## SEPARATED LOCALES II

By Tae Ho Choe\*, Yong-Hyeon Han\*\* and Sung Sa Hong\*\*

In [4], we have established an equivalence between the category of spatial separated locales and the category of sober  $T_1$ -spaces and hence the concept of separated locales is very appropriate for a localic form of  $T_1$ -separation axiom.

For frames A, B, the hom-set hom(A, B) of frame homomorphisms on A to B has a natural order.

For an unordered frame X, one has a discrete ordered set hom(X,A) for any frame A. We observe that a frame (=locale) A is separated iff hom(A,2) has the discrete order. Thus we introduce a concept of A-separated frames, namely those frames X whose hom(X,A) have a discrete order fo all  $A \subseteq A$  and dually a concept of A-discrete frames, where A is class of frames.

It is shown that for a class A of frames, the class S(A) of A-separated frames is closed under the formation of epi-sinks in Frm and the class D(A) of A-discrete frames is closed under the formation of mono-sources in Frm. Furthermore, (S, D) is a Galois connection.

It is also shown that for any class B of frames with  $A \subseteq B \subseteq M(A)$ , S(A) = S(B), where M(A) is the class of frames which are domains of mono-sources with codomains in A.

Using these results, we show that a frame A is separated iff for any spatial frame X, hom(A, X) has a discrete order. Finally we give some interesting examples S(A), D(A) for various class A.

For the terminology, we refer to [6].

## 1. Discrete order on hom-sets

For frames A, B, its hom-set hom(A, B) has the natural order, namely for  $f, g \in \text{hom}(A, B)$ ,  $f \leq g$  iff for all  $x \in A$ ,  $f(x) \leq g(x)$ . It is known [6] that hom(A, B) has directed joins.

In the following, the order on hom(A, B) means the above natural order. Using the order on hom-sets, we form two classes from a class of frames

This research is supported by the NSERC, under grant A4809\* and a grant from the Korea Science and Engineering Foundation.\*\*

and then investigate their properties.

DEFINITION 1.1. Let A be a class of frames.

- 1) A frame X is said to be A-separated if for any  $A \subseteq A$ , hom (X, A) is a discrete ordered set.
- 2) A frame X is said to be A-discrete if for any  $A \subseteq A$ , hom(A, X) is a discrete ordered set.

REMARK 1) The concept of A-separated frames is dual to that of A-discrete frames.

2) A frame X is A-separated iff whenever  $u \le v$  in hom(X, A)  $(A \subseteq A)$ , one has u = v.

In the following, for a class A of frames, S(A) denotes the class of all Aseparated frames and D(A) the class of all A-discrete frames.

PROPOSITION 1.2. Let A and B be classes of frames, then one has,

- 1) If  $A \subseteq B$ , then  $S(B) \subseteq S(A)$  and  $D(B) \subseteq D(A)$ .
- (2)  $B\subseteq S(A)$  iff  $A\subseteq D(B)$ . In other words, the pair(S, D) is a Galois connection.

PROOF. 1) It is immediate from the definition.

2) Assume  $B \subseteq S(A)$ . Take any  $A \in A$  and  $B \in B$ . Since  $B \in B \subseteq S(A)$ , hom(B, A) has the discrete order and hence  $A \in D(B)$ . By the exactly same argument, one has the converse.

By the Galois connection (S, D), one has the following. (See [3] for basic properties of Galois connections.)

COROLLARY 1.3. Let A be any class of frames, then

- 1)  $A \subseteq D(S(A))$ ;  $A \subseteq S(D(A))$ .
- 2) S(D(S(A)))=S(A); D(S(D(A))=D(A).

Furthermore, for any family  $(A_i)_{i\in I}$  of classes of frames,

3) 
$$S(\bigcup_{i \in I} A_i) = \bigcap_{i \in I} S(A_i)$$
;  $D(\bigcup_{i \in I} A_i) = \bigcap_{i \in I} D(A_i)$ .

THEOREM 1.4. For any class A of frames, S(A) is closed under the formation of epi-sinks in Frm and D(A) is closed under the formation of mono-sources in Frm.

PROOF. Suppose  $(f_i: X_i \rightarrow X)_{i \in I}$  is an epi-sink in Frm such that for all  $i \in I$ ,  $X_i$  belongs to S(A). Take any  $A \in A$  and  $u, v \in hom(X_i, A)$  with  $u \leq v$ , then for

all  $i \in I$ ,  $u \circ f_i \leq v \circ f_i$  in  $hom(X_i, A)$ . Since  $hom(X_i, A)$  is a discrete ordered set,  $u \circ f_i = v \circ f_i$  for all  $i \in I$ . Since  $(f_i)_{i \in I}$  is an epi-sink, we have u = v. Thus X is again a member of S(A). Since D is dual to S, the second half is now immediate from the first half.

