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ON INTEGRAL INEQUALITIES OF GRONWALL-BELLMAN-REID TYPE [
By A.A.S. Zahrout and Z. M. Aly

Abstract: In this paper we present several nonlinear generalization of Gron-
wall-Bellman-Reid inequalities. These results provided genuine upper estimates.

1. Introduction

The celebrated Gronwall-Bellman-Reid inequality [2,3] and its variants play
a vital role in the study of the stability and boundedness properties of differen-
tial and integral equations. The aim of this paper is to establish more integral
inequalities which can be used as a tool in obtaining the lower bounds for the
solutions of differential and integral equations.

We make the following assumptions in our subsequent discussions.

(AL n(t), f(t), g() and k(¢) are real-valued, positive, continuous functions
defined on I=[0,o=].

(A2) n(t) is a positive, monotonic, nondecreasing continuous function defined
on: I.

(A3) A function @ is said to belong to a class S if

(i) @(u) is positive, nondecreasing and continuous on 7,

(i) @(u)/v<®(u/v) for #>0, v>1.

(A1) W(u) and H(u) are real-valued, positive, continuous, monotonic,
nondecreasing, subadditive, and submultiplicative functions for #>0, W(0)=0,
H(0)=0.

(A) ¥(¢) is a positive, nondecreasing and continuous function on [ and ¥(0)
=0.

(A) P(¢)>0 is nonnegative, continuous, nonderessing function on I.

We shall make use of the following theorem (Pachpatte [5]) :
Theorem A: Let (A,) and (A,) be true. Suppose further that
t
(O <n(®)+g(0)( fo £(s) 2(s) ds), 11,
Then
! {
x@<n® +g0)([ £(5) exp ([ grrrrrar)as. t=r.
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2. Main results

We wish to establish more general integral inequalities which can be used in

applications.
THEOREM 1. Let (A)), (4. (A45) and (Ag) be true. Suppose further that the
inequalily.
! t
(<P + g(f)( fﬂ f(s)x(s)ds)w(fo R()W (x(s))ds) @1
is salisfied for all t=I. Then
1 . :
#O<P0+ w6 16(f W (P(sDR(s)ds) + f‘ W (R(5))ds] N, @.2)

where

#()=[1+g0)( f‘ :f(s) exp ( f:ﬁ !g(r)f(r)dr)ds)].

G=[ WWW))ds, 0<ry<r (2.3)

ro

and G ' is the inverse of G, and I<ly=10, 8]

fo= [tEI lG(]:h(s)k(s)) *j:) h(s)W (k(s))ds=Dom (G "1)].

PROOF. Define
i
n(t) :;::(a.owfl W (x())ds). .0

Then inequality (2.1) can be written in the form
() <n(D)+g(W)(f(s)x(s)ds), for all t=1. (2.5)
Then applying theorem A we have

! !
x(f)<n(f){l+g(t) (fof(S) exp U;g(r)f(r)dr)ds)]
Le. x(O<n(OkR) (2.6)
Let
i
u(z)zfﬂ R(W (x(s))ds, 2(0) =0

Then equation (2.6) takes the form
n(@)=p@)+¥((@)). 2.7
Hence

2(OL[PO+T (@) k() (2.8)
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x(@<p(ORD) +T )R()
Consequently
W{x(@)<W(p()R))+W (T )W (k(L)),

since W is submultiuplicative. Hence

R(OW (x(2)) k()
B L TN W (PR +h(EOW (L))

Because of equat:on (2.3), this reduces to
d_ (D)
OO <oy W BD. FD)+ W (kD).
Now in[cgratmg from 0 to £, we obtain

5 it
GW)~COON[ gy cprcoteyyy MR+ [ HW k()

Since G(#(0))=0, hence
t . t
v <6 {6([ MW pMIE) + [ MOW h(sds). (2.9)

using (2.7), (2.8) and (2.9), we obtain the desired bound in (2.2).
This completes the proof of the theorem.

