Kyungpook Math. J.
Volume 27, Number 2
December, 1987

ON THE (m, K, n)-IDEALS OF ASSOCIATIVE RINGS

By Ferenc Andor Szász

Let A be an associative ring. Let A^{0} cenote the operator 1 even in case, if A does not have an unity element $e \in A . Z$ denotes the ring of rational integers, and $B \cdot C$ denotes the additive subgroup generated by all products $b \cdot c$, where $b \in B$ and $c \in C$. A subring S of A is called an (m, K, n)-ideal, if the inclusion

$$
S^{m} \cdot A \cdot S^{K} \cdot A \cdot S^{n} \subseteq S
$$

is valid, for arbitrary non-negative rational integers m, K, n. It must be remarked that (m, K, n)-ideals of semigroups were introduced and discussed by S . Lajos [6].
Following S. Lajor-F.A. Szász [8], a subring S of a ring A is called an (m, n)-ideal of A, if $S^{m} \cdot A \cdot S^{n} \subseteq S$ holds. Obviously, every (m, n)-ideal of A is also an (m, K, n)-ideal, by $A \cdot S^{K} \cdot A \subseteq A$, and thus by $S^{m} \cdot A \cdot S^{K} \cdot A \cdot S^{n} \subseteq S^{m} \cdot A \cdot S^{n} \subseteq S$ we have shown our assertion. But the converse, in general is not true. The converse statement holds if $A^{2}=A$ is valid, since then the ($m, 0, n$)-ideal coincides with the (m, n)-ideal, being true

$$
S^{m} \cdot A \cdot S^{0} \cdot A \cdot S^{n}=S^{m} \cdot A^{2} \cdot S^{n}=S^{m} \cdot A \cdot S^{n} \subseteq S
$$

A Particular case of $A^{2}=A$ is, if A is von Neumann-regular, strongly regular, weakly regular, or biregular. For these definitions see N. Jacobson [1], or F. A. Szász [11].

THEOREM 1. A subring S of an associative ring is an (m, K, n)-ideal of A if and only if S is an (m, n)-ideal of a $(0, K, 0)$-ideal of A.

Proof. First we assume that S is a ($0, K, 0$)-ideal of the ring A, and T is an (m, n)-ideal of S. Then one has

$$
A \cdot S^{K} \cdot A+S^{2} \subseteq S
$$

and $T^{m} S T^{n}+T^{2} \subseteq T \subseteq S$.
Now these inclusions imply evidently

$$
T^{m} \cdot A \cdot T^{K} \cdot A \cdot T^{n} \subseteq T^{m} A S^{k} \cdot A \cdot T^{n} \subseteq T^{m} S T^{m} \subseteq T,
$$

i. e. T is an (m, K, n)-ideal of A, indeed.

Conversely, let S be an (m, K, n)-ideal of A. Then we shall show that S is an (m, n)-ideal of the ($0, K, 0$)-ideal, generated by S, of A. Obviously
(*)

$$
\{S\}_{(0, K, 0)}=S+A \cdot S^{K} \cdot A,
$$

where the left side of our equation $\left(^{*}\right.$) is the ($0, K, 0$)-ideal, generated by S, of A. Thus we have

$$
S^{m} \cdot\{S\}_{(0, k, 0)} \cdot S^{n} \subseteq S^{m} A S^{k} A \cdot S^{n}+S^{m+n-1} \subseteq S,
$$

and thus Theorem 1 is proved.
DEFINITION 2. (see S . Lajos []). A subring S of a ring A is said to be an "interior ideal", if it is a ($0,1,0$)-ideal that is $A \cdot S \cdot A \in S$ holds.

COROLLARY 3. A subring S of a ring A is a ($0,1,1$)-ideal of A if and only if S is a left ideal of an interior ideal of A.

COROLLARY 4. A subring S of a ring A is an ($1,1,1$)-ideal of A if and only if S is a bi-ideal of an interior ideal.

REMARK 5.1. Bi-ideal S of A means an (1,1)-ideal of A. For a detailed discussion of bi-ideals of rings, see S. Lajos-F.A.. Szász [7].

