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SOME REMARKS ON CANONICAL TRANSFORMS
REPRESENTING SL (2. R). IN L2 (RZ)

SEE-GEW REW

1. Introduction

A series of articles1- e Programmed by M. Moshinsky, K.B. Wolf. and
collaborators have shown that canonical transformations or symplectic
transformations in quantum mechanics give a better understanding of
dynamical groups for quantum systems together with unitary representa­
tions of SL(2, R). In his book[7], K.B. Wolf treated in detail canonical
transformations associated with SL(2. R) in the form of integral transforms
on L2(8). His method. due to M. Moshinsky and C. QuesneD]. is a
quantization of the symplectic action of SL(2. B) on B2. the phase space
for a classical system of one degree of freedom. However. phase factors
in integral transforms are determined only up to sign· by the reason that
the integral transforms give a unitary ray representation of SL(2. R).

It was D. Shale[9] who observed that the quantization determines a
double-valued unitary representation of the symplectic group Sp(2n, R).
which is analogous to the spin representation of the orthogonal group.
This representation is nowadays known as the metaplectic representation,
or as the Segal-Shale-Weil representation[lIJ. In view of this. the
integral transforms on £2(R) associated with a symplectic group SL(2, R)
should be a unitary representation of the double covering SLz(2. R) of
SL(2. B). It is to be noted here that while SL(2. R) is a "spin" group
for 800 (1.2). one should consider a double covering (or "spin" group)
of SI. (2. R) still more.

The integral transforms for Sp(2n. R) are determined in Ref. 12 up to
sign. The metaplectic representation of the inhomogeneous symplectic
group was investigated in Ref. 14. and for some one-parameter subgroups.
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phase factors in integral transforms were determined by computing
explicitly the Maslov indices[l1J. To our knowledge, the phase factor
in the integral transform representing SL2 (2, B) in L2 (B) seems not to
have been explicitly expressed yet, nor the composition of the integral
transforms does.

Roughly speaking, our method is as follows. The two-fold covering
causes a sign problem in the integral kernel. Though the problem has
been solved in an abstract manner, it seems to require further investigation
in an explicit manner. Canonical transforms representing unitarily SL2

(2, B), constructed in the form of integral transforms in £2 (B) on the
composition of canonical transforms. From the viewpoint of reducing a
quantum system, the quantization in £2 (B2) will also provide us with a
unitary representation of SL (2, R) which is a direct sum of unitary
irreducible representations in the space of functions of radical variable.
In the course of discussion it will be found why SL (2, B) is represented,
and no covering groups appear.

2. Oselllator Realization

We start with a classical dynamical system of one degree of freedom.
Let (B2, co) be a standard symplectic vector space, where w is given in
the Cartesian coordinates (x, p) of B2 by w=dp/\dx. The linear group
of the symplectic transformations of (B2, w) is isomorphic to SL(2, B).
Let the Lie algebra sI (2, R) of SL (2, B) be written as

(2.1)

We take a basis {ej} , j=1,2,3, of sl(2, B) so that any element ~

given by (2.1) can assume the form ~=Icjej.

Let ~ be given by (2.1). The one-parameter subgroup exp(t~) of
SL (2, R) induces an infinitesimal symplectic transformation eo (w) at
coEQ=R2 by

(2.2)

which takes the form



(2.4)

(2.5)
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The e,l is a Hamiltonian vector field having a Hamiltonian or generating
function f determined by the condition i(eQ)w= -df, i(·) denoting the
interior product. In fact, the equations, equivalent to i (eQ)w= -dJ,

:~ = l!2 {c:z+ (C1+ CS)P} ,

:~ = -l/2{(C1-CS)X-c!p}

are easily integrated to give

with

f1 = 1/4 (p2- x2),
f2=1/4(xP+px),
fs= 1/4(p2+x 2

).

