Numbers of Generators of Maximal Ideals in Polynomial Rings

by

Kyoung-A Kim

Dept. of Mathematics, Chonnam National University. Kwangju (500), Korea

1. Introduction

The cardinality of a minimal basis of an ideal I is denoted $\nu(I)$. Let A be a polynomial ring in n>0 variables with coefficients in a Noetherian (commutative with $1\neq 0$) ring R, and let M be a maximal ideal of A. In general, $\nu(MA_{\mathbb{N}}) \leq \nu(M) \leq \nu(MA_{\mathbb{N}}) + 1$. In many cases, the lower bound is attained.

In [3], it is shown that equality is attained in each of the following cases: (1) A_N is not regular, (2) $M \cap R$ is maximal in R and (3) n > 1. Hence the problem of determining whether $\nu(M) = \nu(MA_N)$ can be studied when $M \cap R$ is not maximal, A_N is regular and n = 1. The purpose of this paper is to provide some conditions in which the lower bound is satisfied, when n = 1, A_M is regular and $M \cap R$ is not maximal.

2. Preliminaries

Definition 1. An integral domain R satisfying the following equivalent conditions is called a Dedekind domain

- 1) Every non-zero ideal of R is invertibe
- 2) R is Noetherian, integrally closed, and dimension ≤ 1

Definition 2. A super-regular ring is a Noetherian ring such that R_P is a regular for every prime ideal in R.

Definition 3. Local ring S is complete intersection if S=R/I, where R is regular local ring and I is generated by a regular sequence.

Lemma 1. Let $A=R[X_1, X_2, \dots, X_n]$ with a maximal ideal M and $M \cap R=P$. Then R/P is a G-domain.

Received September 23, 1986. Accepted June 29, 1987.

Proof. $A/PA = R[X_1, \dots, X_n]/PR[X_1, \dots, X_n] \simeq R/P[X_1, \dots, X_n]$. Since M/PA is a maximal adeal of A/PA such that $M/PA \cap R/P = 0$. By [4, Theorem 24] R/P is G-domain. ///

Lemma 2. A prime ideal I is generated by a regular sequence if and only if $\nu(I) = ht(I)$.

Proof. [2]

Lemma 3. Let R be a Dedakind domain with quotient field K. Let L be a finite-dimensional over K, and let T be the integral closure of R in L. Then T is a Dedekind domain.

Proof. [4. Theorem 98]

Lemma 4. D is a UFD and $K(\theta)$ is a quadratic extension field of K, where $\theta^2 \in D$, θ^2 not divisible by the square of a prime in D. Let J be the integral closure of D in $K(\theta)$.

If char $D\neq 2$, $J=\{a+b\theta \mid a, b\epsilon K, 2a\epsilon D, 2b\epsilon D, a^2-b^2\theta^2\epsilon D\}$ if char D=2, $J=\{a+b\theta \mid a, b\epsilon K, a^2-b^2\theta^2\epsilon D\}$ if D=Z, $J=\{a+b\theta \mid a, b\epsilon Z\}$ if $\theta^2\not\equiv 1 \pmod 4$

while, $J - \{(a+b\theta)/2 | a, b \in \mathbb{Z}, a = b \pmod{2}\}$ if $\theta^2 \equiv 1 \pmod{4}$

Proof. [7, p. 100]

Lemma 5. Let I be an ideal of a ring R. Suppose that pro. dim $I < \infty$ and I/I^2 is free over R/I. If $\nu(I) = \nu(I/I^2)$ then I is generated by a regular sequence.

Proof. [1, proposition 1]

Lemma 6. Let R be a Noetherian ring. Let $J \subset I$ be two ideals of R with $\mathscr{B}(I) = \mathscr{B}(J)$, and let $\nu(I/J) = m$. Further let $p_1, \dots, p_s \in Spec(R)$ with $I \subset \bigcap_{i=1}^s P_i$ be given. Then one can find elements $a_1, \dots, a_m \in I$ such that:

- a) $I = (a_1, \dots, a_m) + J$
- b) $a_i \notin \bigcap p_i (i=1,\dots,m)$
- c) If $p \in \mathcal{A}(a_1, \dots, a_n)$, $P \notin \mathcal{A}(I)$, then $ht(p) \geq m$.

