A NOTE ON ANALYTIC P-VALENT FUNCTIONS

By Shigeyoshi Owa and Nak Eun Cho

Abstract. Let A(p) be the class of functions

$$f(z) = z^{p} + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (p \in N)$$

which are analytic in the unit disk U. Further let $D^{n+p-1}f(z)$ denote the Hadamard product of $z^{p}/(1-z)^{n+p}$ and f(z). In this paper, we shall define the class $S_{n,p}(\alpha, \beta)$ of functions $f(z) \in A(p)$ satisfying the condition

$$\operatorname{Re}\left\{\left(\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} - \frac{n}{n+p}\right)^{\alpha} \left(\frac{D^{n+p+1}f(z)}{D^{n+p}f(z)} - \frac{n+1}{n+p+1}\right)^{\beta}\right\} > 0$$

for $p \in N$, n > -p, $z \in U$ and α and β are real numbers. The object of the present paper is to show a property of $S_{n,p}(\alpha, \beta)$.

Let A(p) denote the class of functions

$$f(z) = z^{p} + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$$
 $(p \in N = \{1, 2, 3, \dots\})$

which are analytic in the unit disk $U = \{z: |z| < 1\}$. Let f + g(z) denote the Hadamard product of two functions

$$f(z) = z^{p} + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (p \in N)$$

and

$$g(z) = z^{p} + \sum_{n=1}^{\infty} b_{p+n} z^{p+n}$$
 $(p \in N),$

that is,

$$f + g(z) = z^{p} + \sum_{n=1}^{\infty} a_{p+n} b_{p+n} z^{p+n}$$
.

Further let

(1)
$$D^{n+p-1}f(z) = \frac{z^{p}}{(1-z)^{n+p}} + f(z) \qquad (z \in U)$$

for $p \in N$ and n > -p.

With this symbol $D^{n+p-1}f(z)$, N. S. Sohi [5] defined the classes T_{n+p-1} of

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30C45.

functions $f(z) \subseteq A(p)$ which satisfy the condition

(2)
$$\operatorname{Re}\left\{\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)}\right\} > \frac{n}{n+p} \qquad (z \in U)$$

for $p \subseteq N$ and n > -p.

In particular, T_0 is the class of functions $f(z) \subseteq A(p)$ which satisfy the condition

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0$$

and we can see that such functions are p-valent by T. Umezawa [6].

In this paper, we shall introduce the following classes $S_{n,p}(\alpha, \beta)$ by using the symbol $D^{n+p-1}f(z)$.

DEFINITION. Let

$$f(z) = z^{p} + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (p \in N)$$

be in the class A(p) and

(3)
$$P_{n,p}(f(z); \alpha, \beta) = \left(\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} - \frac{n}{n+p}\right)^{\alpha}$$

$$X\left(\frac{D^{n+p+1}f(z)}{D^{n+p}f(z)} - \frac{n+1}{n+p+1}\right)^{\beta} \qquad (z \in U),$$

where $p \in N$, n > -p and α and β are real numbers. We say that f(z) belongs to the class $S_{n,p}(\alpha, \beta)$ if f(z) satisfies the condition

(4)
$$\operatorname{Re}\left\{P_{n,p}(f(z);\alpha,\beta)\right\} > 0$$
 $(z \in U)$

The powers appearing in (3) are meant as principal values. We can observe that $S_{n,p}(1, 0) = T_{n+p-1}$ and $S_{n,p}(0, 1) = T_{n+p}$.

Recently, R.M. Geol and N. S. Sohi [1], [2] and S. Owa [3], [4] studied other classes of p-valent functions.

We now state and prove our theorem for the class $S_{n,p}(\alpha, \beta)$.

THEOREM. Let $p \in \mathbb{N}$, n > -p and $0 \le t \le 1$. Then we have

$$(5) S_{n,p}(\alpha, \beta) \cap T_{n+p-1} \subseteq S_{n,p}((\alpha-1)t+1, \beta t).$$

PROOF. Let the function

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (p \in N)$$

be in the class $S_{n,p}(\alpha, \beta) \cap T_{n+p-1}$ and

(6)
$$\left(\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} - \frac{n}{n+p} \right)^{\alpha} \left(\frac{D^{n+p+1}f(z)}{D^{n+p}f(z)} - \frac{n+1}{n+p+1} \right)^{\beta} = V_{n,p}(z).$$

Then, by means of $f(z) \in S_{n,p}(\alpha, \beta)$, $\text{Re}\{V_{n,p}(z)\} > 0$ for $z \in U$. Further let

(7)
$$\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} - \frac{n}{n+p} = U_{n,p}(z).$$

Then, by using $f(z) \in T_{n+p-1}$, we have $\text{Re}\{U_{n,p}(z)\} > 0$ for $z \in U$. Hence we obtain

(8)
$$\left(\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)} - \frac{n}{n+p} \right)^{(\alpha-1)t+1} \left(\frac{D^{n+p+1} f(z)}{D^{n+p} f(z)} - \frac{n+1}{n+p+1} \right)^{\beta t}$$

$$= (U_{n,p}(z))^{1-t} (V_{n,p}(z))^{t}.$$

Putting $U(z) = (U_{n,p}(z))^{1-t} (V_{n,p}(z))^t$, we get U(0) = 1 and

(9) $|\arg\{U(z)\}| \leq (1-t)|\arg\{U_{n,p}(z)\}| + t|\arg\{V_{n,p}(z)\}| \leq \frac{\pi}{2}$,

because $\text{Re}\{U_{n,p}(z)\}>0$ and $\text{Re}\{V_{n,p}(z)\}>0$. This implies that $\text{Re}\{U(z)\}>0$. Thus we obtain that $f(z)\in S_{n,p}((\alpha-1)t+1,\ \beta t)$ for $0\le t\le 1$.

This completes the proof of the theorem.

REFERENCES

- R.M. Goel and N.S. Sohi, A new criterion for p-valent, Proc. Amer. Math. Soc., 78(1980), 353-357.
- [2] R.M. Goel and N.S. Sohi, New criteria for p-valence, Indian J. Pure Appl. Math., 11(1980), 1356—1360.
- [3] S. Owa, On new criteria for p-valent functions, Indian J. Pure Appl. Math., 13(1982), 920-930.
- [4] S. Owa, On new criteria for p-valent functions II, Math. Japonica, 28(1983), 21-30.
- [5] N. S. Sohi, On a subclass of p-valent functions, Indian J. Pure Appl. Math., 11(1980), 1504—1508.
- [6] T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc., 8(1957), 869-874.

Kinki University Higashi-Osaka, Osaka 577 Japan National Fisheries University of Pusan Pusan 608 Korea