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ON THE ORIENTABILITY AND OBSTRUCTION CLASSES

K.A. LEE, Ho. J. LEE, HE. J. LEE, D.S. CRUN, W.K. JEON,

Y.W. KXM AND I.S. KxM

The purpose of this paper is to summarize a result of our seminar
about characteristic classes which was held during the last winter vacation.
That is, in Theorem 6, we prove that for an n-dimensional vector
bundle ~ over CW complex B, if there exists a cross section of ~ over
the I-skelton of B then ~ is orientable. And, in Theorem 7, we prove
that for any n-dimensional vector bundle ~ over a CW complex space

COl (~) =0 ~ ~ is orientable.

Througout this paper, by a vector bundle we mean a real vector
bundle. Let ;:= (E(e) , 11:., B(e» be an n-dimensional vector bundle. The
expression Hi(B(~) ;G) denotes the i-th singular cohomology group of
B(e) with coefficient group G.

For each vector bundle ~= (E(~), 11:" B(;:» , a sequence of cohomology
.classes coi(~)EHi(B(~) ;Z/2) , i=O, 1,2''', called the Stiefel-Whitney
.classes of~, is defined axiomatically by the follwoing conditions:

(i) coo(~)=IEHO(B(I;);Z/2) and COi(~)=O for i>dim(I;).
(ii) If f: B(~)-+B(TJ) is covered by a bundle map from t; to TJ, then

(J)i(t;) =f*(COi(TJ» for i=O, 1,2, ....
(ill) The Whitney Product Theorem. 1£ t; and TJ are vector bundle

.over the same base space, then

where U means the cup product.
(iv) Let pl (R) be the one dimensional real projective space, and
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rI
1=(L,1r,Pl(R)) be the Hopf line bundle pI (R). Then <t.II(rl1):;t:0>

(DJ and [2J).
Let G,,=G,,(RCO) be the infinite Grassmann manifold. and let rn be the.

n-dimensional universal vector bundle over Gn. Then the cohomology
co

ring H*(G,,;Z/2) = "L.Hi(Gn ; Z/2) is a polynomial ring over Z/2 freely
I=J

generated by WI (1"'), ...• <t.In(rn) ([1]. [2J).

Let G,,=G,,(RCO) denote the Grassmann manifold consisting of all
oriented n-planes in R"". Let rn be the n-dimensional oriented universal
vector bundle over Gn• then there exists the canonical bundle map

- p
E(ra)---E(1"')

J 1
Gn----G",

p

where r n= (E(1"') , 1r; Gn) and r n= (E(rn) , it, G,,). Of course, p : G"-+G,, i$.
a 2-fold covering map. That is, if + V is an n-dimensional vector space
with usual orientation then we denote the n-dimensional vector space
with the opposite orientation of + V by - V. Then for each VEGn ,

+ V and - V are elements of G". In this case p (+ V) = V.

PROPOSITION 1. Let ~= (E(~), 1rE, B(~)) be an oriented n-dimensionat.
vector bundle over a CW complex space B(e). Then there exists a bundle'
map I: ~-+r" such that 1*(1"')"""e except orientation. Moreover, I: e-+r"­
lilts uniquely to an orientation preserving bundle map 1 : ~-+r".

Prool. Since B(~) is paracompact there exists a locally finite covering
of B(~) by countably many open subsets UI, Uz, "', so that el Ui is.
trivial for each i ([2J). Since ~ is oriented th~re exists an orientation­
preserving map (for each fiber)

which maps each fiber of el Ui linearly and onto R". Sine B(~) is normal
there exists an open covering VI, Vz, "', of B(~) such that VICUi for
each i, where Vi is the closure of Vi. For each i there exists an open­
subset W I such that WiC Vi. Define a continuous map



On the orientability and obstruction classes

1.: B(~)--R

:such that .<;jW.=!, .<dB- V.=O and 0<21<1 for all i
Define h.l : E(e)-.R- by

h l() {O if n'f(e)$V1

• e = ~(1le(e»~(e) if 1le(e)EV.

