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1. Introduction

It is a well known fact that the creation of the theory of distributions by the
French mathematician Laurent Schwartz ([12]) is an event of great significance in
the history of mordern mathematics. In particular, this theory has an important
effect on the Fourier transform. Also, it is a well known fact that the applications
of the Fourier transforms to the theory of differential equations have rendered helps
to development of many parts of science, so that vigorous research progress about
the distribution and the Fourier transforms in the functional analysis has been
accomplished.

The purpose of this paper is to prove some properties of the rapidly decreasing
function space S, (cf. section 3) and the Fourier transforms in 57, (cf. section 4),
which is a dual space of S,.

In detail, the contents of this paper is as follows. In §2, we explain the termin-
ologies and prove the basic properties used in later sections. In particular, we prove
that “2(R™) is dense in C(R") (Proposition 2.2).” In §3, we prove that “the topology
of 5, can not be induced by any translation invariant metric topology ([151), which
turns the Fourier transfrom (see Property 2) into an isometry of S, onto S, (Theorem
3.4).” In §4, we prove the Lemma 4.4 and Theorem 4.5. In particular, we assert
the followings in Theorem 4.5: “Let # be a tempered distribution with compact
support K such that # (Fourier transforms of #) is bounded. Then ¥x=0 for every
¥e=C~(R™), which vanishes on K if #:==1,2.

Throughout this paper, the letters C and R stand for the field of complex numbers

and for the field of real numbers, respectively.
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2. Preliminaries

In this paper, the term mulli-index means an ordered n-tuple
Q= (al’ "'lan)

of nonnegative integers a,;(i=1,2, ", 7).
If a=(ay,,a,) and B= (B, B.) are multi-indices, then

lal=aytagto ey

]

Da':::_Dlal---D”'" (D,—::, 'ax';'“);

aj:ﬁ: (al:tﬁh "':antﬁn)'

If x, ye=R", then
] = &+ ka2,
x'y$x1y1+""f’"xnyns

where x=(x;, -, %:) and y=(¥;, """, ¥a).

@

Moreover the monomial x” is defined by

A TR ST LR
We shall also use the following notations in this paper.

C*(R™)={f: R"—~—C|for every multi-index a, D°f is continuous}.
Px(R") = { fe=C(R™)| supp(S)K},

where K is a compact subset of B" and supp(f) is the support of f.

ay__ U n
F(R )’Kicompact in R* Dx(R").
L?(R™)={f;measurable| {{z" Lf(x) |2dma(x)}p <o}, where m, is the mormalized

Lebesgue measure on R which is defined by
dm,.(x) e (27{')—; dxl”'dxn - (271')"; dx.

Proposition 2.1. [/ 1<p<oo, then P(R") is dense in L*(R™).
Proof. We shall use the following results in our proof.
1°. (The dominated convergence theorem ([111)) Let {f.} be a sequence of complex

measurable functions on R" such that
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lim fo(x) =7 (x).

exists for every x&KR".

If there is a function ge=L?(R™) (1-<p~oc) such that

fal) [P lg () 1P (m=1,2,38, - ;2€2R"),

then f&EL*(R"),

lim fer [ fu(2) —f(2) |* dma(x) =0
and

Lim far|fa(2) |* dma(2) = far |/ (x) |* drma(2).

2°. (Lusin’s Theorem ([11])) Let f be measurable function such that there exists
a subset ACZR" with

xFEA == f(x)=0, m,(A) < o0,
then there exists a ge=2(R") such that

ma({x=R" | f(x)#g(x))) ¢,

where € is a given positive number.

Furthermore, we may arrange it so that
sup|g(x) | <isup|f(x)}.
XeE R XER

3%, ([11]) Let f be measurable. There exist simple measurable functions s, such
that
(8) 0syisp<ee (S,
(b) su(x)——|f(x)] as m—oo, for every xe=R".
In order to prove our proposition we have two steps;
Step 1. S:={s|s is measurable and m,({ze=R")|s(x)=0})<eo}. We want to prove
that S is dense in Lf(R™).
Since it is clear that SCZL*(R™), let us suppose f=0 and fe=L*(R").
Then by 3° above, there exists a sequence of simple measurable functions s, such
that
08, <sa<lssi < S,y
}.{I‘I_l su(x)= f(x), for all x&=R".
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Hence, for all xe=R™
S ()= sa () 122 ()™
Thus, by 1" above, we have

Um (far| S (x) ~su(x)* drmin(x))-0.