Now we shall use the following theorem by Pachpatte [5]

THEOREM B (Pachpatte (5]). Let (A,), (A,), (A3 and (A, be irue.
Suppose that the inequality

*(O)<n@)+H [0 :jf(s)H(x(s))dsﬂ, el

holds., Then x(O<n(DkR()
where
& 4
r=H""1+0(6¢"* i =Ty, 2, 10;
W=H""[1+0(G [G(O)%Lf{s‘)ds})} = (2.10)
6= [ 1/1+0()ds, 0<ry<r

THEOREM 2. Let (A,), (43) and (A,) be true, Suppose further thai the
Inequalily

4 of ¢
(D <xy+H [0 Jof(s)H(x(s)))ds]+ fo 2()W (x(s))ds (2.11)

Is satisfied for all =1, where x, is a positive constant. Then
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x(r)<o“[n(x0)+ f; HOLCONCONNT A (2.12)
where
am=[ "Ww©lds  0<r,<r (2.13)
and Q' is the inverse func;t'on of Q and <1

J =i
I,={tsI19Gx)+ fo g(W k(s))ds=Dom(2 D).

PROOF. Define
!
n(t) = x4+ fo g(W (x())ds.
Hence inequality (2.11) takes the form
x(:)(u(:)+ﬂ“[¢( f 'f(s)ch(s))a's)}. 2.14)
s

Since n(#) be a positive, monotonic, nondecreasing, continuous function defined
on I, and using (4,) and theorem B, we have
x(D<n(Ok(@). (2.15)

Since W is submultiplicative,

gOW(x(1))

W) <LgOW (kD).
Using the definition of @ by (2.13), this reduces to

2 2(n(1) <gOW k(D).
Integrating from O to / we obtain

Q(n(t)) —Q2(xy) <ﬂg(s)W(k(s))ds.

n(:)<a“[(x0)+ fo g(s)W(K(s))ds]. (2.16)

The desired bound in (2.12) follows directly from (2.15) and (2. 16).
This completes the proof of the theorem.

THEOREM 3. Let (A)) (Ay) (A, (A;) and (A;) be true. Suppose further
that the inequality.

x<:)<p(t)+H“[¢( fﬂ 'f(s)H(z(s))ds)] +ur( f ; g(s)W(x(s))ds) .17

is satisfied for all i=I. Then
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t
«O<[pO+7@ H[2([ #(). WPWRE))ds+

t
[ gWk(s)as]) ko) el
0 J
where k is defined by (2.10) and Q is defined by
r
o =[ [Ww@s)lds 0<ry<r
To
and Q7' is the inverse Sfunction of Q, t=I,

Iy= {’GI | Q(j:g(s)w(ﬁ(s)k(s))ds)-;-

f(:gCS) W (k(s))ds=Dom(Q " )J Y

PROOF. Define.
F 3
n(t)=p(t) w( fo g(s)W(x(s))ds).

Then the inequality (2.17) reduces to
x<n()+H " [@([ ) (xCs cs))ds].
0

Applying theorem B, we obtain.
(D <n(DHk()

Let v(t)= J:g(s)W(x))ds, v(0)=0.

Now from (2.20) and (2.21) we have
O [P +T (@) R,
Thus
W (x(£))<W(p(&k())+W W (v(Dk(L))).

since W is submultiplicative. Hence

157

(2.18)

(2.19)

(2.20)

(2.21)

(2.21)

EOWGWD) &L ___gr(p(1)k(t))+g(OW (kD).

W) ~ W)
Using the definition of 2 by (2.19), we have
d g(t)
W9(0(3)< W) W(p(DOE())+gOW k(D).

Integrating from 0 to ¢, we get

t
1)~ QWO [ s WM+ [ g hCsdas,

(2.23)
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The desired bound in (2.18) follows directly from (2.21), (2.22) and (2.23).

This completes the proof of the theorem.

Now, we establish the following more general integral inequality which may

be convinient in some applications.

THEOREM 4. Let (A)), (A, (Ap, (As5) and (Ag) be true. Let W(t, u) be a
positive, continwous, monotonic nondecreasing funciion in wu for fixed t, u_0.

Suppose further more that the inequality.
]

*O<p®)+H [0 [ OB |
0

h0 ([ WG, 1(5))ds).

