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Numerical Analysis of Combined Natural and Forced Convection
Around Cylinders (II)
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I. Introduction

Natural convection occurs whenever
density gradients exist in a fluid due to the
presence of temperature gradients. There-
fore, some natural convection always takes
place with forced convection heat transfer,
but when the externally applied velocity
field is dominant, natural convection effects
are neglected. Conversely, if the velocity
field generated by buoyancy effects is domin-
ant, the forced convection effects, if any,
are neglected and the problem is treated
as a pure natural convection one. There
are also a number of practical situations
in which forced convection and natural
convection are of the same order of magni-
tude and neither can be neglected. This is
the region of combined natural and forced

convection,

Mixed convection around a cylinder
can be important in heat tranfer problems
from the standpoint of engineering applica-
tions as well as numerical analysis. Cylin-
drically shaped objects occur in many places,
Cooling cylindrical cans after sterilization
by heat would proceed in the mixed con-
vection mode.

Many vegetables are cylindrical in shape.
Examples are radishes and cucumbers. Field
conditions often lead to mixed convective
heat transfer, because freshly harvested agri-
cultural products are usually much warmer
than the fluid used to cool them and fans
or pumps are usually inadequate to circulate
large amounts of air or water, Accurate
predictions of mixed convection heat trans-
fer from cylinders could help to determine
the amount of time between harvest and

removal from the field to assure adequate
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product quality,
Modelling of heat transfer from humans
cylindrical

elements for similarly shaped anatomical

and animals sometimes uses
portions such as arms and legs. These models
are used to predict thermoregulatory response
as well as determine comfort of individuals
in various environments., Heat transfer from
these surfaces is usually by means of radia-
tion and mixed forced and natural convection.

The cooling of electronic systems may
be another application of mixed mode convec-
tive heat transfer. To ensure an efficient
and viable electronic system, equipment
operating temperatures have to be predicted
at an early stage of design,

Heat transfer from cylinders has been
the subject of numerous analytical and
experimental investigations from the stand-
point of either pure natural convection

1@ Bejan and Tien®,

{Acrivos{l)_ Fujii et a
Kuehnm), lngham(s)) or pure forced convec-
tion (Sano(s)), but the problem of combined
natural and forced convection from cylinders
has received relatively little attention.

Since there is no sharp dividing line
between' natural and forced convection,
it is helpful to define criterion whereby
either forced or natural convection effects

may be neglected relative to the other. Kreith

(™ has made an order of magnitude study
of the boundary layer equation for one
dimensional flows and concluded that when
GrRe?>1 natural convection effects cannot
be ignored in forced flows. Sparrow and
Gregg(s) have analyzed the flow over vertical
flat plates and have arrived at the conclusion
that if an accuracy of 5 per cent is sufficient
in computation of overall heat transfer

rates, then forced convection heat transfer

_23_

results can be used whenever GrRe2<0.255
for 0.01<Pr<10.

The present research is part II of “Nu-
merical Analysis of Combined Natural and
Forced Convection Around Cylinder (I)”

presented by Moonm) ’

The purpose of
this paper is to numerically examine velocity
distributions, separation points, drag coef-
ficients and pressures in mixed convection
mode around circular cylinders for a wide
range of Reynolds numbers and Grashof

numbers,

II. Mathematical Formulations

Laminar combined natural and forced
convection heat transfer from a horizontal
isothermal cylinder is studied by solving the
Navier-Stokes equations and energy equation
using a finite dfference numerical procedure.

The streamfunction-vorticity equations
governing mixed convection steady Bouss-
inesq flow over cylinders can be written in

dimensionless and nonconservative form as,
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The boundary conditions in stream and

vorticity functions become

2
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on the impermeable isothermal cylinder

surface and

U
V=y=w=0,7g =0, % B0 i 5)

on the symmetry lines.

The outer boundary was split into two
parts: the area in the plume where the flow
leaves the cylinder (namely outflow boun-
dary) and the rest of the boundary where
the fluid approaches the cylinder (namely
inflow boundary), The inflow boundary

conditions at the outer boundary are

y =—R PrResinf +¢ (6)
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The outflow boundary conditions at
the outer boundary become

¥ =—R_PrResinf + YN (9)
S VAN W

w=-% R K j{@'f SRR )

% _

3R =0 weenne(11)
The numerical procedures for these

governing equations and more details were
already given in “Numerical Analysis of
Combined Natural and Forced Convection
Around Cylinder (I)” by Moon"®). There-
fore, in this paper, they will be omitted.