This means that in the topology of L*(R") f is in the closure of S.

Step II. In order to prove our assertion, it suffices to verify that in the topology
of L*(R™) 2(K") is dense in S, as S is dense in L*(R™.

By 27 above, for each s6=S and a positive numbar &, there exists ge=%(K") such

that

ma({x= R |s(x)+# g(x}}) €.
Moreover, in this situation

suplg(x)fsups(x) | [Isfa.
Thus,

[&(x) ~5(x) | 2<28sll.., for all XEER", cooreren e, (A)

and
Farlg (x) ~5(x)1* dm, ()} < 26bisil..
Thus Z2(R"™) is dense in S, in the L*-topology.
In fact, for each fe&L*(R") there exists s¢=S such that i[f»—s[{,,»;’;g.

By Setp I or (A) there exists g2 (R™) with s —g.l<
Thus

o] m

“f-‘g(”P::“f - 'S“P ‘{”S "\'qs“ﬁ“’::ey
which implies that f is in the closure of %(K") in the L*-topology. ///

The topology of C”(R") is defined as follows. Take compact subsets K, of R®
such that

(a) R"= QK,».

(b) for all {221, K, is contained in the interior of K, ;.
Put
on(f)=max{| 2" f(x) | x=Ky, |a| TN}

p— 3 ,1 I
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[ %21

(py is a seminorm of C™(R")) for each fe=C~(R™)

and
= FECT (R 1oy(N)< fyy N=1,2,).

We take {Vy|N=1,2,} as a local base of C*(R"); that is, every -neighborhood of
zero contains a member of {Vy}. Then C~"(R") becomes a Fréchet space with the
Heine-Borel property ([10]).

In this topology, the metric between f and g (f,ge=C"(R")) is defined by

e 27N (S - 8)
W) =TT on(Fg)

We note that to prove that d(f,g) is the metric on C*(R"), we have to use following;

b

a
b>a>0 —p T2 5175

Proposition 2.2. 2(R") is dense in the Fréchet space C”(R™).

Proof. Take fe=C~(R") and a positive integer N. Then there exists Fye=2(R™)
such that ¥y|Ky=1, where Ky is a compact subset of R" defined as ahove. In fact,
let  be an open covering in R". Then there is a locally finite partition of unity
{o:} (9p=2(K™)) in R” gubordinate to the 4. In this case, to each compact K “R”
there correspond an integer m and an open subset W(of R")C K, such that

() + o+ pu(x)=1 for all xeW.
Therefore, if we put

Up(x)=01(x) + -+ a(x),

then ¥y|r, =1 and supp (¥y)=supp (U supp (p.) ([10D).

We put

gv=J-Ty=9(R"),
then

Sf=gy on Ky.
Hence

f—-g&Vy,

and since Vy—(0 a8 N—oo, in the topology of C*(KR"). i.e., gy-—+f. Thus 2(R") is
dense in the Fréchet space C*(R"). ///

[#5]
[S2]
}
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For each f&=9,(R"), let us introduce the seminorm of f,
{flly=max{{(D*f)(x)|x=K, |al=N}.

By this seminorms %;(R™) Ye a Fréchet space ([10]). We shall denote this Fréchet
space topology of 2:(R™) by 1.

Definition 2.3. (a) § is the collection of all convex balanced sets W2 (R™) (for
all a€=R with |a|<I1, aW W) such that W[ g (R™e=1, for every compact KCR"™.
(b) 7 is the collection of all unions of the from ¢-+W, with pe=2(R™) and We=8.

Then 7 is a topology in @(R"), and § is the local base for 7 ([10)). Hearafter,
by 2(R") we mean a topological vector space with topology ¢. In the topological
vector space Z(R"), the following hold ([10]).

17. @R" is locall convex.

2°. The topology rx of 2(R") coincides with the subspace topology that %, inherits
form @(R™), where K is an any compact subset of K",

3". @(R") has the Heine-Borel property.

4°. Every Cauchy sequence converges in & (R").

Definition 2.4. A linear fuctional on @#(R") which is continuous with respect to
the topology ¢ described in Definition 2.3 is called a distribution in R". The space
of all distribution in R" is denoted by 2'(R").