The functions fj satisfy the sI (2, R) commutation relations under the
Poisson bracket,

We make some remarks on fll' s. The fs, half the Hamiltonian for
the harmonic oscillator, is a Hamiltonian function for the Hamiltonian
vector field induced by the action of the compact subgroup SO(2) ;

(2.7) ( ) [
cos(t/2)

exp tes = .-sin(t/2)
sin(t/2)]
cos (t/2)

The function f1 +fs is the Hamiltonian of a free particle which is related
with exp t(e1+eS).

We now turn to quantum mechanics. Following the Schrodinger
procedure (p~-id/dx), we obtain for the classical observables fA the
quantized operators JII, k= 1,2,3, fulfilling the sl(2, R) commutation
relations;

(2.8) J1=1/4{-d2/tJ.x2-x2},
Ja=l/(2i) (xd/dx+ 1/2),
J s=l/4{-d2/dx2 +cx2} ,

(2. 9) [J1> J2] = -iJ30 [J2, Js] =iJ1o [Ja, J1J=iJ2•
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We define the operators J+ and J_ as usual by

(2.10)

respectively. On introducing oscillator annihilation and creation operators
by

(2.11) a=-i/(",/2)(x+d/dx). a+=i/(",/2)(x-d/dx).

the operators J+. J_. and Js takes the form

We are interested in whether SL(2. B) will come out or not when the
Lie algebra sl(2. B) spanned by JIl• k=1. 2.3, is exponentiated., that is,
whether SL(2, B) is realized in £2 (B) as unitary operators or not.
Generally speaking, a covering group of SL(2, B) will come out.
Incidentally. since the group manifold SL(2. B) is homeomorphic to the
product 80(2) XR2, we may concentrate our attention to the subgroup
80(2) as far as the homotopy is concerned. Thus we pick: up the
operator Js associated with exp(tes). Let IJ>. j=O.1.2•..., be nor~

malized eigenfunctions for the harmonic oscillator, which constitute a
basis of £2(B). The li>'s are generated from the vacuum state 10>;

(2.13) U>= (j!)-1I2(a+)jIO>.
J s lj=I/2(j+I/2) U>.

AB is well known. the operator Js has a self-adjoint extension and
generate a unitary operator e-il/3. From (2.13) we have

(2.14)

Since the right-hand side of Eq. (2.14) is a periodic function of t with
period &" so is the left-hand side. That is, e-jl/. is periodic in t with
period &'. This is in marked contrast with the fact that the classical
correspondent exp tes is periodic in t with period 4,... Thus we may
~derstand that e-il/3 is a double covering of exp tes as one-parameter
groups. The double periodicity was already pointed out in Ref. 14.
Accordingly. we infer that the quantization by the Schrodinger procedure
will lead to a representation of the two fold covering SL2 (2, R) of
SL(2, B) in £2 (B).
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Two fold covering can be observed from an article of V. Bargmann
[ISJ on the representation of SL(2, B), according to which the eigenvalues
of J3 would be half integers, if the quantized operators J" gave an
infinitesimal representation of SL(2, B). However, Eq. (2.13) shows
that J3 has quarter integers as eigenvalues. This means that two fold
covering of SL(2, R) appears. For the sake of comparison we here
remark that one obtains representations of SOo(1,2) in the case of
integer eigenvalues and SL(2, B), two fold covering of SOo(1, 2), in
the case of pure half integer eigenvalues.

We turn to the operators J+ and J_ in order to gain an insight into
the realization of si (2, B) by the Schrodinger quantization procedure.
We have to point out here that V. Bargmann's theory [15J of the
representation of SL(2, R) is applicable to the repr~ntation of SLz(2, B)
with a slight modification that J3 has quarter integer eigenvalues. The
modified Bargmann's theory will be applied in the sequel. Now we
operate Ii) with J+ and J_ to get

(2.15) J+lj)= {(j+2) (j+ 1)/4}1I2Ij+2),
J_Ii)= {j(j-l)/4}1I2Ii-2}.