-Then it is clear that i) ~l is continuous, ii) hi
1 linear on each fiOOr•

.and iii) ~l is orientation preserving for each fiOOr. We also de_

I: ECe)--R-Ef)R-Ef)···=R"

-by l(e)=(h1'(e).h2'(e).· ..). Then it is obvious that I is continuous
..and maps each fiber injectively. Since the covering {V.: i=1,2....} is
locally finite, the components hl (e) of I (e) are zero except for a finite
number of its components. Moreover, for each eEE(~)

<11 the fiber through e) is orientation preserving

..and 1(the fiber through e) is an n-dimensional vector space in Jr
.having an orientation. When 'We disregard the orientation of 1(the fiher
through e), it is clear that l(the fiber through e)EG". Define 1: E(e)
-.E(t') by l(e) = (f(the fiber through e). l(e» and f: B(~)-+G" by
J(n'f(e» =1 (the fiOOr through e), where in the image of f and 1
orientation is disregarded. Then (l,f) : bt' is a bundle map and
J*(t') =e except orientation. By the definition of 1 above, if we regard
the orientation of l(the fiOOr through e). then it" is clear that

l(the fiOOr through e)EClI•

'Therefore, if we define 1: BCe)-G" by 1(n'f(e» = 1 (the fiber through
-it), then we have the commutaive diagram

C"
f ip

B(e)-~G"

In this case, the map!: E(t;)-+E(r") defined by !(e) = (I (the liber
through e), l(e» is well-defined, since 1 is orientation preserving.// /

RecalLthe projection P: G,,-G... For each VEG". p-l(V) =+ V. We
want to construct a line bundle t; over G" as follows. The total space E
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of ~ is obtained from G.. x R by identifying each pair (+ V, t), and'­
(- v: -t), wh,ere for each VEG.., p-l (V) =+ VEG... .Then there-­
exists a canonical projection

G.. x R----+E
(+ v: t) - [ + V, tJ ( = { ( + V, t), (- V, - t) }) .

and the topology of E is the quotient topology of G" x R by the above:
projection.

LEMMA 2. In the above situation we IUlve an exact sequence

UCl.!I(~) P*_
..·_Hi-1 (G.. ;Z/2)-----+Hi(G,,;Z/2)-----+Hi(G.. ;Z/2)--+

UWl(';) .
Hi(G,,;Z/2)-----+Hi+1(G,,;Z/2)---"'Hi+1(G,,;Z/2)_ ..·

Proof. Put

E-G..= {[+ V, tJEEI t:;t:O} =Eo,

and

[+ V, 1]=+ V, [+ V, -lJ=- V.

Then G..CEo. Furthermore, G" is a deformation retract of Eo, because'
there exists a homotopy H: Eo x [0, l]-Eo defined by H«[+V, t], s))

=[+ V, (l~et +stJ. For each VEG" the fiber of e at V is [+ V, R]

= {[+ V, tJ ItER}. Thus the mapping [+ V, RJ-R via [+ V, t]-t
determines the orientation of e. Let e(';) denote the Euler class of~.

By using the equalities

e(e) =Wl (e),

H*(E;Z/2) =H*(G,,;Z/2)

and

H*(Eo;Z/2) =H*(G,,;Z/2)

in the Thom-Gysin sequence ([1]), .we can get the deSired long exact
Sequence in the Lemma.
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PROPOSITION 3. Clh(T") =0.
Proof. In the proof of Lemma 2, (/)1 (~) :;eO. This can be proved as

:follows. From Lemma 2~ 'w-e' have the exact sequence

'. " '. '. . UOJ1(~)

0--+HO(GlI;Z/2)----+HO(G,,;Z/2)-HO(G,,;Z/2)-~···

Since any n-dimensionaL vector space in R"" can be deformed continuo.usly
to any other oriented n-dimensional vector space we have

Ho(G,,;Z/2)"""Z/2.

Moreover, since HO (GlI ; Z/2) =Z/2 we have the exact sequence

U(/)1 (e)
0---+HO(GlI ;Z/2)--Hl(G,,;Z/2) ('"""Z/2)-+···

and thus (/)1(e):;e0 (Note that Hl(G,,;Z/2)={0, (/)1(r")} as in the above
descriptions). Therefore (/)1 (~) =(/)1 (r"). From the above facts and Lemma
2, we have the exact sequence

U(/)1 (r")
. 0-----.HI (G,,;Z/2)-+H1(G,,;Z/2)---H%(GlI ;Z/a)-....

