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1. Introduction

Let #/(2) be the set of all analytic automorphisms of % onto 2 where 9= {z: |z]
<(1}. Pommerenk has defined [12] a family of functions of the form f(g)=z-+...,
analytic and locally univalent (f'(2)+0) in 2 to be a linear invariant family M if
and only if for each ¢(2) in & (2) and every f in M the functional
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ig also in M. If M is a linear invariant family, then the order of M is defined as

a=sup{| f'(0)/2]: f=M}.

Let U, denote the union of all linear invariant families of order at most «. Then
the universal family U, is itself linear invariant. If f(2)=z-+... is analytic and
locally univalent in £, then we may consider the linear invariant family M, which

it generates; namely
M= {4,0F(2)1: ()=« (2))}.

The order of f(z) is the order of the linear invariant family which it generates.

As an aid in computing the order of f(z), denoted ord(f), we have [12]

ord(f) =gup| ~z+ (1~ 2|0 /" (@)/2/" (@) |
=sup{|87(0)/2}: g&=M,].
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In the present paper, we show that a linear invariant family M of order a gene-

rates the function
G(r)=sup{max arg f'(2):|z|=r, JEM, 0<rl}

which is an increasing continuous function satisfying G'(0%) =2a and G(r)>2 arc sin
r. Also we show that the associated function 7 (¢)=G(tanh £)/2¢ satisfies 0<{T (o0) <
T()<a and |A|Ts(o0) =T un(oe) where [Af]) denotes the real scalar multiple of f
in a vector space structure placed on locally schlicht functions due to Hornich.

Moreover Pommerenke's lower estimate on
sup{larg f'(2)|:]|z|=r, f&EU,}

is improved.

2. The Behaviour of arg f'(z) for Linear Invariant Families

In order to gain some control over the behavior of arg f'(2) forf=M, we introduce

the following: If M is a linear invariant family, we set
.1 G(r,M)=G(r) =8SUp max arg J (&), 0:1r<Y,
Cu 2=

where the argument varies continuously from the initial value of arg f’(0) =0.

Lemma 2.1. For any linear invariant family M

G(r)=—inf min arg f'(2).
€Y |F|=T
Proof. Let f(z) be in M, z and £ in 2 and

5 )-r10

S @O= S a=TEm

Since M 1is a linear invariant family, f(z,{) also belongs to M. If z*=(2--{)/

(1+%2) a brief calculation shows

) R O J Gl Ll S £ 1< T i C 0
(2~) (1 !ziz)f (zlt)"" l__{C,S * 1+C‘i * f’(C)



On Geometric Properties of the Linear Invarfant Families 3

and, in particular, when z=—{ we have
€2.3) -1z (-LO=1/Q-1LH 1D
from which the Lemma 2.1 follows. ///

Since max arg f'(2) is a monotone increasing function of », G(v) is also mono-
®}=T

tone increasing. In general, the supremum of monotone increasing piecewise analytic
continuous functions need not be continuous, however we now show that G(») is in

fact cotinuous.

Theorem 2.1. Let M be a linear invariant family of finite order. Let M denote

the closure of M in the topology of uniform convergence on compacta. Let M¥*=={f
(sz)/s: f&=M and 0<(s<1}. Then

(2- 4.) G(r, A(I):*.G(r’ AI*) :T:G(Y,M),
Furthermore G(r) is a monotone increasing continuous function of 7 satisfying
G(r)>2 arc sin 7, 0<r<1.

Proof. Since G(r, M)<G(r,M) and G(r, M)<G(r,M*), to establish (2.4) we
will show that G(r, M)<<G(r, M) and then that G(r, M*)<<G(r,M). M is a compact
linear invariant family, hence there is an f(z) in M such that G(r,M)=arg f'(r).
Since M is the closure of M, there is a sequence f, in M which converges to f
locally uniformly. Thus G(r, 11/1);2}1:11 arg f. () =G(r,M). To obtain the second
inequality we choose a sequence f, in M* and a sequence 2, in @, |z,|=r, such that

arg £/ (2)—G(r, M¥). Since f./(2,)=&x (512), &.EM,0< 5,571, we have
arg f,/(z.)Smax arg £/ ()G, M).