The topology of 2'(R") is the weak*-topology induced by P(R™).

Example 2.5. We shall illustrate some distributions ([31,[12],[138],[147,(151,)-

(a) For each multi-index a and each Ae=g'(R"), D"41s also an element of @' (R").
That is, for each ¢e=2(R")

DA(¢) = (- 1)*A(D°$).
Note that D*¢e=9(R") for g2 (R"). If B is a multi-index, then
D*(D#A) =D**6A=D8(D*A)e=a' (R").
(b) For each f&C"(R"), A, is defined by
Ar(B)=Ja" f(2)-$(x) dmn(x) [$EF(R™)].

Then A,&2/(KR").
(c) For each fe=C*(R™) and A=2'(R™), fA is defined by (f)l)(qi) = A(f¢), for
each ¢gc=2(R").
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Then fA is a distribution in R”.
We have to note that if Ae=92’(R"), then there are a nonnegative integer N and a

constant C<"»o such that the inequality

| 49| < Cligtly
holds for every ¢&=,(R™), where K is a compact subset of R". If A is such that
one N will do for all compact subsets K of R"(but not necessarily with the same C),
then the smallest such N is called the order of A. If no N will do for all X, then

A is said to have infinite order.

Definition 2.6. Suppose Ae=6'(%™). If W is an open subset of #” and if A¢=0
for every ¢e=2 (W), we say that 4 vanishes in W. Let ¥ be the union of all open
WCR™ in which A vanishes. The complement of W (relative to R") is the support
of A denoted by S,.

We have the following properties about Ae=@'(R™ ([107).

1°. If S, is empty, then A=0.

2. If S, is a compact subset of R", then A has finite order. Furthermore, 4
extends in a unique way to a continuous linear functional on C~(R"). In {act, for each
fe=C=(R™) there exists a sequence {/;|i=1,2,, F:&2(R™)} such that in the Fréchet

space C*(R") [ f by Proposition 2.2, and

ACH =lim A7)

in B (or C).

3. The Space S.

The convolution of two functions f and & on R” is defined by

= f(¥)g(x—~y) dm, ()

whenever the integral exist.

For each {=R", the character ¢, is the function defined by
e(x)=etT=exp {{(Lx+ e taka) )

for all x={(x,, -, %, )6=R", where f={(t;, ", t4).
It follows that for each f=R", e,&=C”(R").
— 37 -
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Definition 3.1. (a) The Fourier transform of a function f&=L?(R™) is the function
f defined by

F@O) =farf(x)e o (x) dm,(x)
= [ f(xX)e™ ' dm,(x)
(21, [4], [1oD).
Also the term “Fourier transfrom” is often used for the mapping that takes f to f.

(b) For each multi-index a:==(ay, -, a,)

By our definition, it is clear that

170 f(1)=(f*e)(0)
= e f (e (—y) dm,(y)
= [ f(y)e " dm,(¥).
2. Dye,==t%, (t7=1,"1---1,°").

Definition 3.2. Suppose fe&=C”(R"). f is said to be a rapidly decreasing function
if

sup  sup{(1-+[x|*)"[(Daf) (2] |} = 04 (F) o0

|®I<N xR

for N=:0,1,2, .

The set of all rapidly decreasing functions will be denoted by S,.
The topology of S, is defined as follows.

Put

then {Vx|N=1,2,-} is a local base of S,. It follows from our definition that
1°. S, is a Frechet space ([107).
2°. Z(R™C.S, as sets.

Proposition 3.3. (a) If feS,, then for all K >0 and multi-index a
.I}E.L 12 [*{(Daf)(x)]| 0.

That is, 1f fe=8,, then f vanishes al infinity.
(b) If f&S., then feELYR") and fELH(R").

~ 38
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(c) 2(R™) fs dense tn S,.
Proof. (a) For all x&=R"™, since |x|-J(1+ |x|®) it is clear that

lm e 2] (Daf) (a) [ =20

by Definition 3.2.. In consequence, if we put
C,(R™)y={f: R"-R|f is continuous and vanishes at infinity}, then S,.-C (K™

(b) We have to show that

Se=S, iy far S {dm, (%) < oo and
Jer | ()1 dma(x) oo,

For the positive integer N2 »n-+ 1, it is obvious that there is a constant M such that
(A fae DYy <M

for all x&&R".

