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ON THE ABSOLUTE CONVERGENCE OF LACUNARY VECTOR
VALUED FOURIER COEFFICIENTS SERIES

By R.A. Rashwan

Abstraet: In this article the absolute convergence of lacunary Fourier Coeffi-
cients Series is studied for Hilbert space valued functions. The considered
functions are assumed to be of either the modulus of continuity or the modulus
of smoothness of order ! which are considered only at a fixed point in [—m,7].
On the other hand for values in weakly sequentially complete Banach space, the
lacunary Fourier coefficients series is strongly unconditionally convergent. The
results obtained here are a kind of a generalization of theresults due to Kandil [4].

1. Introduction

et x(¢) denotes in general-a strongly continuous periodic vector valued func-
tion of real variable ¢ of period 2z with values in a Banach space X with the
norm [.[.

The lacunary Fourier series of x(z) is defined as follows:

#(D)=17 C,e™ (L1

If x(t) is integrable in the sence of Pettis [2], we can write the lacunary
Fourier Coefficients as:

. _l_ * —imt - amands ves
Co=—o f_ﬂx(t)e dt, C, =0, K==+1, +2, (L2)

Let us introduce the definitions and notations which will be used in the sequel.
(1) On anology to the scaler valued case, we define here the modulus of
continuity w(x, 1) of x(#) by:
w(x, n)=sup |x(ty+h)—x(t;—h)) (1.3
k] <7

(1) The modulus of smoothness w,(x, 7) of x(¢) of order I (IEN) at the
point {=[—7,z] are defined by:

1 y
w, (%, n)=sup;|;,§1<—1)“’(}-)x<zg+(zj—:)h)n (1.4)

() The series (1—1) satisfies the lacunary condtion
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(ny. —n)>CF(ny), C>0 (1.5)
where F(n,) increases to oo as k—oo,

F(n,)<n, for all k=N,
With F(r,)=n, this condition gives the famous Hadamard lacunary condition

. . C”nt
lim lnf—t. >1 (1.6)

k—oo "
Throughout the paper d=8z/(CF(ny)), where N is a natural number, and
D= (t: |t—1y| <o)
Let H be a Hilbert space H and let B,(H, D) denote the space of H-valued
Pettis integrable functions x defined on D [3].
To formulate our results, we introduce, the following lemmas which will be
used in what follows:

LEMMA 1.1. The modulus of continuity w(x,n) defined as (1.3) is such that:
(¢) For each positive A, we have
w(x, A<QA+1) wlx, n)
(ii) w(x, 0)=0
(iti) w(x, n) is increasing.

PROOF. Obvious.

LEMMA 1.2. [7]. If #,=>0 (nEN), u,7#0, and F(u,) is a function such that
F(0)=0, F(u) tncreasing and concave. Then

:F(u)<2:F(“ +"” e

LEMMA 1.3. Let.
(1) x(t)EBy(H, D) for some D,
(if) Cn. be a lacunary Fourier coefficients

K=0,+1, +2, -
(i1i) (n, —m)> 820" for all k (1.7
Then:
O =) HC =" le(t)\lzdt (1.8)
2 A 2
(nl)mZ' ”IIC I*<C(w(x, F("N) —r—)", (1.9)

or more generally
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2 _B
W2 16, P<Cts, ) (1.10)

where C>0 and [ is an odd natural number.

PROOF. The proof for the scaler valued case as given in [6].
Works just well in the vector valued situation.

2. Main results

THEOREM 2.1. If:
(1) x(2) is strongly continuous periodic vecior valued function with values in

e Hilbert space H defined on some D.
@) (ny. ,—n)>CF(my, C>0

A 8
w (@& Fey )
k
® 5 —n

<400, 0<5<1 2.1

where w(x, L) is as tn (1.3) with n replaced by A|F(n,), A=24z/C+n.
F(ny)
Then:
= 1€, I < +o0. 2.2
PROOF. Since x(f) is strongly continuous on D, then we have:
x(t-{—h)—x(t—h):kﬁ C”‘(ein.__e—,'ngh)eiml.
Applying parseral’s identity [3], one gets:
[xt+m-x@-mPdt= = 1M - PC, )
D k=—00
= % e 2
=4 kEOO C, I sin‘z,h
Hence from (1.8), we obtain:
4 22 IIC,I° sinznklhgsa"fb||x(z+k)—x(t—k)n'~’dt (2.3)

