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ON FIXED POINT THEOREMS FOR MULTI-VALUED
MAPPINGS ON METRIC SPACES

Soon-Kyu Kim anp Tixiane Wane

1. Introduction

The Banach contraction principle has numerous generalizations. One of
these is due to G.E. Hardy and T.D. Rogers in 1973. They proved the
following result ([4]).

THEOREM A. Let T be a single-valued self-mapping on a metric space
(X, d), Suppose that there exist nonnegative constants a,b,c, e, f suck that
for z,y=X

(1) d(Tz, Ty)<a-d(z, Tx) +b-d(y, Ty) +c-d(z, Ty) +e-d(y, Tx)
+f-d(z,y).
Set a=atbtotetf. Then N
(@) if X is complete and a<l, them T has a unigue fized point;
(b) if (1) modified to the condition x7#y implies that
(1Y d(Tz, Ty)<a-d(z, Tx) +b-d(y, Ty) +c+d(x, Ty) +e-d(y, Tx)
+f'd($s y) :
and in this case if X is compact, T is continuous and a=)1, then T has
a unique fixed point.

Soon after, C.S. Wong generalized the above result as follows ([15]).

TUEOREM B. Let T be a single-valued sel f-mapping on a complete metric
space (X,d). Suppose that there exist functions a;, i=1,2,...,5, of
(0, 00) into [0, 00) such that

(a) each a; is upper semicomtinuous from the right, (i.e., Lim Sup

R -t ™

a;(b,) <a;(b) for each decreasing comvergent sequence {b.} with limit b),
[
b) 2 () <z, 20, and
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(c) for any distinct z,y=X we have

(2) d(Tz, Ty)<ad(x, Tx) +ad(y, Ty) +ad(x, Ty) +ad(y, Tx)
+ an (.Z', y)

where a;=a;(d(x,y))/d(x,y). Then T has a unique fixed point.

The Theorem B is a generalized version of Theorem 4 of [14] which
was stated as one of the best fixed point theorem by Rhoades in [14].

On the other hand, in [7] we introduced a D,(a, 8) class of multi-
valued mapping on metric spaces, and proved a fixed point theorem for
multi-valued mappings of class D, (e, ) with a+28<1 on complete metric
spaces. A multi-valued mapping T is said to be class D,(a, g) if D,(Tz,
Ty)<a-d(z, v)+p8-(D.,(x, Ty)+D, (y, Tx)) (see section 2 for the
definition of D,(:,-)). In this article we will prove two fixed point
theorems for multi-valued mappings on complete metric spaces, which
generalize Wong’s result[15], Rhoades’ Theorem 4 in [14] and our
results in [7].

2. Main theorems

Let (X,d) be a metric space and C(X) the family of all nonempty
closed subsets of X, For A and B in C(X), we define an extended real
number D,(4, B) as follows D,(4, B) =Sé1Ap d(z, B), where d(z, B)=

Iglf d(x,¢). Similarly, we define D;(A, B) by D,(4, B)=D,(B, A)=
Sélap d(z, A). Then so called Hausdorff distance D (A, B) between A and B

in C(X) is obviously defined by D(4, B)=Max {D,(4, B), D,(4, B)}.
We note that all of D(A, B), D,(4, B) and D;(A, B) actually depend on
the metric d on X,

It is clear that for any z,y&X, and A=C(X) we have d(z,y)=
D, (z,y)=D(z,y) and D,(x, A) =d(z, A). And, in general, D,(4, B) #
D;(B, A) for A, B&C(X). So, D,(+, +) is not a metric on the space C(X),

For D,(-,+) and D;(-,+) we have the following elementary properties
which were proved in [7].

ProrosITION 2.1. (i) D.(A)>0 and D,(A, B) >0,
(i) D,(A, B) =0 if and only if ACB, and D,(A, B) =0 if and only
if BCA,
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(iii) (triangle inequality) D,(A, B)<D.(4A,C)+D,(C, B), and
D(A, BYXD,{A,C)+D,(C, B), for A, B,C=C(X).

Let T be a mapping from X into C(X). A point x&X is said to be
a fired point of T if z&=Tx. In this section we give a fixed point
theorem for some kind of mappings from X into C(X). We also prove
the existance of common fixed points for two multi-valued mappings with
some conditions. To prove these theorems we need an elementary lemma
as follows.

LEMMA 2.2. Let {a.} be a real sequence. If OSa,+,§a.+%, for all
n, then the sequence is comvergent.

