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1. Introduction

The éardinality of a minimal basis of an ideal 7 is denoted w(J)}. lLet A be a
polynomial ring in # -0 variables with coefficients in a Noetherian(commutative with
140) ring R, and let M be a maximal ideal of A. In general, ¥(MA,)<v(M)<v

(MAy)+1. In many cases, the lower bound is attained.

In (3], it is shown that equality is attained in each of the following cases: (1) Ay
is not regular, (2) MR is maximal in R and (3) #.>1. Hence the problem of dete-
rmining whether v (M) =v(M Ay) can be studied when M{|R is not maximal, Ay ls

regular and #==1. The purpose of this paper is to provide some conditions in which

2. Preliminaries

Definition 1. An integral domain R satisfying the following eguivalent conditions

is called a Dedekind domain
1) Every non-zero ideal of R is invertibe

2) R is Noetherian, integrally closed, and dimension<Il

Definition 2. A super-regular ring is a Noetherian ring such that R, is a regular

for every prime ideal in R,

Definition 3. Local ring S is complete intersection if S=R/I, where R is regular

local ring and I is generated by a regular sequence.

Lemma 1. Let A=R[X,, X,, -, X,] with a maximal ideal M and M\ R=F. Then
R/P is a G-domain.
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Proof. A/PA=R[ Xy, -, X, /PR[Xy, =, XyI=R/P[ X}, -, X.]. Since M/PA is a
maximal adeal of A/PA such that M/PA(\R/P+=0. By [4, Theorem 471 K/F is G~
domain. ///

Lemma 2. A prime ideal I is generated by a regular sequence if and only if v(J)
XY 71000

Proof, [2]

Lemma 3. Let R be a Dedakind domain with quotient field K. Let L be a finite-
dimensional over K, and let T be the integral closure of Rin L. Then 7 is a Dedekind

domain,
Proof. [4, Theorem 987

Lemma 4. D igsa UFD and K(8) is a quadratic extension field of KX, where 6%D,

#* not divisible by the square of a prime in D. Ler J be the integral closure of D in
K{(8).

If char D#2, J={a+bf|a, beK, 2acD, 2beD, a*—b*6%D)}

if char D=2, J={a+bf}a, beK, a*--b*¢*eD)

if D=2, J={(a+b8la, beZ} if 8?21 (mod 4)

while, J—{(a+b8)/2|a, beZ, a:=b (mod 2)} if @*=1 (mod 4)

Proof. [7, p.100]

Lemma 5. Let I be an ideal of a ring B. Suppose that pro. dim [< oo and I/I* is
free over R/I. If v(I)=w(I/I?*) then [ is generated by a regular sequence.

Proof. [1, proposition 1]

Lemma 6. Let R be a Noetherian ring. Let /(I be two ideals of R with #(/)
= #(J), and let v(J/J)=m. Further let p,, -, p,ESpec(R) with Icz,ﬁ}’j be given.
Then one can find elements ay, -+, @,/ such that:

a) I=(ay, - an)+]

b) a; ¢’Oxﬁz(i=l.'".m)

¢) If pedt(ay, . an), PE#(I), then ki(p)>m.
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In this Lemma notation' #(I) means @)= {PeSpec(RY| P}

Proef. [5, p.142]

3. Theorems

We consider the case, the lower bound is not satisfied, when » =1, Ay is regular
and M[]R is not maximal. Z be a integer ring is a Dedekind domaih with quotient
field @ Since X*+5=0, V57 is a algebraic over Q. Hence Q(J/E7) be a finite dime-
nsional field extension over @. By Lemma 4, Z[+/--5] is the integral closure of Z in

@(v57). Hence by Lemma 3, Z{+/--5] is a Dedekind domain and not a UFD. By

2V =5) in Z[¥/=5]. Consider P(]Z. We have 3¢P[1Z, and if any integer not divisible
by 3 lies in P[1Z then the form is 3m--1, where #&Z, 16PNZ and we have the
contradiction p=Z[+'=5]. Hence we see that P(1Z=3Z. Given x, yeZ[~ —5]let %, v
be integers such that x-weP, y-veP. Suppose xyel. Then wve=P and, since wveZ,
we have wveP[|Z=3Z. Thus ue3Z or v€3Z, so either 6P or yeP. Hence P is prime.
Therefore dim Z[¥—5]=1 and dim Z[+v' =5][X7-=2. Let R=Z[v =51 A=R[X]=
Z[W=51[X]. M=<{¥5iX~1, aX~1|aeZ}>>, Since A/M is a fied, M is a maximal
in A and M{1R=0 not maximal in XK. Since any Dedekind domain is super-regular,
Ay is a regular. And since PLXJTM, v(MAy) =ht(M)=1. v(M) is at least 2 and

1=v(MA<v(M)Y<y(MAy) +1=2. Hence v(M)=2>v(MAy) =1.

and M is a maximal ideal of A such that M[JR=p is not maximal ideal of R and
dim R==d.