COROLLARY 1.5. For a class A of frames, S(A) is coproductive and cohereditary in Frm; D(A) is productive and hereditary in Frm.

REMARK 1.6. Since  $\text{Loc}=\text{Frm}^{\text{op}}$ , products of A-separated locals are again A-sublocales and sublocales of an A-separated locales are again A-separated. NOTATION. For a class A of frames, M(A) denotes the class  $\{X \in \text{Frm} | \text{there is a mono-source } (f_i: X \to A_i)_{i \in I} \text{ with codomains } A_i \text{ in } A \text{ for all } i \in I\}$  and E(A) the class  $\{X \in \text{Frm} | \text{there is an epi-sink} (f_i: A_i \to X)_{i \in I} \text{ with domains } A_i \text{ in } A \text{ for all } i \in I\}$ .

Using the above notation, we have the following:

THEOREM 1.7. Let A be a class of frames.

- 1) For any class A of frames with  $A \subseteq B \subseteq M(A)$ , S(A) = S(B).
- 2) For any class B of frames with  $A \subseteq B \subseteq E(A)$ , D(A) = D(B).

PROOF. 1) Since  $A \subseteq B$ , we have  $S(B) \subseteq S(A)$ . Take any  $X \in S(A)$  and any  $B \in B$ , then there is a mono-source  $(f_i : B \to A_i)_{i \in I}$  such that for all  $i \in I$ ,  $A_i \in A$ . For any  $u, v \in \text{hom}(X, B)$  with  $u \le v$ , we have  $f_i \circ u \le f_i \circ v$  in  $\text{hom}(X, A_i)$  ( $i \in I$ ). Since  $X \in S(A)$  and  $A_i \in A$ ,  $f_i \circ u = f_i \circ v$ . Since  $(f_i)_{i \in I}$  is a mono-source, we have u = v. Thus X belongs to S(B), so that S(B) = S(A).

2) Dual of 1).

For a class A of frames, let R(A) (Q(A)) denote the class of all subframes (quotient frames, resp.) of members of A and let P(A) (C(A)) denote the class of all product frames (coproduct frames, resp.) of members of A. Then it is immediate that  $A \subseteq R(A)$ ,  $P(A) \subseteq M(A)$  and  $A \subseteq Q(A)$ ,  $C(A) \subseteq E(A)$  and hence we have the following by the above theorem.

COROLLARY 1.8. For any class A of frames, one has,

- 1) S(A) = S(R(A)) = S(P(A)).
- 2) D(A) = D(Q(A)) = D(C(A)).

## 2. Separated locales

Throughout this section, 2 and 3 will denote the two element chain {0,1}

and the three element chain [0, 1/2, 1], respectively.

We recall [4] that a frame A is said to be separated if there is no onto frame homomorphism  $A\rightarrow 3$ .

LEMMA 2.1. A frame A is separated iff A is 2-separated.

PROOF. Suppose A is separated and there are  $u, v \in \text{hom}(A, 2)$  such that  $u \leq v$  and  $u \neq v$ . Let  $p = \bigvee u^{-1}(0)$  and  $q = \bigvee v^{-1}(0)$ . Since  $u \leq v$  and  $u \neq v$ , p and q are distinct prime elements of A with  $q \leq p$ . We define  $h: A \to 3$  as follows: h(x) = 1 if  $x \leq p$ , h(x) = 1/2 if  $x \leq q$  and  $x \leq p$ , and h(x) = 0 if  $x \leq q$ . Using the fact that p and q are prime elements, one can easily show that h is a frame homomorphism. Since h(p) = 1/2, h is onto, so that we have a contradiction.

Conversely, suppose A is not separated but 2-separated. Then there is an onto frame homomorphism  $h: A \rightarrow 3$ . Let  $x_0$  be an element of A with  $h(x_0) = 1/2$ . Let  $u, v: 3 \rightarrow 2$  be the characteristic functions of  $\{1, 1/2\}$  and  $\{1\}$ , respectively. It is clear that u and v are frame homomorphisms and that  $v \circ h \leq u \circ h$  in hom(A, 2). Since  $u \circ h(x_0) = v \circ h(x_0)$ , one has also a contradiction. This completes the proof.