Thus
Ser i F(x) | dmy () 22 (2m) E- M (1 + (212" dx
x(zn)-ﬁ'ﬂ'{'znummr(l Pl a2 My edx, | olo,
since

::':Ji(l'j”‘lz‘* st day s*jj(lw xF gt a2 d,
A xE A b x, ) F {"f:(l xR 1,2 TV dy
T T 2RI L N Jj(l A D) My dy.

Moreover, by putting x,2+ - 1x,2:=7, then

o

r(u»xf b ,2) Ty dxl‘:J

e e 1 . 4 2 e ZYyeNHL
== E(N’“l) (lixz | 'ilt,‘) .

v 1 g
PEERRERVEIS D —-2~d7
Thus
J’mjm(l.«}.,xf e eee ok x"Z)'-N dxl,dxz
fiZJ‘m(l b kg 42,2 N dyy ‘.j‘(?\“}:_“l’"}“.]‘”(]"l“xlz P MY REARY” L7

—— 8 E) —
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Since
J:(1+x”)"dx<w if m>1,
it follows that
[IOIEENOESS
‘This implies that S,(CL}HR™.

It is easy to prove that S, L*(R™), as
IF() [P=M2(1+ x5~
implies that
[srl £ @ v <Mfan(r s 2y o oo

if 2N=n+1.
(c) Take fezS, and ¥Fe=9(R™) such that ¥=:1 on the unit ball of R".
Put

Fr®)=r(@¥(rx) (>0)

for all x&=R". Note that f,&=2(R™).

For a multi~index a with |a|<N and for all xe=R",
(LH{ DY D(f—fr) (%)
== (4w [ BN EQ;(D"'"f)(x)Tlﬁ‘D”’(1"4’(737))- """" (B)

It Ixig;—}r the 1—¥(yx)=0, and thus for ]xir-;i'“;l;*,

DE(1—-¥(rx))=0
for every multi-index 3.

Since |x{* [D*f(x)|--0, for all x&R" as |x| >, it follows that
(1+ |2 [H¥D* 8 f (%)

vanishes at infinity for all a>8.
Thus, when y—-( the sum (B) above tends to zero uniformly on XK.

Therefore, in the topology of S,, fr—f. ///
Recall that for each feS,
P (f)=sup sup {(1+ |x|*)¥|(D.S)(x)]}
LT )
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and for f, g8,

e 27NN (S —2)
4, 8= Z 1+p:(f--g') ’

which is the translation invariant metric between f and g.
We shall define the mesh of f&S, such that

s 2780
o= 156,07

which is compatiable with the topology of S,.

In particular, we have to note that for f, g&S,

Return to the Fréchet space S,.

By Proposition 3.3, since S,(CL'(R") for each fe=S, the Fourier transform fF of f is
defined.

In particular, the following have already proved ([107]).
Property 1. For fe=S,
foy= L,,f(y)e”""" dm.(3),
reo=[ F e dm()

Property 2. In the space S,

A:

=R
A 4

ez

is continuous, one to one and onto.

Theorm 3.4. The topology of S, can not be induced by any translation invariant
metric topology ([15]) whick turns the Fourier transform (see Property 2) into an

isomelry of S, onto S,.

Proof. Suppose that there exists such a translation invariant metric ‘topology 7 on
S., and put
| flp=the mesh of fe=8, by thg topology 7.
If the Theorem 3.4 is true, then the following holds;
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[ firs fll p— ?"'?:i‘ff;'.vn”*U"fsm

for each f¢=S,.
But, as in the following, |/ |s.7#|fls, in general.
If we take f(x)==¢~31*, then we see that F¢=8,. Suppose # =1, then f{x) =e 3 satisfies

the following differential equation;
iDf 5 3% ) =20,

So (D)= x"fx and (y7¢)" = (— DD F(x) give
3iDf b fe

. s L S, .
Therefore f(&):=Ce 5. To determine C we have

C=F() «j 3 dm(x) =

Finally,
Fx)= J? iSlelse & dm(v;)

=1 fx)

As in the following example, there is an invariant metric topology on S, which
turns the Fourier transfrom into an isometry of S, onto S,.
Of course, this translation invariant metric topology dose not coincide with the

topology of S,.
Example 3.5. Recall that S, is dense in L*(R,) (Proposition 3.3.). By Property |
FES DS = [ L F e dm,(3)
Thus, for f,ge=S,
J' Sxg(x) dm,,(x)::! L& (x) dm,,(x)-J ﬂf(l)a“"‘ dm, (1)
R 3 a2
j F() dma(t) j LF(E dma(x)
& R
<[ FOF@ am ).