Equations (2.15) imply that J_li)=O for i=O, 1, so that our realization
of sI (2, B) is of positive type discrete class according to Bargmann's
classification. Furthermore, Eq. (2.15) imply that L2(B) becomes. a direct
sum of two closed invariant subspaces spanned by Ii) with j even and
by li) with i odd. As is easily seen from (2.13), the former is the
space of even functions, and the latter the space of odd functions.

We proceed to the Casimir operator defined by

(2.16) Q= (J1)2+ (J2) 2_ (J3) 2

= 1/2(J+J_ +J_J+) - (J3) 2.

Calculation in terms of the annihilation and creation operators results
in Q=3/16, that is, Q reduces to a number. According to V. Bargmann
[IsJ the eigenvalues of Q can be expressed as q=n(1-n) with n quarter
integers for the irreducible unitary representations of discrete class. We
have here used the modified theory for SL2 (2, R). In our case, we obtain
n(1-n) =3/16, which is satisfied by the numbers n=l/4 and 3/4. These
numbers indeed characterize the realization of SL2 (2, R) in L2 (R).

Now we denote the eigenvalues of J3 by m. Then from. Eq. (2.13)
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we have

(2.17)
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m=j/2+ 1/4 or m= (j-l)/2+3/4.

Let U)= Im;n), where n=I/4 or 3/4 according as j is even or odd.
Then for both n = 1/4 and 3/4, Eqs. (2. 13) and (2. 15) turn out to be

(2.18) J+lm;n)= {3/16+m(m+ 1)} 1I2 Im+ l;n),
J_lm;n)= {3/16+m(m-l)}l/2Im-1;n),
J3 !m;n)=m m;n).

These equations provide irreducible infinitesimal unitary representations
of SLz(2, R) of positive type discrete class D l/4+ and D 3I4+. Hence the
Schrodinger quantization procedure gives rise to realization of SL(2, R)
in £2 (R) which is a direct sum of D 1I4+ and D3/4+. We point out in
conclusion that D,.+, n=I/4, 3/4, were realized in Bargmann's Hilbert
space of analytic functions by C. Itzykson [16].

3. Canonical Transforms

In this section we review quantum mechanical canonical transformations
associated with SL(2, R). Let us regard x and p as operators (p=-id/
dx) . We assume that a unitary operator U induces a linear transformation
of x and p;

(3.1) U[X]U-l=[ d -bJ[x] ad-bc=lp -c a p' .

The transformation (3.1) corresponds to the canonical transformation on

RZ by M=(~;) for the classical system. The unitary operator U
satisfying (3. 1) is a canonical transformation for the quantum system in
the sense that the canonical commutation relations between x and pare
unaltered under U. We assume further that U is expressed as an integral
transform; for jE£2 (R)

(3.2) Uj(x) = JRK(X, y)j(y)dy.

The identities UxU-IUj=Uxj and UpU-IUj=Upj for functions In a
suitable domain yield sufficient conditions for the kernel to satisfy;
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(3.3) (dx-b/i a: )K(x,y)=yK(x,y),

( -cx+a/i a: )K(x, y) = -1/i ;y K(x, y).

Proposing a solution of the form exp[Ax2 +2Bxy+ Cy2] , we find that
Eqs. (3.3) are satisfied by A=id/(2b), B=-i/b, and C=ia/(2b) for
b*O. The complex constant r is determined up to a phase factor by the
unitary condition

(3.4) JRK(X, z)K(x, y)dx=a(z-y)

to be r= (2\bl)-1/2, where the bar over K(x, z) indicates thee complex
conjugate. Thus we have a solution for b*O

(3.5) K(x, y) =a {(2lt Ibl )-1/2}exp[i(2b)-1 (dx2- 2xy+ ay2)]

where a is a complex constant with Ia I= 1. To determine a is our
purpose in the succeeding sections. The integral transform with the
kernel (3. 5), though a being undetermined, allows for the inversion
formula for rapidly decreasing functions, which can be proved by the
Fourier integral theorem. Therefore, the integral transform becomes an
isometry in a dense domain in VCR), and extensible to the whole space
V (B) as a unitary operator.