Taking the limit as #—co yields G(r, M) < G(r, M) and completes the proof of
(2.4). Since G(r) is monotone. increasing, in order to establish the continuity of G(»)
it suffices to show G{(r )=>G(r*) for all 7in (0,1). We may assume M ‘is compact by
(2.4). Choose f, in M and r,—r such that arg f.'(r.,)—»G(rh). ‘By compactness there
is an f in M such that arg /() =G(™).

The continuity of arg f’(r) implies J
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If F(z) is any function in M, then g(2) =2f(2/2) is in M* and satisfies
(1-2g"@)/&" ()= " (2/2)/2 (2/2).

Consequently, Izi‘r}‘x(l——z)g”(z),"g'(z) =0 and, by Satz 3§.]4 in [13], the function z/
(1-+2) is in M*. Since G(r, M*) =G (r, M*) and xﬁ‘ax arg 2/(1+2)=2 arc sin r, we

have
G(r)=G(r, M*)2»2 arc sin r. ///
Corollary 1. If M is a linear invariant family of finite order, then
SUp sup arg f @)=z,

Corollary 2. If M is any linear invariant family of convex univalent functions,
then G(r)=2 arc sin r.
Proof. This is immediate from Theorem 2.1 and the fact that larg f'(2)[<2 arc

sin » for any convex univalent function. ///

3. Rotationally Invariant Family

Kirwan [7] defines a family M to be rotationally invariant if whenever f is in
M then f(t2)/t, 0<|t1<1,t complex, is also in M. The convex functions, close-to-
convex functions, Vi, S, and U, [3] are examples of linear invariant families which

are also rotationally invariant.

Theorem 3.1. If M is a compact rotationally linear invariant family of finite
order, then M contains the function z/(1+32).

Proof. If M is compact rotationally linear invariant, them M =M*=5* and the
last part of the proof of Theorem 2,1 shows that z/(1+z) must be in M. ///

For several well-known linear invariant families G(r, M) can be determined ex-
plicitly. In addition to the convex functions which have already been considered in

Corollary 2, close-to-convex functions have G(r)=4 arc sin », functions in V, have G
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(r)=k arc sin r, P-close-to-V, functions satisfy G(r)= (k-+28) arc sin » [2] and for
the class S,G(r)=4 arc sin 7, 0<r<1/V7Y and G()=r+log(r¥/(1—rD)), 1/WZ<r<
1, [5]. It is evident from Theorem 2.1 that G() does not determine the class M,

however the following results show that G(r) does uniquely define the order of M.

Theorem 3.2. Let M be a linear invariant family of order @, let fe=(0,00), r=
tanh ¢, and define

3.1) T(2)=G (tanh t)/Zt:s;tég max (1/28) arg f'(2).

1Bl gang ¢

Then 1) T(t):“i}éf, l minh ‘(1/21) arg f'(z).

2=tan
2) (L+t)TE+L)<HT () +6,T(4,).
3) }-I.{I.‘ T () =T(co) exists.
4) 0<T (o) <T () La.
5) 0T (eo) <(at—1)V2
6) T(t) is continuous in (0, »o) and 1'151‘} Tty =a.
7) For every a>>1 there is a linear invariant family of order a with T (co)
=7 where 7 is any number in (0, (a®—1)V%).
Proof. The first claim follows directly from Lemma 2.1. Let £{;(k=1,2) be given
in (0,o<), ry=tanh t; and z,=r,e’. If r=:tanh ({,+4%;) and z=re', then (z;+2,)/

(1+22,)=2. Using z,z;, and 2z; in (2.2) yields

(=12 (2,2) = i:{;‘", ; }’E:Z)

which implies

arg f'(2)=arg S'(a,2;) +arg f'(2;)
<24, T (1)) +26,T (2,).

