지질산화생성물의 DNA손상작용 및 그 억제기구

DNA Damage of Lipid Oxidation Products and Its Inhibition Mechanism

  • 김선봉 (부산수산대학 식품공학과) ;
  • 강진훈 (부산수산대학 식품공학과) ;
  • 박영호 (부산수산대학 식품공학과)
  • KIM Seon-Bong (Department of Food Science and Technology, National Fisheries University of Pusan) ;
  • KANG Jin-Hoon (Department of Food Science and Technology, National Fisheries University of Pusan) ;
  • PARK Young-Ho (Department of Food Science and Technology, National Fisheries University of Pusan)
  • 발행 : 1987.09.01

초록

지질산화생성물에 의한 DNA손상작용 및 그 억제 기구를 밟히기 위하여 linoleic acid와 plasmid DNA와의 모델계를 통하여 검토하였는데, 그 결과를 요약하면 다음과 같다. 1. Linoleic acid의 산화에 의하여 DNA가 손상되었으며, 그 정도는 linoleic acid의 양이 많을 수록 크게 나타났다. 2. Linoleic acid의 산화에 의한 DNA손상작용은 POV 100 mea/kg이하인 산화초기에서도 빠르게 진행되었다. 산화초기의 DNA손상작용에는 활성산소 종의 관여가 크게 나타났는데, 그 중에서도 일중항 산소와 superoxide anion의 영향이 큰 것으로 나타났다. 3. 지질 2차반응생성물인 malonaldehyde와 hexanal의 DNA손상작용은 linoleic acid경우와는 달리 활성산소종과는 무관하였으며 DNA와 와의 복합체형성에 의하였다. 4. Linoleic acid hydroperoxide의 DNA 손상작용은 linoleic acid의 초기신화에 의한 DNA손상작용 보다 크게 나타났고, 활성산소종의 영향은 없었다. 5. 지진산화생성물에 의한 DNA손상 작용은 천연 항산화성분(마늘 및 생강추출물) 및 활성산소소거제($\alpha-tocopherol 및 superoxide dismutase$의 첨가에 의하여 크게 억제되었다. 특히 . 마늘 및 생강추출물은 활성산소종의 생성을 비롯하여 공액 diene 및 POV의 증가 또한 크게 억제하였다.

The damage of plasmid DNA by lipid peroxidation and its inhibition were investigated through the model system of DNA and linoleic acid at $37^{\circ}C$. The degree of DNA damage increased in proportion to the increase of concentration and peroxidation of linoleic acid. DNA damage induced from linoleic acid peroxidation was greatly inhibited by the addition of active oxygen scavengers, especially, singlet of oxygen scavenge$(\alpha-tocopherol,\;cysteine)$ and superoxide anion scavenger(superoxide dismutase, ascorbic acid) in reaction system. These active oxygens, such as superoxide anion and hydrogen peroxide were rapidly generated in the early stage of peroxidation (POV below 100 mg/kg) and also scanvenged by the addition of superoxide dismutase and catalase, respectively. Hydroperoxide isolated from autoxidised linoleic acid showed DNA damage. Hydroperoxide induced-DNA damage was not inhibited by active oxygen scavengers. Lipid oxidation products, malonaldehyde and hexanal, also influenced on the DNA damage. Accordingly, it is speculated that DNA damage by lipid oxidation products is due to active oxygens such as singlet oxygen and superoxide anion formed in the early stage of peroxidation, direct action of hydroperoxide and formation of low molecular carbonyl compound-DNA complex. Furthermore, DNA damage induced by lipid peroxidation was remarkably inhibited by the addition of active oxygen scavengers and natural antioxidative fractions extracted from garlic and ginger. These antioxidative fractions also suppressed the generation of active orygens and linoleic acid oxidation. It is assumed that the inhibition of DNA damage by garlic and ginger extracts is due to the scavenging effect of active oxygens and the inhibition of hydroperoxide and oxidation products formation.

키워드