REMARK 5.2. Evidently, every two-sided ideal is an interior ideal, but the converse, in general, is not true, as the following example shows:

EXAMPLE 6. Let F be an arbitrary field, and $A=F_{6}$ the full ring of matrics of type 6×6 over the field F. Its matrix unities let be denoted by $E_{i, j}(i, j=$ $1,2,3,4,5$ and 6), i.e. we have

$$
E_{i, j} \cdot E_{k, l}=\delta_{j, k} \cdot E_{i, l}
$$

where $\delta_{j, K}$ is the Kronecker delta. If we put

$$
\begin{gathered}
a_{1}=E_{1,2} ; a_{2}=E_{1,3}+E_{\ell, 1} ; a_{3}=E_{1,4} ; a_{4}=E_{1,5}+E_{4,1}+E_{6,3} \\
\text { and } a_{5}=E_{1,6}+E_{4,1}+E_{5,2},
\end{gathered}
$$

then the additive subgroups

$$
Z \cdot a_{3} ; Z a_{5} ; Z a_{2}+Z a_{3} ; Z a_{1}+Z a_{4} \text { and } Z a_{1}+Z a_{5}
$$

all are subrings, even interior ideals, but not twosided ideals of $A=F_{6}$.
THEOREM 7. Let A be an associative ring, S an (m, n)-ideal of A. Then any ($0, K, 0$)-ideal T of A is an ($m, m+k+n, n$)-ideal of A.

PROOF. Obviously

$$
S^{m} A S^{n}+S^{2} \subseteq S
$$

and $S \cdot T^{K} \cdot S+T^{2} \subseteq T \subseteq S$.
Now we shall show that the subring T of A is an ($m, m+K+n, n$)-ideal of A. Namely from the above inclusions we have

$$
\begin{gathered}
T^{m} \cdot A \cdot T^{m+K+n} \cdot A \cdot T^{n}=\left(T^{m} A T^{n}\right) \cdot T^{K} \cdot\left(T^{m} A T^{n}\right) \\
\subseteq\left(S^{m} A S^{n}\right) \cdot T^{K}\left(S^{m} A S^{n}\right) \subseteq A T^{k} A \subseteq T
\end{gathered}
$$

Therefore T is an ($m, m+k+n, n$)-ideal of A, indeed.
COROLLARY 8. Assume that A is a ring, T is a bi-ideal of A, and S is an interior ideal of T. Then S is a $(1,3,1)$-ideal of A.

COROLLARY 9. Assume that A is a ring, L is a left ideal of A, and S is an interior ideal of L. Then S is a ($0,2,1$)-ideal of A.

THEOREM 10. Let A be a ring, S an (m, k, n)-ideal of A. They any (p, q, r) -ideal of S is an $(m+p+q+1, K, n+r)$-ideal resp. an $(m+p, K, n+q+r+1)$ -ideal of A.

PROOF. Evidently hold:

$$
S^{m} \cdot A \cdot S^{K} \cdot A \cdot S^{n}+S^{2} \subseteq S
$$

and

$$
T^{p} \cdot S \cdot T^{q} \cdot S \cdot T^{r}+T^{2} \subseteq T \subseteq S
$$

Therefore

$$
\begin{aligned}
T^{m+p+q+1} \cdot A \cdot T^{k} \cdot A T^{n+r}=T^{p+q+1}\left(T^{m} \cdot A \cdot T^{k} \cdot A T^{n}\right) T^{r} \\
\subseteq T^{p+q+1} \cdot S \cdot T^{r} \subseteq T^{p} \cdot S T^{q} S T^{r} \subseteq T
\end{aligned}
$$

COROLLARY 11. Assume that A is a ring, S is an (m, K, n)-ideal of A. Then any interior ideal T of S is an ($m, k, n+2$)-ideal, resp. $(m+2, K, n)$-ideal of A.

COROLLARY 12. Assume that A is a ring, B is an interior ideal of A. Then any (m, k, n)-ideal T of S is an ($m+k+1,1, n$)-ideal resp. $(m, 1, n+k+1)$-ideal of A.

Recently S Lajos-G. Szász [8] have introduced the notion of (p, q, r)-regularity of semigroups. In a similar way, we say that a ring A is (p, q, r)-regular, if there exist elements x and y of A for every $a \in A$ such that

$$
a=a^{p} \cdot x \cdot a^{q} \cdot y \cdot a^{r}
$$

holds. Moreover, following S. Lajos [6], we say that an (m, k, n)-ideal of A is "complete" if $S^{m} \cdot A \cdot S^{K} \cdot A \cdot S^{n}=S$ holds.

THEOREM 13. A ring A is (p, q, r)-regular if and only if every (p, q, r)-ideal of A is complete.

PROOF. Let A be a (p, q, r)-regular ring, S a (p, q, r)-ideal of A and $s \in S$.

Then $s=s^{p} \times s^{q} \cdot y \cdot s^{r} \in S^{p} \cdot A \cdot S^{q} \cdot A \cdot S^{r}$ implies $S \subseteq S^{p} \cdot A \cdot S^{q} \cdot A \cdot S^{\prime} \subseteq S$, whence it follows that the (p, q, r)-ideal is complete.

