITY .k, the STSTEM
replaces ACTIVITY .k in the DEADLINE.QUEUE, the PRIORITY.QUEUE. and the
TRADEOFF.QUEUE by computing the A. TRADEOFF of the ACTIVITY .k again. If
the COMMAND is «scarch AIDENTITY:, ists, or «calender (timel, time 2). the
SYSTEM displays a subsets of JACTIVITY.1,, ACTIVITY .n} .

3.2 Formal Specification

In this part, two major methods are applied to describe the formal specification of APS.
While the following external design specification is based on Wymore’s approach, the following
internal design specification is based on Parnas’ approach.

3.2.1 External Specification

The external specification of the system design can be done by using the input/output(1/0)
specification of the system and the decomposition of the components input/output
specification{14, 17].

(1) System I/O Specification.

The system has inputs, outputs, and an intcrnal structure as shown in Figure 2. I/O specifica-
tion comprises two parts: 1/O interface and I/O constraints. Using a finite state machine mode!
I/O constraints can be specified as the following:

Inputs “ Internal Qutputs

Q. Q.. Qs0 IS, T, F {Ro, Ry, R, !

T
-

Figure 2 Input/Qutput of the System

_52...

M =«Q, R, ST, F, where
Q is the input set,
R is the output set,
8 is the set of states: {Si i=1, ..., n},
T is the transition function:Q X § -+ §,
F is the output function: Q x § = R.
a) /O Interface
Input ports
Qo= oy
Qi=le, o, o
Q:: fCJ, Cs, Ca}
G=[signon <time-]
ci=[list]
c:=[calendar «dl1, d2:]
cs=|[search <a]
c:=[add «d, p, text:]
¢s=[done dd]
c=[modify]
where
timeg, d, dl, d2, p are positive reals,
text is a character string, id is a positive integer,
a is in fid, d, p, text},
b is a subset of Id, p, text|.
Output port
Ru= {signon.mess|
Ri= kid, d, p, text, status|
R:= |'added’, ‘done’, ‘already done’, ‘modified™, ‘not found’, ‘no activity’|
where
signon.mess is a character string,
status is in {0, 1}
b) YO Constraints
Let ID= lid of activity in the system|,
E=le | i=1, ..., n|, where e represents all information referring to activity,,
M(E)=a set of subsets over E,
then S=M(E) X PN X {time},
where PN=a set of tradeoff values.
Transition Function (T}hQ X §—+3§

T(Si, CU):Si
T(Si, Cl):Si
TS, ¢)=S
T(Si._. C.‘\):Si

T(S. ¢)=8 if id(c)) is in ID,
=5 otherwise
where Si=[M(E)+ {<id, d. p, text, status:] | X PN x |time|
T(S, c)=58" if id(cs) is in 1D,
=5 otherwise
where S'=M’'(E) X PN x ltime|, where M(E)

_53__

has been changed to M'(E)
T(S, &)=8" if id{c.) is in 1D,
=§i otherwise
Qutput Function{F):Q x S—R
F(Si.)= [signon.mess)
F(S. c:)= Jid, p, d, text, status:} if id{c)=0
='no activity’ otherwise
tid, p, d, text, statuss{ if dl d{c:} d2
='no activity’ otherwise
F(S,)= {id, p, d, text, status} if id(c:} is in ID,
='not found’ otherwise
F(Si. c:)="already added’ if id(c:) is in ID,
='added’ otherwise
F(S., ¢)="done’ if id(c:} is in ID and status(c:)=0,
=already done’ if id(c:) is in ID and status(cs}=1,
=‘not found” otherwisc
F(S., c)="modified” if id(c.) is in ID
='not found' otherwise
(2) Components I/O Decomposition.
The essential components of the system are shown in Figure 3.

F(S. <)

Question
Q- TYPE Handler
~» y
e -
Inierface
5.MESS
> >
Query Response
Activity
C.TYPE Updater
Sy Ty
- gl
"
A T/O A INFO
Tradeoff
Module
Figure 3 Input/Qutput of the Components
Intcrface

+ Input ports:
TIME - with range the positive reals
QUERIES - with range 1Q,, Q. Q4

« Qutput ports:
SIGNON.MESS - with range the set of strings

_54__

QUESTION.TYPE - with range o, ¢, ¢
COMMAND.TYPE - with range [cs, ¢s, ¢4
Qestion. Handler
» Input ports:
FIME - with range the positive reals
ACTIVITY.SET - with range the subset of jai, a:, ..., an
QUESTION.TYPE - with range jc., ¢, ¢
» QOutput port;
ACTIVITY.LIST - with range the subset of |ai, a:, ... aJ
Activity. Updater
» Input ports:
ACTIVITY.SET - with range the subset of jai, a:, ..., a.
COMMAND.TYPE - with range o, ¢, o
= Output ports:
UPDATE.RESPONSE - with range the set of character strings
ACTIVITY.INFO - with range ia;, a:, ..., &)
Tradeoff. Module
» Input ports:
TIME - with range the positive reals
ACTIVITY.INFO - with range la, a. ..., a.
+ Qutput port:
ACTIVITY. TRADEOFF - with range the nonnegative reals