III. Results and Discussion

The two independent parameters for this
investigation are the Reynolds and Grashof

- 24—

numbers. The effects of these parameters
on velocity distributions, separation points,
drag coefficients and pressure distributions
about circular cylinders were presented.
The Prandtl number was maintained at a

value of 0.7, which is the value for air.
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Fig. 1. Comparison of numerical separation point
versus mixed convection parameter for
cylinders

Comparison of the separation points
in the present study and that by Merkin
(1977)19 i5 shown in Figure 1. Both studies
predict that the separation point is delayed
as Gr/Re’ increases. This trend suggests
that the buoyancy force tends to reduce
the adverse pressure and consequently ac-
celerate the flow. Despite the qualitative
agreement, significant quantitative difference
is observed. A possible explanation for this
disagreement is that, in Merkin’s data, the
flow was assumed to be of the boundary
layer type. Clearly the flow near the stagna-
tion region or at small Re and Gr values
(when diffusion in both angular and radial
directions are of equal strength) cannot
be adequately governed by the boundary
layer equations.

Figure 2 separation points in angles
versus Reynolds number for the cylinder
are plotted at various Grashof numbers.

The results show that, as the Reynolds
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Fig. 2. Variation of the separation point for cylind-
ers with Reynolds numbers at various
Grashof numbers.

number increases, the separation point occurs
at lower angles and then remains almost
stationary above certain Reynolds numbers.
These constant locations are reached earlier
at lower Reynolds number as Grashof num-
bers decrease. This means that buoyancy
force retards earlier separation. For purely
forced flow about cylinders analyzed with
steady-state boundary layer equations, Schli-
chting (1979)(”) said that the point of se-
paration occurred at $=108.8° for cylinder.
Drag coefficient may be one of primary
interest to study. Drag coefficient C, is
usually defined as (Ozisik, 1977)(12)

Cc. = % _— (12
£ pu_ &2
where

ov
=0 (a) o, (19)

T - shear stress
Cf = drag coefficient
p = fluid density
U_ = undisturbed oncoming free stream
velocity
M = fluid dynamic viscosity

v = angular velocity

_..25_

r = radial coordinate
r, = cylinder radius

With dimensionless variables,

=3
P (14)
Re= Du, (15)
v
vay D (16)
R=+% (17)
where
Pr = Prandtl number
v= fluid kinematic viscosity
@ = fluid thermal diffusivity
Re = Reynolds number
V = dimensionless angular velocity
Equation 12 can be transformed into
2(dV/oR
(O¥IoR) R=0.5
G PrRe (18)
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Fig. 3. Variation of local drag coefficient with
cylindrical angle at various Grashof numbers
for Re=199,53

Figures 3 and 4 illustrate the angular
distributions of the drag coefficient at various
parametric values of Gr or Re for the cylinder.
It can be seen from the figures that the
local wall shear stress, Tw, increases with
increasing buoyancy force with a resulting

delay in the flow separation. This is because
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Fig, 4. Variation of local drag coefficient with
cylindrical angle at various Reynolds num-
~bers for Gr=3.75x10*

the buoyancy force in the flow domain assists
the forced flow in acting against the adverse
pressure gradient. As Reynolds number
increases, the drag coefficient decreases at
fixed Grashof number. In fact, as Reynolds
number increases, wall shear stress should
increase but the undisturbed free stream
velocity, uoe may also increase faster, There-
fore, according to the drag coefficient defini-
tion (equation 18) the drag coefficient de-
creases as Reynolds number increases. The
drag coefficient is almost zero at the place

where separation occurs. The average drag

coefficients versus Reynolds number at
various Grashof numbers are plotted in
20
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Fig. 5. Variation of average drag coefficient with
Reynolds number at various Grashof num-

bers for cylinders
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normalized velocity in § direction, V

Figure 5 for the cylinder,

The average drag coefficient increases
as Grashof numbers increase since the buoy-
ancy flow aids the forced flow stream signifi-
cantly, When the Reynolds numbers are
more than 500, the average drag coefficient
has almost the same values for any given
Grashof numbers because the increasing
rate of wall shear stress gained by buoyancy
force effects is relatively small in comparison
with the increasing rate of undisturbed free
stream velocity, u,, for the increasing Rey-
nolds number., At lower Grashof numbers
the average drag coefficient decreases mono-
tonically as Reynolds number increases.
This tendency is consistent with that of
the drag coefficient for purely forced flow
presented by Schlichting (1979)(11)

Angular velocity distributions as func-
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Fig. 6. Angular velocity distribution at various
cylindrical angles for Gr=3x10° and Re=500
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tions of dimensionless radius R at several
angular locations are given in Figure 6 for
the cylinder.

The velocities near the wall have almost
the same values for angles between 0 to 90
degrees, The angular velocities for angles
between 0 to 90 degrees increase rapidly
until reaching about 0.6 of the dimensionless
radius and then those velocities decrease
gradually as radius increases. The angular
velocities for angles larger then 150° always
increase as the radius increases. The angular
velocity drops to zero at 180°. In the na-
tural convection analysis, Kuehn (1980)(4)
mentioned that in the plume, £>175°, the
angular velocity was a function only of the
horizontal distance from the plume center
line and is independent of distance above
the cylinder. However, in mixsd convection,
the velocity profiles are quite different from
those of natural convection since the separa-
tion point occurs because of the effects of
forced flow.