REMARK 2.2. For any frame A, there is an isomorphism between hom(A, 2) and  $pt(A)^{op}$ , where pt(A) is the set of all prime elements of A. Hence a frame A is separated iff pt(A) is a discrete ordered set, i.e., for any prime elements p, q of A with  $p \leq q$ , one has p = q.

Since prime elements in a Boolean algebra are precisely coatoms, every complete Boolean algebra is separated.

We recall [6] that a frame A is spatial iff hom(A,2) is a mono-source. Let SFrm denote the class of all spatial frames.

Using this, one has the following interesting characterizations of separated frames.

THEOREM 2.3. For a frame A, the following are equivalent:

- 1) A is separated.
- 2) A is 2-separated.
- 3) A is SFrm-separated.
- 4) A is 3-separated.

PROOF. By the above lemma, 1) and 2) are equivalent. As mentioned above,  $M(2)=\mathbf{SFrm}$ . Since 2 is a subframe of 3,  $M(2)\subseteq M(3)$ . Furthermore,  $M(3)\subseteq M(2)$  because  $3\subseteq \mathbf{SFrm}=M(2)$ . Thus one has  $M(2)=\mathbf{SFrm}=M(3)$ ; hence by Theorem 1.7,  $S(2)=S(M(2))=S(\mathbf{SFrm})=S(M(3))=S(3)$ . This completes the

proof.

REMARK 2.4. A frame A is unordered iff A is Frm-separated. Since  $S(Frm) \subseteq S(SFrm)$ , every separated frame is unordered (See Proposition 2.8 in [4]). Let Sep(UO) denote the class of separated (unordered, resp.) frames. The following is immediate from Theorem 1.4, 2.3 and the above remark (See also Theorem 2.10 in [4]).

COROLLARY 2.5. Sep and UO are closed under the formation of epi-sinks in Frm.

For the operators S and D, one has the following:

PROPOSITION 2.6. 1) SD(Sep) = Sep.

- 2) SD(U0) = U0.
- 3) D(2) = Frm.
- 4)  $D(3) = \{1\}$  and hence  $D(2) \neq D(3)$ , where 1 denotes the singleton frame.
- 5) SD(3) = Frm.
- 6)  $D(Frm) = \{1\}$ .
- 7) D(U0) = Frm.

PROOF. 1) and 2) follows from Corollary 1.3 and the fact that  $\mathbf{Sep} = S(\mathbf{SFrm})$  and  $\mathbf{UO} = S(\mathbf{Frm})$ . Noting that 2 is an initial object of  $\mathbf{Frm}$ , for any  $A \subseteq \mathbf{Frm}$ , hom(2, A) is a singleton set; hence  $D(2) = \mathbf{Frm}$ . Since 1 is a terminal object of  $\mathbf{Frm}$ ,  $1 \subseteq D(3)$ . Suppose a frame A has more than two elements. Define  $u, v : 3 \to A$  by u(1) = u(1/2) = v(1) = 1 and u(0) = v(1/2) = v(0) = 0. Then  $u, v \subseteq \text{hom}(3, A)$  with  $v \le u$  but  $v \ne u$ . Hence  $A \not\equiv D(3)$ . Thus we have 4). Since 1 is a terminal object of  $\mathbf{Frm}$ ,  $S(1) = \mathbf{Frm}$ , so that  $SD(3) = S(1) = \mathbf{Frm}$ . 6) follows from the fact that  $D(\mathbf{Frm}) = DSD(3) = D(3) = \{1\}$ . Finally,  $D(\mathbf{UO}) = DS(\mathbf{Frm}) = DSD(2) = D(2) = \mathbf{Frm}$ .

REMARK. Since  $3 \subseteq SFrm$ , D(SFrm) is contained in D(3); hence  $D(SFrm) = \{1\}$ .

## REFERENCES

- C.H. Dowker and D. Strauss, T<sub>1</sub> and T<sub>2</sub>-axioms for frames, Introduction, London Math. Soc. LNS. 93, 325-335, Cambridge Univ. Press, 1985.
- [2] M. P. Fourman, T<sub>1</sub> spaces over topological sites, J. Pure. Appl. Algebra 27 (1983), 223-224.

- [3] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, A compendium of continuous lattices, Springer-Verlag, 1980.
- [4] Y.H. Han and S.S. Hong, Separated locales, Kyungpook Math. J. 26(1986), 113-117.
- [5] J.R. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.
- [6] P.T. Johnstone, Stone Spaces, Cambridge Studies in Advanced Math. Vol.3, Cambridge Univ. Press, 1982.

McMaster University Sookymyung Women's University Sogang University Hamilton, Canada Seoul, Korea Seoul, Korea