In this Lemma notation $\mathscr{B}(I)$ means $\mathscr{B}(I) = \{P \in Spec(R) | P \supset I\}$

Proof. [5, p. 142]

3. Theorems

We consider the case, the lower bound is not satisfied, when n=1, A_{M} is regular and $M \cap R$ is not maximal. Z be a integer ring is a Dedekind domain with quotient field Q Since $X^2+5=0$, $\sqrt{5}i$ is a algebraic over Q. Hence $Q(\sqrt{5}i)$ be a finite dimensional field extension over Q. By Lemma 4, $Z[\sqrt{-5}]$ is the integral closure of Z in $Q(\sqrt{5}i)$. Hence by Lemma 3, $Z[\sqrt{-5}]$ is a Dedekind domain and not a UFD. By definition 1, $Z[\sqrt{-5}]$ is a Noetherian and dim $Z[\sqrt{-5}] \le 1$. We consider $p = \langle 3, 1 + 1 \rangle$ $2\sqrt{-5}$ in $Z[\sqrt{-5}]$. Consider $P \cap Z$. We have $3\varepsilon P \cap Z$, and if any integer not divisible by 3 lies in $P \cap Z$ then the form is 3n+1, where $n \in \mathbb{Z}$, $1 \in P \cap Z$ and we have the contradiction $p=Z[\sqrt{-5}]$. Hence we see that $P \cap Z=3Z$. Given $x, y \in Z[\sqrt{-5}]$ let u, vbe integers such that $x-u\varepsilon P$, $y-v\varepsilon P$. Suppose $xy\varepsilon P$. Then $uv \in P$ and, since $uv\varepsilon Z$, we have $uv \in P \cap Z = 3Z$. Thus $u \in 3Z$ or $v \in 3Z$, so either $x \in P$ or $y \in P$. Hence P is prime. Therefore dim $Z[\sqrt{-5}]=1$ and dim $Z[\sqrt{-5}][X]=2$. Let $R=Z[\sqrt{-5}]$. A=R[X]= $Z[\sqrt{-5}][X]$. $M = \langle \sqrt{5}iX-1, aX-1|a\varepsilon Z \rangle \rangle$. Since A/M is a field, M is a maximal in A and $M \cap R = 0$ not maximal in R. Since any Dedekind domain is super-regular, A_{M} is a regular. And since $P[X] \subseteq M$, $\nu(MA_{M}) = ht(M) = 1$. $\nu(M)$ is at least 2 and $1=\nu(MA_{\mathtt{M}})\leq \nu(M)\leq \nu(MA_{\mathtt{M}})+1=2$. Hence $\nu(M)=2>\nu(MA_{\mathtt{M}})=1$.

From now on, let A=R[X], where R is a Noetherion, commutative ring with $1\neq 0$ and M is a maximal ideal of A such that $M \cap R = p$ is not maximal ideal of R and dim R=d.

Theorem 1. Let R de a regular local ring with the maximal ideal m. Let R/p is a complete intersection. If $m^2 \cap p = pm$, then $\nu(M) = \nu(MA_M)$.

Proof. Since $m^2 \cap p = mp$, $\nu(m) = \nu(p) + \nu(m/p)$, by [8, p.27]. And since R/p is a complete intersection, p is generated by a regular sequence, $\nu(p) = ht(p)$. Because R is regular, R is Cohen-Macaulay ring, ht(m/p) = ht(m) - ht(p). Since R is regular and $\nu(p) = ht(p)$, $\nu(m/p) = \nu(m) - \nu(p) = ht(m) - ht(p)$. We obtain $\nu(m/p) = ht(m/p)$. Hence R/p is a regular ring. Therefore (R/p, m/p) is a regular local ring, R/p is

UFD by [4, Theorem 184]. But $M/pR[X] \subset A/pA = R/p[X]$ is UFD, since ht(M) = ht(p) + 1 = (d-1) + 1 = d. The last two equality is that R/p is G-domain dim $R/P \le 1$. By hypothesis p is not maximal, dim R/p = 1 and ht(p) = d-1. And ht(pR[X]) = ht(p) = d-1, hence M/pR[X] is an ideal of ht 1 in UFD. Hence $\nu(M/pR[X]) = 1$ by [6, Theorem 47]. therefore $\nu(M) \le \nu(pR[X]) + \nu(M/pR[X]) \le \nu(p) + \nu(M/pR[X]) = ht(p) + 1 = \nu(pRp) + 1 = \nu(MA_M)$. Last equality is by [3, Lemma 3]. Hence $\nu(M) = \nu(MA_M)$. ℓ/ℓ