Hence

20+ ) T b+ Y<26,T (4,) + 26T (12)

which proves the second assertion.
The third claim follows immediately from 2) and a problem in Pblya and Szegd

[11].
—_— 1 -
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Furthermore, 2) implies T(nt)< T (¢) for any integer », thus T (co)<T(¢) for all ¢
in (0,c0). Since r=tanh ¢ is equivalent to ¢=:(1/2) log (1+r)/(1—7r), the estimates
£12]

flog (1—12|®)f"(2) [<a log (1+7)/(1-7)

and
targ f'(2) |<(a?—1)1"2 10g(1+r)/(1~r)

immediately yield T (f)<la and T (eo) < (a?—1)!'?, which completes the proof of 4) and
5).
The first part of 6) follows from Theorem 2.1. Since T'(¢f)<a, to prove the re-

mainder of 6) it suffices to show }lr‘.’% inf T(#)2=a. Asin Theorem 2.] we may assume

that M is compact and choose an f in M such that f”(O)/Zxazzéa.

Thus for z sufficiently small,

arg Jf'(2) =arg(1+2a,2+0(z%))

and
max arg S(z) =arc sin(2a,7 +0(r?)).
Consequently
T (t) =§up max M
FEM Flaranh t 2t
> arc sin{2a,r+ 0(r®)
log(1+r)/(1—~7)
and

arc sin[2a,7+0(r?)]
Tog(U+r)/(1-7)

lim inf T() >lim =gy=a.
ot ragt

Finally, let re(0, (*—1)"*),a>>1, -C=a(a®—1—r)}M* (@*—1) V2 +ir,

and

@ re=ge(() )
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Then the order of f(2) is {CI2H 1L~ [C]H244rVe V2, /5 which is 2. Thus
to prove 7) it suffices to show that T'(e0)==7 for the linear invariant family M
generated by f.(z).

For any ¢(z) in «(2) we have
log 44'Cf () I=loglf (9 (2)) 0" (2)/ 1 (0 (0)) 9’ (0))

and, letting (;;::a.,}v.z'r,

@)= log| LELE) (-0(@) L+ 9()
o AL @)=1 LB | =G | oD as(E)

+ (aml)ar'g( %E%%’") +2 arg(1+%a).

If z=r €', then
l[1‘1'¢(3)][1~¢(0)]/[1—"‘/3‘(333@-%-¢(0)Jf€(l+r)/(l~f)

and thus

(3.3) arg Ao’ (fo(2)1<r log(1+7r)/(1+r)+|a+ 1]z (l—a|r+n
<7 log(+7)/(1~r)+3mx,

where we have used the fact that 0<Ja<].

On the other hand
(3. 4) arg fJ/ () =r log (1+7)/(1—r),
hence (3.3) and‘(3. 4) yield
7<Glr, M) /log (1+7)/(1—r) =T () <y +-3-
which show that T'(eo) =7 and completes the proof of the Theorem. ///

Corollary. Let M be a linear invariant family of order a. Then G’(0%) always
exists and satisfies G'(0*) =2a.
Proof. We have

G iy

r gt

log(1+7)/(1-7r) . G(r) -
r Jog(Q+7/(1~r)

¢ =lim
=g lim T(N=2a. ///

- 63, -
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4. Improvement of Pominerenke’'s Result

Pommerenke’s best estimates [12] on arg f’(z) for f(2) in U, are |arg f'(2)|<

* (at—x?)1? z ve 147 . . : 3
2 R dx<(a*—1) log-l~:}-+2 arc sin r while, for any z in @, there is
an f(2) in U, with

“D larg f/(2) [2(@®—DV log (1+1)/(1~7).