On supposing that a is determined in some way or other, we calculate
compositions of the integral transforms. Let

(3. 6) M21 =M2MI, M k= [~: ~:J. k= 1,2,21,

By Uk , k= 1, 2, 21, we mean the unitary operator determined by (3. 1)
with coefficient matrices Mk-l. For the unitary operators Uk, the integral
kernels and the phase factors are denoted by K k and ak, respectively,
k=l, 2, 21. We write out the iterated integral to get

(3.7) U2UI!(x) = JdyK2(x, y) JK 1(y, z)f(z)dz.

For functions of compact support we can reverse the order of integration
to integrate K 2(x,y)K1(y,z) with respect to y by using a formula

Joo [(It/IAI)I12ei.14 for A>o
(3.8) _ooeIAYdy= (1r/\A!)1I2e-i./4 for A<O.
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From (3. 7) and (3. 8) it follows that

(3.9) K 2(x,y)K1(y,z)dy
_ {a1a2(a21)-leiW/4K21(x, z) for b21/(b1b2»O,
- a1a2(a21)-le-iw/4K21(X,Z) for b21/(b1b2)<O.

Since the functions of compact support are dense in £2 (B), Eqs. (3. 7)
and (3. 9) imply that

(3.10)

(4.3)

Our purpose in this article is to show that for suitably chosen phase
factors ai, Eq. (3.10) exactly becomes U2U1=U21. Then we will
obtain not a unitary ray representation but a unitary representation of
SL2 (2,R).

4. Harmonic Oscillator

As we pointed out in Sec. 2, the compact subgroup 80(2) is crucial
in studying the realization of the double covering SL2 (2, B) of SL (2, B)
in £2 (B). Suppose that Ut is a unitary operator associated with the
one-parameter group exp(2tes). Then from (3. 5) the integral transform
Ut has the kernel

(4.1) K t(x,y)=a(t)(21tlsintl)-1/2
°exp [i(2 sin t)-1 (x2+y2cos t-2xy)].

The phase factor a (t) can be determined under the condition that Ut
should be a one-parameter group of unitary operators with initial value
Uo= id. We notice that aCt) must be determined in each interval
n1t<t«n+ 1)1t, n=O, +1, +2, .... We first determine aCt) in the
intervals -1t<t<O and O<t<1t so that Ut can tend to the identity as t
tends to zero, that is,

(4.2) Kt (x, y)-t5(x-y) as t-O.

To this end, we have only to require that JK,(x, y)dy tends to one as

t tends to zero. Calculation with the help of (3.8) results in

_ [eiW/4 for -1t<t<O,
aCt) - e-;w/4 for O<t<1t'.
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We proceed to extend the domain of aCt) so that Ut can be continuous
in t. First we look into the limit of Kt (x, y) as t tends to 1r: from the
below. After the change of variables from t to s by t=s+7l' the kernel
reads

(4.4) Ks+s(x, y) =e-is/4 (27l' Isin sI) -112
exp [i(2 sin s) -1 (x2+y2)coss+2xy)].

Letting s--+ - 0, we find that

(4.5)

In order to define aCt) for n<t<2n, we have to impose the condition
that

(4.6) Kt (x, y)--+-io(x+y) as t--+n+O.

By using the formula (3.8) we obtain eventually

(4.7)

In the same manner as above, we can determine aCt) for all the intervals
n1r:<t«n+l)1r, n=O, +1, +2, ''', and the limits of Kt(x,Y) as t--+nn;

,.
aCt) =e-is/4f3(t) , a(t+4n1r) =a(t),

with

{

-I for -2n<t<-1r,
f3(t)--+ i for -1r<t<O,

1 for O<t<1r:,
-i for 1r<t<2n,

and

{

-o(x-y) as t--+-2n,
K (x)--+ io(x+y) as t--+-n,

t ,y o(x-y) as t--+O,
-io(x+y) as t--+n.