Proof. ani<a; +“§ '21;=a1+1, by induction. Then {4.} is a bounded
sequence. Suppose that there are two subsequences {a,,}, and {a.,} which
converge to @ and b, respectively. Suppose a>b. Let e———-%(a—-b). Then
there is anminteger N such that |a,,—al<e, |a.,—b|<le, for all a, =,
>N, and 3 "21;,<e. Then a—4<|a.,—al+ (as,—as,) + |as,—b] <etete
=3e=a—b, when n,>n,>>N. This contradiction implies a=5. Thus
’1;.131 a, exists.

We can now deal with our main result in this paper which generalizes
Wong’s result [15], Rhoades’ Theorem 4 in [14], and our result in [7]
obviously.

THEOREM 2.3. Let T be a mapping of a complete metric space(X, d)
into C(X) where C(X) is the familly of all closed subsets of X. Suppose
that there exist functions ai,i=1,2,3, of (0,0) into [0,0c0) such that

(i) each a; are continuous,

(ii) ay(2) +2-ax(6) +2-a3(8) <2, Sfor t20,

sy () tap(t) taz(E)

(i) Lim 2O 3a0F80 _pqy

(iv) for any z,y&X, D;(Tz, Ty)<
a,+-d(z, y) +a,D,(z, Tx) + a,-D,(y, Ty) + a3-D,(z, Ty) + ay-D,(y, Tz),
where a;=a;(d(z,y))/d(x,y), i=1,2,3. Then T has at least a fized
point.

Proof. Let z, be an arbitrary point in X. Pick any point z, in Tz,
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We can assume z,7x, because if z;=x, then z, is a fixed point of T.
Then we can choose a x,&=Tz, such that
d(z, x2) <D;(Tz,, Txy) +—%—(1”‘az"‘as)
<a;-d(xy, z1) +as- (D (xo, Txy) +Dy(xy, Txy)) +as (Dy(xo, Txy)
+D;(x,, Tz,)) +—;‘(1—az“‘aa)
<ay-d(xy, 21) +az- (d(xy, z1) +d(zy, x2)) +as-d(x,, x,) +—%'(1“az‘“aa)

<(ay+ay+ay) d(xy, 2,) + (@ +a3) ~d(zy, 23) +é—(1~—az—a3). That is

a; +az+113 . _]___
2.1 d(zy, x2) gwl_az_aa d(zxe, z1) + 5

Denote by=d(x,, x1), & =d(z,, ;). By the definition of a; (2.1)
reduces to

(bo) +er2(bo) +as(by) |
(2' 2) bi< alboo" a:z;o) (’)‘asc(tzo) ’ bo+

By induction, we can pick 7, ,ETx,, Znp1F 2. for all n=2,3, ---, shch

that

1
7-

@3)  d@n 200) <D{(TZ0y T2)+35- (1—a3—a5).

By the same argument as before, (2.3) implies that

a0y (bn_y) +az(be_y) +a(ba_y) . 1
@9 bess b1 —az(bn_y) —az(bu_,) bust 2~

(2.5) Thus b,,_<_b,,1_1+—21;, for all n.

Then the sequence {&,} is convergent by Lemma 2.2, Denote the limit
of {b,} by b Taking limit as n—oo in (2.4) we have

ax(b)+ 2(6’)'*‘ 3(5)
(2.6) N = N

since a; are continuous. From (ii), & must be zero, i.e., Lim b,==0,
ntoR

Then there are an integer N and a positive number %,<1 such that
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ﬂé&%cgz(;’z%jz()bfl—gkl for n>>N by (iii). Hence we have
2.7) buia<ky-bt s, for all n>N.

Then {z,} is a Cauchy sequence in X and there exists a z in X such
that z,—z as n—co by the completeness of X, We shall show that z is

a fixed point of T,

The inequality

D;(z, Tz)<d(z, z,) + Dy(x,, Tx,) + D, (T, Tz)

<d(z, z,) +d(Zn, Zny)) +ay-d(z, x,) + a3 Dy (za, Tx,) +az-D; (2, Tz)
+a5+ Dy (x,, T2) +az» D; (2, Tz,)

<d(z, z,) +b.+a,-d(z, x,) +a-b,+a;-D,(z, Tz) +a3-d(xs, z)
+as-d(z, Tz) +a;-d(z, x,) +as*b, implies that