Is satisfied for all t<=I. Then
(O [P +h(OT (DI k(D). <],
where k(t) is defined by (2.10) and r(i) is the maximal solution of

r()=g@WE, kW) [p()+R(OF(r(£))], 7(0)=0,

existing on I,
PROOF. Define
ol
n()=pO+hO¥( [ g(OW (s, x())ds).
o 0]

Hence the inequality (2.24) reduces to

*()<n(t)+H [0 ];g‘(s)H(x(s) ds)].

(2.24)

(2.25)

(2. 26)

(2.27)

Since #(¢) is positive, monotonic, nondecreasing on [, and making use of

theorem B, we have
2(D<n()k(t), I,
Form (2.27) and (2.28) we have
x(D)<k(t) [p(1) + (DT (0(2))],

where
o(t)= f (W (s, x(s))ds, 2(0) =0.
0]

Consequently, it follows that
v’ ()<g(OW(E, k() [p()+hBD¥(v(D))].

(2.28)

(2.29)

(2.30)

A suitable application of theorem 1.4.1 given in [4] to (2.30) and (2.26) vields
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v()<r() (2.31)
where #(¢) is the maximal solution of (2.26) such that »(0)=2(0)=0.
The desired bound in (2.25) follows (2.29) and (2.31). This completes the proof
of the theorem.

REMARKS. (1) Similarly we can find upper bounds for the inequalities of the
form

!
x(t)<n(t)+¢(f f(s)fi(xcs))ds), =1
0
(2) Modified theorems can be obtained if we change the definition of G(/) to
6= W/HA+0(s)]ds, 0<ry<r.

Now we shall need the following theorem to prove theorem 5.

THEOREM C(Pachpatte [6]).
Let (A,) and (A,) be true. Suppose further more that lhe inequality

{ +f . %
) +[ £ ds+ dr \ds, t=
«O<n®+[ 1)+ [ f)( [ graxerrs, 1=t
holds. Then
al A8 A
.r(z)<n(z)(1+j f(s) expu (f(r)+g(r))dryds) t=1.
0 (1] /

THEOREM 5. Let (A)), (Ay), (A;) and (A) be true. Suppose more that the
inequalily.

! al aS
WO<p@ + [[fxtss [ fs)( [ gryxtryaras

Wl
+ W (x(s 2.32
W(jﬂkcs)wcrm)ds) (2.32)
{s satisfied for all t=I. Then
x(!)<[ﬂ(1)+?F(G"[G(‘[:h(s)W(p(s)k(s))ds
! =
4 foh(s)W(k(s)) Pl #w. ety (2.33)

where G(r) s defined by (2.3) and
/ s
—A N L o)
10) [1 ; fo £Cs) exp(fotf(r) : g(r))dr)ds]. (2.34)
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PROOF. Define
;
n(t)=P(t)+!F(f k(s)W(x(s))ds). (2.35)
i}
Therefore, using Theorem C, the inequality (2.32) can be written as

x(¢)<n(z)[1+ fo ‘s exp U:(f(r)+g(r)dr)ds], =

i.e.

(D <n(Dk(). (2.36)
Equation (2.34) can be reduced to

n(D)=p) -+ (v(t) (2.37)
where

4
o(t) = fo R()W (x(s))ds.

Further more, since W is submultiplicative,

W (x(£))<W (n($))W k(L))
Hence using (2.37), we have

hOW (x(D)<h(OW (PR +h(OW (T (2(1)))W k(D).
Thus

R(OW (x(8)) _ ) _ d

W) ~ WAy  df VD)

rOW (p(DRE))
Swa@em) TrOWED).

Integrating from 0 to ¢, we have

'
C(1))—Gw(0)< fU h(s)W (E(D))ds

L (W (p(s)k(s))
ety o

Hence
it t
k d w k ds)}.
oG [ WOWRDIs+6( [ MW (ks )]
Thus (2.37) can be written as

n(t)<p(t)+7ﬂ'(6_1U: ()W (k(s))ds

+G(f; h(s)W(p(s)k(s))ds)}. (2.38)

The desired bound follows from (2.30) and (2.38). This completes the proof
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of the theorem.

REMARK 3. Similary we can find upper bounds for the inequalities of the
form

13
KOO+ [ g+ grotrinds

+qr(f; h(s)W(x(s))ds).
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