Thus we have defined Ut completely. In the course of determining aCt),
we have found that Ut is periodic in t with period 4n.

The next task we have to fulfill is to show that the Ut's form a
one-parameter group; Us+t= U.Ut. To this end, we emply the formula
(3.10). For the integral transformations Ut under investigation, we have
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(4.10)
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U.Ut=a(s) 'a(t) ·a(s+t)exp(+i1r/4) U.+t,

where the signs + depend on the sign of b21 /(b1b2) with bI =sin t, b2 =sin s,
and b21 =sin(s+t). To identify the sign of b2I!(b1b2), we draw in the
(s, t)-plane lines s=mr, t=mn, and s+t=k1r, where n, m, and k are
integers. In each triangular region enclosed by the lines drawn above,
the sign of b21 /(b1b2) is determined definitely. We can then conclude
from (3.10), (4.8), and (4.10) that

(4.11)

On account of (4.9) this conclusion is true in the case where sand/or
t are equal to mr.

Thus we know that Ut's form a one-parameter group of unitary
operators. We show that the infinitesimal generator of Ut is indeed i
times the Hamiltonian operator H for the harmonic oscillator, or its
self-adjoint extension precisely. In effect, we can verify, after calculation,
that the kernel Kt of theintegral transform Ut satisfies

(4. 12) a: Kt (x, y) = -iHKt(x, Y),

so that Ut = e-itH• Further, in a suitable domain we obtain from (3.1)
with M=exp(2te3)

(4.13) e-itH[XJeitH= [c?S t -sin tJ [xJ
p smt cost p

which is Heisenberg's picture of the harmonic oscillator. We remark
incidentally that, while e- itH is periodic in t with period 41l', the left-hand
side of Eq. (4. 13) is periodic in t with period 21l', so is the right-hand side.

The integral transform for the harmonic oscillator is found in Ref. 17,
for example, in which the amplitude of Kt was given by (2n Isin t J) -112

but its double-valuedness was not clear. Then double-valuedness has been
solved in Ref. 18 for the n-dimensional harmonic oscillator by employing
the Maslov index. We have discussed the unitary operator e-itH rather
lengthly for the reason that the discussion in this section gives a key
principle in studying the canonical transforms associated with SL(2, R).

5. Dilation and a Free Particle

SL(2, R) admits an Iwasawa decomposition, SL(2, R) """KAN, or
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[abJ _ [ cos0sin 0] [e~ 0] [1 ']'
c d - -sinO cosO 0 e-~ 0 1

[
e~ COS 0 e~' COS tJ+e-~ sin tJ]

= -e~ sin tJ -e~' sin tJ+e-~ cos f)

The parameters (tJ, 1:, C) are given by

(5.2) ei'= (a-ic) (a2+c2)-1I2, e~= (a2+c2) 112,
C= (ab+cd) (a2+c2)-1.

We have done with the compact subgroup K in Sec. 4. We are going
to give one-parameter groups of unitary operators associated with the
subgroups A and N, which are parameterized by 1: and C, respectively.
Since the parameters 1: and C are coordinates of the factor space R2 in
the topological decomposition SO (2) X R2 of SL (2, R), we will not
encounter the problem of covering.

We start with the subgroup A. For A, the unitary operators not
expressed as the integral transforms given in (3. 5), because b=O. We
note here that group A is written as exp (2U 2) , so that the quantized
operator D=2Jz associated with exP(21:e2) is expected to generate a
one-parameter group e-id>, which describes a geometric transformation
x-+e~x. We can easily verify that the expression

(5.3)

defines a one-parameter group of unitary operators e-i~D. In fact, the
mappings f(x)-+e-~/2f(e-~x) are unitary and form a one-parameter
group. Moreover, one has for smooth functions f(x)

(5.4)

and in a suitable domain

(5.5)

We note that if we want to express e-j~D as an integral transform, we
have the kernel K~(x, y) written as

(5.6)

The e-j~D can be considered as describing a quantization of dilation in B.
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We turn to the subgroup N, which is written in the form exp C(el+
e3). From (3. 5) we have the integral kernel

(5.7) Kc (x, y) =a (C) (2tr II;; \) -1 I 2exp [i (21;;) -1 (x-y)2J.