Proposition. For an ideal I of a Noetherian ring R,

$$ht(I) \leq \nu(I/I^2) \leq \nu(I) \leq \nu(I/I^2) + 1.$$

Proof. For all $P \supset I$. Let $I_P/I_P^2 = \langle \overline{m}_1, \cdots, \underline{m}_t \rangle$, where $t = \min$ number of generators of I_P/I_P^2 . Then $I_P = \langle m_1, \cdots, m_t \rangle + I_P^2 = \langle m_1, \cdots, m_t \rangle + I_P \cdot I_P$. By Nakayama's Lemma $I_P = \langle m_1, \cdots, m_t \rangle$. Hence $\nu(I_P) \leq \nu(I_P/I_P^2)$. Therefore $\nu(I_P) = \nu(I_P/I_P^2)$ for all $P \supset I$. In general, $ht(I) = ht(I_P) \leq \nu(I_P) = \nu(I_P/I_P^2) \leq \nu(I/I^2) \leq \nu(I)$. To show that $\nu(I) \leq \nu(I/I^2) + 1$. Consister elements $m_1, \cdots, m_r \in I$. whose residue classes in I/I^2 from a minimal generating system. Let $R^* = R/\langle m_1, \cdots, m_r \rangle$ and $I^* = I/\langle m_1, \cdots, m_r \rangle \cdot (I^*)^2 = \langle I/\langle m_1, \cdots, m_r \rangle \rangle^2 = I^2 + \langle m_1, \cdots, m_r \rangle / \langle m_1, \cdots, m_r \rangle = I/\langle m_1, \cdots, m_r \rangle = I^*$. The last two equality is $I/I^2 = \langle \overline{m}_1, \cdots, \overline{m}_r \rangle$. Then I^* is principal. For $I^* = \langle a_1, \cdots, a_s \rangle$, $s = \min$ number of generators of I^* . Since $I^* = \langle I^* \rangle^2$, $a_i = \sum_{k=1}^s r_{ik} a_k$, where $r_{ik} \in I^*$. Hence $\sum_{k=1}^s \langle \delta_{ik} - r_{ik} \rangle a_k = 0$. Multiply by adjoint $\langle \delta_{ik} - r_{ik} \rangle$. Then $\det(\delta_{ik} - r_{ik})$. $a_k = 0 \cdot (k = 1, \cdots, s)$. det $\langle \delta_{ik} - r_{ik} \rangle = 1 - a$, $\exists a \in I^*$. Since a is a linear combination of the a_k . It follows from $\det(\delta_{ik} - r_{ik}) \cdot a_k = 0$ that $(1 - a) \cdot a = 0$ so $a^2 = a$. From $(1 - a) \cdot a_k = 0$. We get $a_k = a_k \cdot a \leq a > s$, so $I^* = \langle a \rangle$. Hence I is generated by $I^* = 1$ elements. $I^* = 1$

Theorem 2. Let A_N is a regular ring. If $\nu(M/M^2) > \dim R + 1$ then $\nu(M) = \nu(MA_N)$.

Proof. Let $t=\nu(M/M^2)$. We first show that $\nu(M) \le t$. By Lemma 6, we can choose elements a_1, \dots, a_t so that every $\mathscr{PEB}(a_1, \dots, a_t)$ with $\mathscr{PEE}(M)$ has height $\ge t$. Since dim A < t, $ht \mathscr{P} < t$. Hence $\mathscr{B}(a_1, \dots, a_t) - \mathscr{B}(M) = \phi$ that is, $(M/\langle a_1, \dots, a_t \rangle)^n = M^n + \langle a_1, \dots, a_t \rangle / \langle a_1, \dots, a_t \rangle = 0$, there exist positive integer n. Since $(M/\langle a_1, \dots, a_t \rangle)^2 = M/\langle a_1, \dots, a_t \rangle$. By the same method of $M/\langle a_1, \dots, a_t \rangle = \langle e \rangle$, where $e^2 = e$, $e \in M$. Hence $(M/\langle a_1, \dots, a_t \rangle)^n = M/\langle a_1, \dots, a_t \rangle$ for all $n \ge 1$. Therefore $M/\langle a_1, \dots, a_t \rangle = 0$. Then $\nu(M) \le t$ and furthermore $\nu(M) = \nu(M/M^2)$. Since $p \in M$ dim $M = p \in M$ dim $M = p \in M$

dim $A_{M} < \infty$ for A_{M} is regular. And M/M^{2} is free over A/M. By Lemma 5, M is generated by a regular sequence. We have ht M=ht $MA_{M}=\nu(MA_{M}) \le \nu(M)=ht$ M. Hence $\nu(M)=\nu(MA_{M})$.

References

- 1. M. Boratnsky, When is an ideal generated by a regular sequence, *Journal of Algebra* 57, 236~241(1979).
- 2. E.D. Davis, Ideals of the principal class, R-sequence and a certain monoidal transformation, Pacific J. Math. 20(1967), 197~255. MR 34 #5860.
- E.D. Livis and A.V. Gramita, Efficient generation of maximal ideals in polynomial rings, Trans. Math. Soc. Vol. 231. No. 2, 1977, 497~505.
- 4. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 40 #7234.
- 5. E. Kunz, Introduction to commutative algebra and algebraic geometry, Birkhauser Boston, 1985.
- 6. H. Matsumra, Commutative algebra, 2-nd edition, The Benjamin Cummings Publishing Company, INC. 1980.
- 7. R. Gillmer, Multiplicative ideal theory, Marcel Dekker, INC. 1972.
- 8. J.D. Sally, Numbers of generators of ideals in local rings, Marcel Dekker, INC., 1978.