The radial velocity distributions versus
dimensionless cylindrical radius R at G=
3x10° and Re=500 are given in Figure 7.
For a given angle, radial velocities are fairly
uniform around the outer portions of the
computational domain except for the case
of 180°, This is shown by the curves from
B=0° to B=150°. As expected, the radial
velocity at $=90° is fairly close to zero except
in the region near the wall which is affected
by the buoyancy force. If the forced convec-
tion flow predominates, even near the wall,
the radial velocity at $=90° would be zero.
At the 180° angle, the radial velocity increases
rapidly as radial distance becomes larger.
At the outer boundary at B=180°, the velocity
becomes largest with almost double the

normalized pressure, P

normalized velocity in R direction. U

800r

LEGEND |
D_Dﬁ=0
0—0f=50 @
A-nf=90 /
+——+f=120 I
A—% =150
O-Cf=180 ¢

400

200

—200r u‘lnm
- N
H"’““*Uw
—400{ L L i S
0.5 1.0 1.5 2.0
dimensionless radius , R
Fig. 7. Radial velocity distribution at varlous

cylindrical angles for Gr=3x10° and Re=500

values of undisturbed free stream velocity,
u,,, in absolute values due to the aiding flow
of buoyancy force.

Figure 8 shows the pressure distribution
along the cylindrical surface versus cylindrical
angle (§ for various values of Froude number

at Gr=10* and Re=100. Intuitively, it is
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Fig. 8, Pressure distribution versus cylindrical angle

at Cr=10 and Re=100 for various Froude
numbers,
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expected that pressure, P, will assume large
values at the stagnation point (3=0°) and will
decrease as [ increases. Then, as f increases,
the pressure will start increasing since it
is known (Schlichting, 1979)11) that the
fluid particles are accelerated on the upstream
half and decelerated on the downstream
half of the cylinders. This intuition is con-
firmed by the trend exhibited in the figure
for small Froude numbers. For large Froude
numbers, however, the pressure decreases
monotonically with f. An explanation of
this trend is needed and may be attempted
as follows. On the cylindrical surface, the
V-momentum equation can be reduced to

o o, k8
(g ) Res™ g SinBP(GrFr)+hr 3p (ROR ‘Re05

(19)

where

P = dimensionless pressure

Fr = Froude number, gD /;?

g = gravitational acceleration

D = cylinder diameter

»= kinematic viscosity
in dimensionless form, Interestingly, the
value of BP,"BIS is determined by the sum
of two terms in the right hand side of equa-
tion 19, The first term represents the buoy-
ancy term and is negative if Froude number,
Fr, is larger than Grashof number, Gr. The
second term represents the radial gradient
of the shear stress and is generally negative
since, at a fixed B, the shear stress on the
wall assumes a large value, In the vicinity
of the symmetry line where f§ is small, the
first term involving sinf is small and the value
of dP/dg is likely to be negative. When f§
increases, the magnitude of the buoyancy

term increases, and 0P/dg can become positive

_28_

thereafter. If the Froude number is large,
however, both terms are negative even at
large f. Consequently, P decreases mono-

tonically as f§ increases.
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Fig. 9. Pressure distribution versus cylindrical angle
at Fr/Gr=0.1 and Re=100 for various
Grashof numbers
Figure 9 show the effects of Grashof
number on the pressure distribution around
cylindrical surface for various values of
Grashof number at Re=100 and Fr=0.1xGr.
At cylindrical angles over about 30 degrees
pressure decreases as the Grashof number
increases, since the fluid particles are ac-
celerated by the buoyancy force. The effects
of Reynolds number on the pressure and the
forced convection effects on the natural
convection flow can be examined in Figure
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Fig. 10. Pressure distribution versus cylindrical angle
at Fr=10> and Gr=10* for various Reynolds
numbers
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10 for the cylinder,

For various Reynolds numbers at Gr=10*
and Fr=10% For pure natural convection
or low Reynolds number flows, the pressures
on the surfaces appear fairly uniform. As
the ambient fluid is driven faster, pressure
minima appear around $=90°. This signifi-
cant difference between natural convection

and mixed convection deserves attention.

IV. Conclusions

1. As Reynolds number increases, the
separation point occurs at lower angles and
remains almost constant at high Reynolds
numbers,

2. The local wall shear stress increases
with increasing buoyancy force with a result-
ing delay in the flow separation.

3. Angular velocities for angles between
0 to 90 degrees increase rapidly until reaching
about 0.6 of the dimensionless radius, and
those velocities decrease gradually as radius,
R, increases.

4. From the V-momentum equation on

the cylindrical surface,

ap 1 9 a av
( % ) R=5" ; sinfP r (Gr-Fr)+Pr 311 {Ra )

the trend of radial pressure gradient is ex-
amined. The value of (9P/df) R=0.5 is de-
termined by the sum of two terms in the
right hand side of above equation. The first
term represents the buoyancy term and
is negative if Froude number, Fr, is larger
than Grashof number, Gr. The second term
represents the radial gradient of the shear
stress and is generally negative.

R=0.5
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