3.2.2 Internal Specification

The internal design specification of the system can be written by the abstract machine model
12, 6, 15] which describes the function behavior of the system. The machine is decomposed into
several smaller modules. Here we choose the two key modules which are the question . handler
and the activity,updater modules. While the activity.updater module has three QO-functions, the
question.handler module has three V-functions as the following:
Global Function
+ V-function:HAS
argument:activity
output:BOOLEAN
purpose;to reveal whether a particular activity is in the set of activities
initia: FALSE
Activity. Updater Module
« O-function:ADD
argument:activity
purpose:to add an activity to the set of activities
exception: HAS(activity)=TRUE
effect: HAS(activity) = ‘HAS(activity)" if it is not the activity being added; otherwise
TRUE
» O-function:DONE
argument:activity
purpose:to delete an activity from the set of activities
exception:HAS(activity) =FALSE

effect: HAS(activity) =*"HAS(activity)' if it is not the activity being done;otherwise
FALSE
« O-function:MODIFY
argument:activity
purpose:tc modify an activity being added the set of activities
exception: HAS{activity)=FALSE
effect:HAS (activity) ="HAS(activity)' if it is not the activity being zadded;
otherwise FALSE
Question. Handier Module
» V-function:LIST
argument: none
output the subsets of the set of activites
purpose:to display the activities in order of tradeoff
exception:HAS{activity) =FALSE
initial:none
» V-function:CALENDAR
argument: (datel, date2)
output:the subsets of the set of activities
purpose:to display the activities in chronological order within the period(datel.,
date2)
exception: HAS(activity)=FALSE
initial:none
« V-function:SEARCH
argument:activity.id
output:activity
purpose:to display a desired activity to be searched by an activity,id
excepton:HAS(activity) =FALSE
initial:none

4. Conclusions

The activity planning system(APS) is a user-friendly interactive software system that lets
users create and schedule their activities by communicating readily with the system, and is a
decision support system [10} that help users to decide which activity should be done next by
showing an urgent {ist of pending activities.

To design APS,

1) we introduced the informal and formal specifications for the system design,

2} we presented a software design methodology based upon ahierarchical decomposition of the
system, combining the promising design methodologies, and

3} we applied the method to the design of APSinforms of the hierarchical specifications such
as informal/formal and external/internal specifications.

There are a number of possible extensions to the system that will increase its capabilities.,
including:

1) adding a graphical display of daily/monthly calendar that would allow users to easily adjust
their schedules,

2) an ability to organize retated groups of user-specified activities into projects that would
allow users to have their projects planned,

3) an ability to allow the users to define the format of projects in the form of templates that
can be activated to relieve the users of the need to redefine similar projects repeatedly. and

4) an ability to deal with various kinds of activities:deadlined task, undeadlined task, dead-
lined expectation, undeadlined expectation, once-only event, etc, so that activities may
be strong together in units.

References

1. Elmaghraby, 8., Activity Network, Wiley, 1977,

Guttag, J. V., E. Horowitz, D. R. Musser, “Abstract Data Types and Software Validation™,

CACM. Vol.21 #12, Dec. 1978.

INTERFACE AGE magazine, “New Products”, Interface Age, Vol. 8 #4, April, 1983,

Myers, W., “The Need for Software Engineering”, Computer, Vol. 11 #2, 1978, pp 12-26.

Parnas, D. L., “On the Use of Transition Diagrams in the Design of A User Interface For an

Interactive Computer System”, Proceedings of the ACM National Conference. 1969, pp

379-386.

6. Parans. D. L.. "A Technique for Specification of Software Modules™, CACM. Vol. 15
#5, May 1972, pp 330-336.

7. Parans, D.L.. “On the Criteria To Be Used in Decomposing System inte Modules™, CACM,
Vol. 15 #12, Dec. 1972, pp 1053-1058.

§. Phillips, D. T., A. Garcia-Diaz, Fundamentals of Network Analysis, Prentice, 1981,

9. Pressman. R. S8.. Software Enginecring, McGraw-Hill, 1982.

10. Sprague, R. H., E. D. Carlson, Building Effective Decision Support System, Prentice, 1982.

11. Vaosteenkiste, G. C, J. Spriet. Computer-aided Modelling and Simulation, Academic Press,
1982.

12. Wayne State University, “Project Planning System”, MTS manual, WSU Computing
Services Center, July 1973,

13. Wymore, A. W., Systems Engineering Methodolgy for Interdisciplinary Teams. Wilcy.
1976.

14. Wymore, A. W., "Applications of Mathematical System Theory to System Design,
Modelling and Simulation”, Proceedings of the Winter Simulation Conference, 1981, pp
209-219.

15. Yeh, R, T.(editor}, Current Trends in Programming Methodology, Vol. 1, Prentice, 1977.

16. Zeigler, B. P., Theory of Modelling and Simulation, Wiley, 1976.

17. Zeigler. B. P., Multifacetted Modeiling and Discrete Event Simulation, Academic Press.
1984.

-3

th e

57