The constant a(C) is determined by the condition that Kc (x, y) tends.
to a(x-y) as 1;;--+0. As is Sec. 4, the formula (3.8) then gives

(5.8)

We can verify that the integral transforms with kernel Kt (x, y) form a
one-parameter group by employing the formula (3. 10) with hI =Ch
bZ='2' and h2I ='2+Cl. The infinitesimal generator of the one-parameter
group is known to be -i times the free particle Hamiltonian F=JI +/3,

since

(5.9)

Thus we have a one-parameter group of unitary operators e-itF, which
describes the time evolution for a free particle.

6. Canonical Transforms Representing SL!(2, R)

In previous sections we have studied the one-parameter groups of
unitary operators corresponding to all the subgroups in the Iwasawa
decomposition (5.1) of SL(2, R). That is, we have e-iOH, e-i,D, and e-iCF

for exp (20e3) , exp (2-re2) , and exp C(eI +es), respectively. Hence, the
composition e-iCFe-i,De-iOH will give a unitary representation of SLz (2, B),
the double covering of SL (2, R). We notice again that SLz(2, R) is
represented, because the one-parameter group e-i'H requires the range of
() to be the double of the range of 0 for exp(2e3), the other the same
ranges, -oo<'t', C<+00. In view of this, we take (e, 1:', C) to be the
parameters of SLz(2, R) with ranging over the interval of length 41r.

Indeed of composing the one-parameter groups, we are going to
determine the factor a in the expression (3. 5) for the parameters
(fJ, 1:', C) of SL2 (2, B). Let

(6.1) a=e- i t</4p.

For e-i'H, the values of pare +1, +i, and for e-iCF, 13=1 or i,
depen<ling on the sign of h. In view of this, a is expected to range over
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+1, and +i.

Let M=(~ ~) be a matrix in SL(2, R), which is assigned by the

parameters (5.1). For M, there are two elements in SL2 (2, R) which
are assigned by the parameters (0,1', C) and (O+2n,'" C), the sign +
depending on the value of f3. To determine f3, we consider the sign of

(6.2) b=Ce' cos O+e- r sin 0

for l' and C fixed arbitrarily. On setting

(6.3)

(6.4)

the sign of b is alternating, as 0 goes into intervals Xo+mr<O<Xo+
(n+ I)1r in a manner such that, for example, b>O for Xo<O<Xo+n. In
view of the values of f3 for e- ilH, we define f3 to take the values such
that

{

-I for Xo-2n<O<Xo-n,
f3- i for Xo-n<O<Xo

1 for Xo<O<Xo+n,
-i for Xo+n<O<Xo+2n.

If 1'=C=O, then Xo=O, so that Def. (6.4) reduces to (4.8). We turn
to the case of 0=1'=0, whence tan Xo= -C with IXoI<n/2. If C>O,
then xo<O, so that Xo<O<Xo+n. Hence, from (6.4) we have f3=1. If
C<O, then Xo>O, so that Xo-1r<O<Xo. Hence, f3=i. Thus, Def. (6.4)
covers the values of f3 for e-itF

• We make an additional remark on f3.
The f3 takes one of values +1 (resp. +i) when b>O (resp. b<O).
Which of +1 (or +i) for f3 to take would be undetermined, if 0 ranged
over an interval of length 2n. We point out here that in Ref. 7 the
amplitude a/ (2n IbI) 1/2 in the integral kernel (3.5) is expressed as
e-ir/4/(2n\bI)1/2. Our definition (6.4) of resolves the ambiguity in the
square root.