Note that H% (G,,; Z/2) = {O, (/)1 (r") U(/)1 (r"), (/)% (r")}. Thus

U(/)1 (r")
H1(G,,;Z/2)----+H%(G,,;Z/2)

is a monomorphism, and hence H1(G,,;Z/2) =0. Therefore

O=(/)I(T")EHl (G,,;Z/2) :'-0. / / /

In consequence, we can prove (cf. [2]) that

H*(G,,;Z/2) = Z/2 [(/)2 (T") , ''', (/).. (T")].

Let ~= (E, 11:, B) be an n-dimensional vector bundle, and let A"~ be
the one-dimensional exterior algebra bundle of ~. Then,' as is well konwn
(cf. [3])

A"~ .is trivial <? ~ is orientable.

Moreover if B is a CW-complex, then (cf. [3J)

A"~ is trivial <:;::) .; is otientable.
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And, if ~ is an one-dimensional vector bundle, then

W1 (~) =0 (::;> ~ is trivial.

LEMMA 4. Let ~= (E, 11:, B) be an n-dimensional vector bundle. The1t'­
we have W1 (.;) =W1 (A"';).

Proof. From the splitting principle, there is a map g ~ Bc-.B ([3])
such that

(i) g*1; is a Whitney sum of line bundles,
Cii) g* : H*(B;Z/2)--H*(B1;Z/2) is injective.

Let us put

g*~=e11Ef)"'E9~,,1

where each ~,,1 (I~k~n) is a line bundle over B1• Note that for a.
I-dimensional vector bundle

W1 (~) =e (1;),

where e(l;) is the mod Z/2 Euler class of e, and

e(~0e') =e(~) +e(f),

where ~' is also a one-dimensional vector bundle having the same base:
space as e. Thus

g*W1 (.;) =W1 (g*';) =W1 (e11E:Jj ...Ef)';,,1) (Naturality)
=Clh (~/) +... +W1 (1;,,1) (Whitney product theorem)
=W1 (';110"'0';,,1)
=W1 (A" (g*.e) )

g*fA1 (A"';).

Therefore, we have W1 (~) =W1 (A",;). / / /

Let 1;= (E, n, B) be an n-dimensional vector bundle over a CW complex:.

B. For each fiber F of ~ we put

V,,(F) = {all n-frames in F},

where an n-frame means an n-tuple (v!> "', v,,) of linearly independent
vectors of F. Then V,,(F) is an open subset of Fx ..· xF (n-times).
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DEFINITION 5. In the above situation, the first primary obstruction
class 01(~) of ~ is an element of H1(B;ilo(V,,(F) ;Z» such that

0 1 (0;:) =0 <=> there exists a cross section over the I-skeleton of B.

where ilo(V,,(F) ;Z) is the reduced singular homology group.
Since there exists a unique group homomorphism

h: ilo(V,,(F) ;Z)--+Z/2,

we have h*(01(~»EH1(B;Z/2). In this case.

W1 (~) =h* (01(~»

(DJ. [2J. and [3J).

THEOREM 6. In the above situation ~ is orientable if there exists a cross
section over the I-skeleton of B.

Proof. By our hypothesis 0 1 (~) =0. and thus W1 (.;:) =0. By Lemma 4.
W1 (.;:) =W1 (A"';:) =0.

Since

W1 (7)-0 ~ 7) is trivial

if 7) is a line bundle ([2J). A"~ is trivial. Therefore ~ is orientable.

THEOREM 7. For an n-dimensional vector bundle .;:= (E, it, B) over a
CW complex space B,

W1 (~) =0 <=> ~ is orientable.

Proof. In the proof of Theorem 6, we have already proved the part
(=>) . Since B is paracompact and ~ is orientable, we have a bundle
map

1 _
E----+E(T")

in f 1
B-------->G".

And, by Proposition 3, W1 (i") =0. therefore we have

W1 (~) = 1*(W1 (T"» =0.
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