- 42 -
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‘That is,

Il"fg dmn:[ﬂ»f-g_dmn
where ¢ i8 a complex conjugate function of g.

Hence we have

4. Fourier Transforms of S’,
Let # be a function on R".
For a fixed point *€=R"™ we defined the following;
() (M) =uly—x), () =ul(~y) (ye=R").
Moreover, for we=@'(R™) and ¢=%(R") it is natural to define
() () =u(z,§) (+&R").
‘That is, u##¢ is a function on KR”. Moreover, usgc=C*(R™ ([100).
Definition 4.1. An approximate identity on R™ is a sequence of functions 4, of
the form

h(x)=€"h( %),

where h=2(R"), h>0 and L,h(x) dm,(£)=1.

We have the following pi‘operties (C10h):

Property 3. (a) lirzx qSuh.:lir? hwgp=¢ for each ¢ge=g(R")

(b) For each ue=2’'(R™)

lim wsh,=lim hwu=u,

trQ )

Consider the Fréchet spaces 2(R") and S,. It way proved that the identity map /:
G(R")—S, Is a continuoué function ([101). _Therefore, if L is a continuous linear

functional on S,, then
up=Loi: (R — R

e 43 R
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is a continuous liner functional, i.e., #,&=2°(R").

By the denseness of 2(R") in S,((¢) of Proposition 3.3) shows that two distinct
L’s cannot give rise to the same #.

In particular, #, can be extended to S, and this extension of #; is a continuous

linear functional on S,.

Definition 4.9. A lempered distribution is a distribution #€=2’(R™), which has
the continuous extension to S,([1], {61, [71).

Let S,” be the dual space of S, with the weak*-topology induced by S,.
If we put

G (R p={nw=2’(R")|u is a tempered distribution},
then as the descriptions above, we have an isomorphism
2 (R") =S,

as vector spaces.

Definition 4.3. For #<S,’, we define G($)=u($) ($=S,).
Then, by Property 2, ¢~~«—~>$ is continuous, linear and onto, and thus e=5,’, since
# is continuous and linear.

Moreover, for »e=S,” and ¢=S,, we define

() (D =u(z,$) (¥&R).
Then, since 7,$=S,, the above definition makes sense.

Lemma 4.4 With the above notations, the following hold:

(a) The Fourier transform

Az SL,D’ — S,
¥ —> U

is a continuous tinear, one-to—-ome and onio mapping.
(b) For ue=S,” and ¢=S,, usd is a tempered distribution.
(c) With notation in (b), (w»qﬁ)"::$ﬁ.

Proof. (a) Since the continuous, one-to-one and onto mapping
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#: S, —-> S,
U ]
$ ——> ¢

has period 4([10]), our definition 4. 3:

i(p) =u($) (for all ge=S,, for all xe=S,")

shows that the mapping
(R S[IJ! ey 87
U 3 U

has period 4.
Hence @ is one-to-one, onto and linear.
The continuity of @ is proved as follows.
Let W be a neighborhood of 0 in 8,".
By the weak*-topology of S, there exist functions ¢, -, $,.£S, such that

(ue=S,Mu($,) | <71 for 1<im} CW,

Define

Then V is a neighborhood of 0 in S,’, and since

(P =u($) ($=S., we=S.),

it follows that 2c<=W whenever ue=V.
‘This implies that & is continuous.

(b) Recall that for f&=5,, py(Sf) is the norm of f,N=1,2, .
Since, for x, y&=R"

1+ |a+y]2<02 (14 %18 (I+1{3]D,
it is clear that
Ox(r I8 (1+ {2[3)Y ou ()

for xe=R" and €S,
Since, we=S,’ is continuous on S, and the norms p, determine the topology of S,, for

— 4 5 FR—.
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each fe=S,, there exist N and C<{eo such that
Ju(F) | <Cox(S)

([10]). Therefore

| (un) (%) | = |u(.$) | <2Cox($) (1 + |2 [D¥
for xe=R".