Integrating both sides of (2.3) with respect to & over (0, nL) one gets:
N

oo Ty o CF(n,) pra/nx
2 2 N
4 5 1C, I sin® |y < =N I

t,+8/CF(ny)
ah( f e+ ) —2Ct—h)|dt ). @.4)
t,—8/CF(ny)
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We see that if [#,|=ny, then:
m/ny 1 Cloel /ny)z
.« D
f sinzlfzklhdh:m f sin“t dt
& 0

[1ml/nyla

1 :
sin’t dt

7 gl /ng] +1)

()

‘17 [lnk[/ﬂN] o.M

ny 1+[m]/ny] 2
ﬁ.%.g:[;‘v, (2.5)

Using 1<<[|n,|/ny] <|n,|/ny<1+[|n,|/ny], where [ ] denotes the integral
part.

Also by (1.7), using w/ny<n/F(ny), and observing from (2.4) that f&[f,—
d, t,+d), we obtain: ‘

lxCt+h)— 2 — W) =llx(y—+A+h) —2(t) + 2D —2(ty—F+A—h)|

<2w(x, d+1-+h), 0<2<27
<2w(x, 30+h)

Il

%

24n Fid
<20(x, CF(ny) ' ny )
i A -
=2a(x, F—(n;)—), A=7n+247/C (2.6)
Using (2.6) and (2.5), we get from (2.4) that:
3 A 2
i, 10 =0l y)) &

So, we have:
2 A A
|§.€nﬂ 1C,,I )SC(w(x, —F—(TNT)) s 0<B=1 (2.8)

Applying Lemma (1.2) with ukzllcnkﬂz, k=Z and F(zz):uﬁ/?, and using (2.8),

we have:
A
e %nk))]

> <Hoo
#/2

= [, lf<2 = FaIC, 1H<4C =
co k=1 k=1
This shows that:

= [, )IP<+es,

and this completes the proof of Theorem 2. 1.
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THEOREM 2.2. If:
(1) x(¢) satisfies the all conditions of Theorem 2.1.

ole w85 __

@ = 7

/ B g ; 3 B P . -
where w,(x, T('%T) is as in (1.4) with n replaced by T(U in which B=

87/C+x and I is an odd number.
Then:

I €, IP<+o0,  0<B<1
k=—0co

PROOF. Applying the inequality (1.10) instead of (1.9) in the proof of
theorem 2.1 and proceeding analogously, this theorem is proved.

COROLLARY. If:
(1) x(¢) is strongly continuous vector valued function on D with values in H.
(2) n,} satisfies the Hadamard condition (1.6)

o (ofx =)

@ T Z4eo,  0<B<I
k=1 kP/‘_

= B
2= 1C, I <oo

REMARK. With /=2, =1, B=1, without the lacunary condition and with
modulus of continuity wg(x, %) on the whole interval [—z, 7] instead of at
the point to, the corollary is equivalent to the results due to Kandil [4].

The following theorem gives the bechaviour of a lacunary Fourier Coefficients
series when values of a vector valued function x(#) in a weakly sequentially
complete Banach space.

THEOREM 2.3. If:

(1) x2(¢) is a periodic vector valued function on [—z, =] with period 27 and
with values in a weakly complete Banach space.

(2) X(t) is strongly continuous, and satisfies

(o +5 )Y

L

;'EI Koo 0<KB<I
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(3) (my ,—n )>CF(my), C>0
oo
Then the serz'esk = C,, is strongly unconditionally convergent.
=—00

PROOF. Let X™ be the dual space of a Banach space X. Consider the scaler
function x “x(#), where x” is a linear functional in X * with %™ =1

The lacunary Fourier Coefficients series of x” x(¢) are z*Cm, k=0, =1, £2,
---). Applying Parseval's identity to " x(), we get:

4 1£5C,, sin®lmy = [ % GeCt- ) —xCe— ) e

<[ Ixtt-+i) - 2t~ dt
D
Repeating the steps of the proof of Theorem 2.1 one gets.

=l ¥ ‘3
= |r%c, 1P<e0,  0<p<1

=—00

- oo
So, any subsequence of the partial sums of the sericsk 3= C,, is weakly con-
=—00

vergent. Using the given condition the space values is weakly sequentially com-

(- =]
plete Banach space, we deduce that the series kZ‘ C,, is weakly unconditio-
= =00

nal convergent
Applying the fact that in a Banach space each weakly unconditional conver-
gent series is strongly unconditional convergent [2]. Hence the theorem is

proved.
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