Theorem 1., Let R de a regular local ring with the maximal ideal m. Let R/p is

a complete intersection. [f m®[p= pm, then »(M)=v(MAL).

Proof. Since m*(|p=mp, v(m) =v(p) -+v(m/p), by [8, p.27]). And since R/p is
a complete intersection, p is generated by a regular sequence, v(p)=#i(p). Because
R is regular, R is Cohen-Macaulay ring, Af(m/p)=ht(m)--kt(p). Since R is regular
and »(p)=ht(p), v(m/p)==v(m)--v(p)=hi(m)--ht(p). We obtain u(m/p)=ht(m/p).
Hence R/p 1s a regular ring. Therefore (R/p, m/p) is a regular local ring, R/p is
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UFD by [4, Theorem 1841, But M/pR{X¥"A/pA=R/p(X] is UFD, since ht(M)
=ht(p) +1=(d—1)+1=d. The last two equality is that R/p is G-domain dim R/P
<{1. By hypothesis p is not maximal, dim R/p=1 and At(p)=d—1. And M (PR[XD)
=ht(p)=d~—1, hence M/pR{X7] is an ideal of ht 1 in UFD. Hence v(M/pR[{X])=
1 by [6, Theorem 47]. therefore v(M)<v(PR[LXD+v(M/pRIX T =v(p) Luv(M/pR
[ XD =ht(p)+1=v(pRp) +1=u(M Ay). Last equality is by [3, Lemma 37. Hence v(M)
=v(MAw. ///

Propoesition. For an ideal I of a Nosgtherian ring K,

ht(Iy<v(I/IF)<v(D)<v(I/I*) 1.

Proof. For all PoI, Let I,/[%= <y, ,%,>, where t-=minimal number of gene-
rators of I,/1,% Then I,=<{my, -, m_>+Dr=<my -, m>>+I1,-I,, By Nakayama's
Lemma [,==<my, -, m,>. Hence v(I,)<v(l,/1,%). Therefore »(I,)=v(l,/1,*) for all
PI. In general, At(I) =ht(l,) <v(l;)=v(I,/I,*) <p(l/I*)<v(I). T show that v(J)
<v(I/I*)+1. Consisder elements s, -, m, €], whose residue classes in I/I* from a
minimal generating system. Let R¥*=R/<Tmy, -, m,> and I*=1/<my, -, m, > « (I*)?=
I/ <y ey, > ) 2= I gy ooy, > )<ty ooy, o == 1/ <y oy m, > = I*, The last two
equality is I/I?2=<#,, -, m,>>. Then I* is principal. For [*=<a,, ---,a,>", s-=minimal
number of generators of I*. Since I*=(I*)%, ¢, *:fif;‘_:.?"uak, where r;,6I*. Hence ?i:f
(0ix—rin)a=0. Multiply by adjoint(d;—~r;). Thendet(d,h 7). ay:=0(k=:1,--,5). det
(Oix—ris)=1—a, d ael* Since a is a linear combination of the a,. It follows from
det(d;3—r:y) » ag=0 that (1—a) + a==0 80 a®=a. From (1-a) - a,=0. We get a,=a,’

ag< a>>, 80 I*=(a). Hence I is generated by r+1 elements. ///

Theorem 2. Let A, is a regular ring. If v(M/M*) >dim R +1 then u(M)=v(MA,).

elements a,, -+, a, so that every #e#(a;, -, a,) with #¢# (M) has height>¢, Since dim
A<t, bt #<t. Hence #(ay, -, a,)—B(M)=¢ that is, (M/<ay, -, a,>)"=M"+<a,,
ey >/ <Lay, a2 =0, there exist positive integer n. Since (M/<Cay, -,a,> =M/
<ay,+,a,>. By the same method of M/<Za,, -+, a,>> = <e_>, where ¢*:=¢, ¢&M. Hence
M/ <@y, a>)"=M/<ay, -, a,> for all n>>1. Therefore M/<ay,:,a,>=0. Then
v(M)<t and furthermore v(M)=p(M/M?), Since pro. dim M=pro. dim MAy<gl.



Numbers of Generators of Maximal Ideals in Polynomial Rings 5

dim Ay-7oo for Ay is regular. And M/M? is free over A/M. By Lemma 5, M is
generated by a regular sequence, We have A M=kt MAy=v(MAY)<v(M)=ht M.
Hence v(M)=v(M Ay).
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