Hence

”R,.Cpx(@(l-%-lxl’)"f(x)dm,.(x) < oo,
Therefore, since 2(R™CS,.,

urgp: P(R") ——> {fj

fle= e ()£ () s

is a tempered distribution.
Thus uwge=S,’ .
(c) Since un»¢p=S,’, u»¢ has a Fourier transform, in S,’.
If ¥&2(R™) with support K,
then

a$) @) = (s ) )= [, wwp) (T (~ 1) dmo ()

=[ DT () dma(0)
=u(($*¥)") (see p.157 of [10])
=H(($W0)) = 2(G0) = () (@) -+ () (CL1D).

By (C) of Proposition 3.3., the Fourier transforms of 2(R™ are also dense in S,.

Thus, the above (C) holds for every ¥eS,.

Hence the distribution (#*¢)" and $ﬁ are equal.

Theorem 4.5. Let u be a tempered distributions on R, with compact support K

such that the Fourier transform @ of u is a bounded function on R".

If n=1,2, then Gu=0 for every ®e=C=(R") which vanishes on K.
Proof. Let {4} be an approximate identity on R™ such that [ ‘,h(x) dm,(x)=]1 as
in Definition 4.1. '
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Then, by (C) of Lemma 4.4

Cowh ) le= = [ o el# 2, )
<t{ [ .t tram)! (maxiaco =1,
Since k,(x)=h(ex)
s il [ . 1 e Pamar |

—_-_“ﬁ“.,,E"”g U-n" !il(x) l’dm,.(x)] ¥
= ||} [lllee 3.

Since A= (RS CLHR™) by Example 3.5, {I&ll2=All-
Therefore ||(unh,) Mla=|&]llA][z&"F <oo.
Thus

(uwh ) =L (R™),

and [[ush.||z=||(ush)"|ls by Example 3.5..

Therefore, we have
llaew o< (1.1 ll2€™ .

On the other hand, since for ¢e=2(R")
#($) = (ued) (0) = Lim(un (h,#$)) (0)

= I‘i_’T((uchJ*%(O)
= l‘ifgl (u‘.hg) (QS) M

we have
|u(#) [ =lim | [, Gowh) ()9 (x) dma()

<tim[ |, Guoh ) ()] [$(x) | dma()
<timllweh,[lllglls (7D

<limlfal. |14l Sligll.

~timlall (e~ . 190012 dmate) |
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Let ¢ (R") vanishes on K, and let H, be the set of all points outside XK whose
distance from X is less than £>0.

If supp (¢) K is empty, then #($)=0 ([107]).
Now, suppose that supp (¢)[1K is not empty. We set

=Xy, + X, ¢,

where X is the characteristic function and (/,)° is the complement of H,.
Then

#(Phen,yc) =0, 80 u(P)=u(Ply,).

Hence, we have

(@ | <1l tim int[e] 191 dmu o).

Now assume n#==2, and let x,e=H, such that
!¢(xo)l==§3'g!¢(x)l-

Then there exists ae=K such that |x,—a]|<e.
Put

(xp—a)=(h. K),

then we have

$x0) = (@) +h-22-(p) + h-02- a¢ )
mhﬁi“—uwk—gfwm

for some P line segment joining ¢ and x,,

and

e[ 190 1t dmy(ar=e-t [, eorrm +2l%(ﬁ)—g-g—(p)hk+(-g%(p))zkﬂjdmz(x)
Since |%]<1 and 1% 11,
8_2‘[3' | ¢ (x) [2dmy (x)<] { (%g*(ﬁ))z'i'ﬂwg%(p)'«%(p)l +(.._ﬁ.(p))!} -Area(H.),

where Area(H,) is the area of H,.
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If &0 and p—a,.

then since

lim inf {087 +21-38-(0)-ZE-() 1 + (G202 ] o0

and Area (H,)—--0,

we get

e»af” 16 (x) |2 dmy(x)-——>0.

Therefore it follows that ju(¢)]=0.

Obviously, it hold for n=], i.e., e"L [§(x) dm(x)—0.

Since (Tu)(P)=u(¥F¢) and FPc=2(R™) which vanishes on K for every ¢c=2(R"),
Tu=0. ///

1.

10.
11.
12.

13

14,

15.
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