Di(z, Ty <0820 4z, 2 4 10T 0s g,

Let ¢,=d(x,, z). Then D,(z, Tz) <A-d(x,, z) +B-b, where

A 1+a1+203_ — cnta; (Cn) +2a3(cn)_ and
l1—a,—a; en—az(ca) —as(ca)
B= 1+a2+a3 — Cn+(¥z(0n) +(13(Cn) Since
1_(12"'03 c,,—-az(cn) ""a?,(cn) ’
A=1+ % (cn) tas(cn) +aslca) 2at3(cn) :
A (2 Er 3 RS () S )

<1+14+2=4, B=]+202(c)t2a5(6) g 5 .0 and
ca—az(cn) —as(ca)

d(z,, z)—0 as n—oo, we have D,(z, T%) =0 which implies :& Tz,

We now prove a theorem on common fixed points of two multi-valued
mappings S and 7. Two multi-calued mappings S and T are said to have
a common fixed point in X if there exists a point z&X such that z&=Sx

and r&Tx, simultaneously.

THEOREM 2.4. Let S, T bet two mappings from X into C(X). Suppose
that there exist functions a;, i=1,2,3, of (0,00) into [0,0) such that
(i) each a; are continuous,
(i) ai(t) +2a,(2) +2a3(1) <s,
. ay(t) Tax(t) tas(t
(@) Liz 1§3az(t2)(3a3(§)() =k,
(iv) for any z,y&=X we have
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D,(Sz, Ty)<a,d(z, y) +a,D,(z, Sz) +a,D,(y, Ty) +a;D;(z, Ty)
+a;D,(y, Sx)

DTz, Sy)<a,d(z, y) + a.D,(x, Tx) +a,D;(y, Sy) +a;D,;(x, Sy)
+a3D,(y, Tx)

where a;=a;(d(x,v))/d(z,y). Then S and T have at least a common
Jixed point.

Proof. Let z, be an arbitrary point in X. Pick any point z; in Tz,
Then choose a z,&=Sz, such that

d(ze 21) <D, (Sz1, T2o) +-5 (1—a—as)
<La;-d(z,, z,) +a,- D, (x4, Szy) +aye Dy (zy, Txo) +a3+Dy(2y, Tz,)
+asD; (xy, Szy) +—%'(1—02"‘03)

<a,-d(xo, x1) +az-d(z,, x5) +az-d (o, 2,) +as-d(x,, xz) +—%‘(1“az—aa)

gal'd(xo, x]) +a2°d(x1, 1'2) +ag‘d($o, xl) +a3‘d(xo, .Z'l) +a3°d(xl’ xﬂ)
+%‘(1“‘az“as)-

2.8) Thus d(z4, xz)gf%%i& d(z4, 1) +%,
(2.9) That is, b<<-%10) @) +as) 5

b—ay(by) —as (bo)
where b;=d(z;, 2:,1)i=0, 1.

2!

We can also pick a x,¢&Tx, such that

@10)  dlzya) < EIES A, )+

That is

a; (bl) tay(8y) tas(by) ,
@. RS by~ay(by) —as (51)

By induction, we can pick z,,&Sz,, 1, i1 Tz, such that

+’Z’ where b,=d(z,, z5).

1(bn) +a,(bs) +as(8.)
(2.12) S S (AP (SR +n

for all n, where by=d(Zx, Tns1).

By the same argument as we have done in the proof of Theorem 2.3,
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we can prove that Lim 6,=0, {z.} is a Cauchy sequence in X, and
n—0

L_lgl z,=z, since X is complete.
We prove that z is a common fixed point of S and 7. First of all,
we prove z&=Txz.
Dy (2, Tz) <d(z, Zzn+1) + Dy (Z2ns1, STant)) + Dy (Sx2n11, T2)
<d(z, Tn11) +d(Zons1, Tons2) +a1°d (T2n11, 2) + 820 Dy (L2041, ST2a11)
+ay° Dy (2, T2) +as3- Dy (2, Sxonsy) +a3° Dy (z204y, T)
<d(2, Tans1) +d(Zni1, Tansz) + 10 d(ZTang1, 2) + @22 d (L2041, Tonsa)
+ay Dy (z, T2) +a3:d(2, Zans1) +a3°d(Z2ns1, Zong2)
+agd(xonyy, 2) +d(z, T2).
Thus D (z, Tz) gM d(z, T3a4y) + Atae,tay d(Zant1, Tansz).
1—a,—a; l—a,—a,
By the same method used in the proof of Theorem 2.3, we conclude
2& Tz, Similarly, we can prove &Sz, Therefore 2 is a common fixed
point of S and T.
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