One mignt therefore conjecture that for U,, G(r) is either (- 1)V log (1+7)/
(1—7) or (@*—1)'* log (1+r)/(1—7)+2 arc sin r. Neither conjecture is true for any
a>1 since in the first case G’(0) =2(a®-—1)"*:#2a, while in the second G’(0)=2((a?
~1)¥241)%2a. This suggests that it should be possible to improve (4.1) and it is as

follows:

Theorem 4.1. For each a in (1,o0) and for each z satisfying 0<"|z|<1/a, there is
an f(2) in U, with arg f'(2)>(a*—1)V? log (1+7)/(1—7).
Proof. Since U, is rotationally invariant we may assume z=r, 0<r<1/a. Let

£.@ = (1+wety 11~ we)-*-1dw

where A=arc cos . The function f, is in V,, since it is generated by the measure
with weight a@—1 at #=1 and weight a+1 at #=—A. Furthermore, arg f.'(r) =2«
arc sin 7. Since V,,CU,, it now suffices to show 2a arc sin r>{a*~1)** log (1+7)/
(1—-r) for 0<r<1/a. An elementary calculation shows that A(r)}=2a arc sin r— (a?
—1)¥2 log (1+r)/(1—r) is a strictly increasing function of », rE((},l/a), and, since
£(0) =0, this completes the proof. ///

A careful examination of Pommerenke's proof that
larg £/@) |<2f (@ ~ah2(1-at) M, |2l =r, fEUL,
leads one to consider
% w
7@ ={ exprai[ (a1 )12(1- ) 1dxTdw

as a possible extremal function for the maximum of the argument of the derivative.
— 64 —
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Indeed, in this case arg j”(r)=zj'(a2——x‘)““(1~x‘)'ldx which would certginly make
it extremal. Unfortunately, f(2) is not in U,. This is difficult to verify directly
from the definition of the order of f(2), however if we note that (1—2)/"(2)/f'(2)

—i(a?—1)"% as 2-+] in any angle then f has as a limit function (13, Satz 3.14])

fe@=Q/20) {1 +2)/Q—-2)F 1},

where ¢=—1+i(a?—] )V2 Furthermore, the order of f.(z) is

and a computation shows S>>a for all a>>1. If M is the linear invariant family
generated by f(z), then f.(2) is in M and, since order Af=order M, it follows that
order f(2)>> order f.(z)=B>a, which shows that f(z) is not in U,.

One fruitful method of investigation of U, has been to place various normed linear

space structures on X n‘gil'],.

Following Hornich, we define
D@ =[S e, g,
@H@=[r@ra  (feX, arel
where square brackets denote the algebraic operations on X.
Theorem 4.2. If f is in X and a is real, then
“.2) [a]T ¢ (o0) =T ary (=),

where T,(co) denotes the value of T (o) for the linear invariant family M, which g

. generates.
Proof. We actually show that

“.3) [181Te(t) = Tan® | <zla—11/2t,

from which (4.2) follows obviously. For any (¢)z in # (%) and any r in (0,1] a
computation shows
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“larg A/ (Cas)@)! 1 a—11r.
Therefore
lallarg A’ (S <G(r, Me)+-la—1|n
and consequently
1a|G(r, M) <G(r, Mun)+la—1iz.
Upon reversing the roles of f and [af), we obtain
1elG(ry M) —G(r, Mup)ila—1lx
from which (4.3) follows directly. ///

Remark 4.1. It is perhaps appropriate to remark at this stage of development
that a function B(¢), similar to T(¢), was introduced by Pommerenke for thg study
of the distortion of |f’(2)| in linear invariant families. To his conclutions (12, Satz
2.2) one can add the facts that (/) is continuous, ‘1_1'?)3 B({f)=a and for each f in
{1,a] there is a linear invariant family M with A(e<)==f. There are several diffe-
rences in the behaviour of B(¢) and T'(¢). Although 8(¢) may be constant, 7(¢) can
not. This is obvious since T (c0)<7T(0). The function 7 p(eo) is linear while 8u.q
(o) =14 (Bs(eo) —1)|al. It would also be of interest to know if there is a proposition
for T(¢) comparable to the following, due to Pommerenke; B(s<) =a for a cémpact

family M if and only if

(1/2a){CA+2)/(Q—2)3"~1}
is in M. : Y]
Recall that a function f in X is said to have boundary rotation kr if for z=re'

-0 - f :lffieilfyzf'_(z)/f'(z)} |df=kr.