Conversely, if every (p, q, r)-ideal S of A is complete then for every $s \in S$ we have

$$
s \in\{s\}(p, q, r)=T=T^{p} \cdot A \cdot T^{q} \cdot A \cdot T^{r} \subseteq s^{p} \cdot A \cdot s^{4} \cdot A \cdot s^{r},
$$

which means the (p, q, r)-regularity of the ring A.
COROLLARY 14. A ring A is von Neumann-regular if and only if every ($1,1,1$)-ideal S of A is complete.

COROLLARY 15. A ring A is intraregular if and only if every $(0,2,0)$-ideal of A is complete.

We recall that a ring A is strongly regular if for every element $a \in A$ the inclusion $a \in a^{2} \cdot A$ holds.

The characterization of strongly regular rings with the help of 29 equivalent conditions can be found e.g. in part $\mathbb{I I}$ of F. A. Szász [10].

Now, the following result holds:
COROLLARY 16. The following eleven conditions for a ring are pairwise equivalent:
(1) A is strongly regular.
(2) Every $(1,0,2)$-ideal of A is complete.
(3) Every $(2,0,1)$-ideal of A is complete.
(4) Every $(2,0,2)$-ideal of A is complete.
(5) Every ($1,1,2$)-ideal of A is complete.
(6) Every (2,1,1)-ideal of A is complete.
(7) Every (2,1,2)-ideal of A is complete.
(8) Every $(1,2,2)$-ideal of A is complete.
(9) Every (2,2,1)-ideal of A is complete.
(10) Every (2,2,2)-ideal of A is complete.
(11) For every $m, n \in Z$ such that $m+n \geqq 3$ and $m, n \geqq 1$, every (m, n)-ideal of A is complete.

PROBLEM 17. Investigate the generalized (m, K, n)-ideals S of the ring A such that $S^{m} A S^{K} A S^{n} \subseteq S$ holds, but S is only a subgroup of A^{+}, but, in general, it is not a subring of A !

PROBLEM 18. Let C be a class of rings A. Investigate the almost (n, K, n) -Amitsur-Kurosh radical classes C, satisfying.
18. 1) C is homomorphically closed
18. 2) If every nonzero homomorphic image A^{\prime} of the ring A contains a C-subring S, which is an (m, K, n)-ideal S of A, then $A \in C$ holds.

PROBLEM 19. Investigate those (m, K, n)-strongly Amitsur-Kurosh radical classes $C(m, K, n)$ such that in every ring A, the corresponding radical $C(m, K, n)(A)$ of A contains every subring, which is $C(m, K, n)$-radical ring !

PROBLEM 20. The same problem, as Problems 18 and 19, but for generalized (m, K, n)-ideals of the ring A, instead of ordinary (m, K, n)-ideals of A.

PROBLEM 21. The same, as problem 19, but for supernilpotent, special and subidempotent radical classes.

REMARK 22. For these concepts see e. g. F. A. Sfász [11].

REFERENCES

[1] N. Jacobson, Strueture of rings, Providence (1956, 1964).
[2] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math. Szeged 22 (1961) 217222.
[3] S. Lajos, Theorems on (1,1)-ideals in semigroups, I-II., Depart. Mathematics of Karl Marx University of Economics, Budapest (1972:1974).
[4] S. Lajos, On the characterization of completely regular semigroups, Mathematica Japonicae 20 (1975) 33-35.
[5] S. Lajos, Generalized bi-ideals in semigroups, Depart. Math. K. Marx Iniv. Economics Budapest (1975).
[6] S. Lajos, (m, K, n)-ideals in semigroups, Depart. Mathemat. K. Marx Iniv. of Economics, Budapest (1976:2).
[7] S. Lajos-F. A. Szász, Bi-ideals in associative rings, Acta Sci. Math. Szeged 32 (1971) 185-193.
[8] S. Lajos-F. A. Szász, On (m, n)-ideals in associative rings, Publ. Math. Debrecen 25 (1978) 265-273.
[9] S. Lajos-G. Szász, Generalized regularity in semigroups, Depart. Math. K. Marx Univ. Budapest (1975).
[10] F. A. Szász, Generalized bi-ideals of rings, I-II.. Math. Nachrichten 47 (1970) 355-364.
[11] F. A. Szász, Radicals of rings, John Willey and Sons, London-New York-TorontoSidney (1971).
[12] F. A. Szász, A class of regular rings, Monatshefte für Mathematik 75 (1971) 168172.

Mathematical Institute of the Hungarian
Academy of Sciences
Budapest