;
G(r) certainly does not depend on the boundary rotation of f. For examiple, we

L N
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can find a function f(2) in S with boundary rotation 100x. However, ‘although f is
in Vye but not Vs for any k<100, it is not true that G(r, M, y=100 arc sin r since
any function in S satisfies larg f'(2)|<(4 arc sin » for 0<r<{1/+v% [5}
We will now give a second illustration of the fact that G(») is not a function of
the boundary rotation, this time concentrating on what happens for r close to ].
Recall that Corollary 2 asserted that G(1)/z=£k/2 for the case of convex univalent

functions (k=2), where
G(1)=lim G({r)=sup sup arg f'(z).
khad § feM 131<1

One might hope that this is indeed a phenomenon of boundary rotation and will
persist for other values of k. To see that this is not the case consider a close-to-
convex function f{z) which has infinite boundary rotation. Then f,(2)=f(s2)/s, 0=
s<(1, satisfies G(1)<{4r since f,(2) is also close-to-convex. On the other hand as s—
1 the boundary rotation of f,~»co and we cannot have G(1)/r=£k/2.

We can obtain a relationship between (1) and the order of M by utilizing the
class K(B) of generalized close-to-convex functions of order §. A function f in X is

in K(8), B0 if for each » in (0,1) and each pair 4, and 6., 0<<8,<(6,<(27, we have
(4.5) J.:‘RCEI Fret f (ret/ £’ (ref0) \d6 = — Br;
]

equivalently if there is a ¢0 and a normalized convex univalent function ¢(2) such

that for z in 2

larg{cf'(2)/¢’ (2)} | <fr/2.

Theorem 4.3. Let M be a linear invariant family satisfying )

sup sup arg f'(2) ~=fr<eo.
feN 15

Then MCK(B), larg f/(2){<2(B+1) arc sin », and - M is of finite order a, f+1>
a>1. '
l?roof We show that M is in K(B) but not in K (ﬂ 2) (when B>2). Let z=

e“’z,v, ]zllwr, 6 in (0, 27). Then for z=re®

[iRet1 427" @)/ 1@ a0 =areCens aa) /2aS (a0

. 6 ’(" p—
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We therefore set
¥ (r,6) =inflargla) " (2)/2,/ " (2)): f=M).
Since

arg[ :‘:‘;"g%}] ::arg[fi( “1_;@1) 2} +arg f'(§o,21)

2\ 1=21%
where (o= (2,—2)/(1—%,2,), we see that
(4.6) ¥ (r,0)=2 arc cot{(1-7*) cot (6/2)/(1+7"))+inf arg f' (Lo, 2).
Because of the linear invariance of M,
inflarg f'(Lo,2): fEM)=inflarg f({): fEM)
and hence by the hvpothesis we have

(2~B)mint T (r,0)= ~br.

Thus MCK(8) but, if 8>2, M is not in K(f—2). The remainder of the theorem
now follows from well-known results for K'(8). Namely, order K{(f)=8+1 and larg

S (@) <2(B+1) arcsin [z, fin K(#). ///

Remark 4.2. Finally we remark that Theorem 3.2 may be used to show that

certain families are not linear invariant. For example, 8s one type of generalization

of Vi, by Pinchuk [1], let V,* denote the class of functions in X which satisfy

sup I:'fRe[e“(l+Zfl(z)/f'(2))]]d9:k7r cos A, k>2, |A|<z/2.

onrll

One can show that

a=sup{a,: SEV I} =k|{1+e*|/4

while T (o0, V) 2> (k+2) |sin 221/4. It is easy to see that the inequality T (eo)<(a®—

1)42 ig not valid for various values of 4 and £ and hence, by Theorem 3.2, can not

be a linear invariant family for those values.
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