We wish to show that the integral transforms whose kernels (3. 5)
has the factor a=e-ir/4 with f3 defined by (6.4) indeed give a unitary
representation of SL2 (2, R). Let M k , k= 1, 2. 21, be matrices in SL (2, R)
with parameters (Ok, 1'k, Ck) such that M21 =M2M1. Then from (5. 1) and
(5.2) applied for M21=M2Mh we have
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When the argument and the equality in Eq. (6. 5) are taken modulo 2:rr,
Eq. (6.5) gives the parameter 021 for M 21• However, if we take (6.5)
modulo 4n-, the 021 should be considered as a parameter of SL2(2, B).
Moreover, Eq. (6.5) modulo 4:rr gives the multiplication law for SL2(2, B)
together with similar equations obtained from the second and third
equations in Eq. (5. 2).

We are now looking into Eq. (6.5). Let Z(Ol) denote the quantity
in (6.5) enclosed by the square brackets, values of 'r1,'r2, and '2 being
fixed. Let cot K1 ='2 with IK11 <:rr/2 for '2 given. Then for '2>0,
argZ(Ol) ranges from -2:rr to 2n-, when 01 goes from -2n- to 2:rr, with
argZ(K1+nn-)=nn-+n-/2 and argZ(nn-)=nn-, n=-2, -1,0,1. For '2<0,
one has the same range of argZ(nn) as that for '2>0 with the difference
argZ(K1 +nn) = (n-l)n-+n/2 and argZ«n-l):rr) = (n-l)n-, n= -1,0,
1,2. Thus we know from Eq. (6.5) how 021 depends on 01 and O2•

We are now in a position to know the sign of b2d (b1b2) in the (Oh
Oz)-plane, and thereby able to show by virtue of Eq. (3.10) that the
integral transforms under consideration give a representation of SLz(2, R).
Let

(6.6)

where Ixkl <:rr/2 for k=1,2. For k=21, Xk will be shortly determined
uniquely. For (Xk, 'rk, t;;k), bk vanish, k=l, 2, 21. Since one has b21 =O
when b1=b2=0, Eq. (6.5) gives

(6.7)

by which X21 is determined uniquely. To identify the sign of bzt!Cb1b2).
we draw orthogonal lines 01=X1+n:rr and 02=X2+mn- in the (Oh Oz)-plane,
n and m being integers. We next draw the curves defined by 021=X21+
k:rr. k being integers, which pass the intersection points of the already
drawn orthogonal lines, because at those points b1=b2 =b21 =0. For
example, the curve 021=X21 passes the points (Xl + l:rr, Xz-l:rr), l being
integers, and so on. Thus the (Oh 02)-plane is broken up into curved
triangles, which are deformed from the triangles we considered in Sec.
4. The sign of b21 / (b1b2) can now be definitely settled in each curved
triangle.

We are ready to describe the composition of the integral transforms..
Let Vk, k= 1, 2, 21, be the integral transforms with certain values of fj
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which are determined by (6. 4) with Xk replaced for Xo• The operators
+ Uk are in two-to-one correspondence with M k• Now we can prove, by
the use of (3. 10),

(6.8)

For example, in the region such that X1-no<81<X lt 'X.z-n<Oz<Xz, and
XZ1 - 2n<8z1 <X21 - no, b2d (b1bz) is positive and moroovor, from (6. 1)
and (6.4) with Xk replaced for Xo, al=a2=ie-i•/4 and a21=-e-i•If,.
Then we have from (3.10)

(6.9)

In other regions the same reasoning holds. Thus we have proved (6.8)
for b1:;i:O, b2:;i:0.

We are in a final stage in studying canonical transforms. So far we
have defined integral transforms for (0, T, C) such that 8:;i:Xo+nn, n being
integers (see (6. 3), (6. 4) ). The last task we are left with is then to
define canonical transforms for O=Xo+mr. Definition is made by finding
the limits of the integral kernels as 0 tends to Xo+nn.

We take the integral kernel (3.5) again to consider its limit as b~O.

Since ad-be=l, we may understand that a:;i:O when b is near to zero.
Hence the integral kernel can be written, by replacing d with (I +be) / a,
in the form

(6.10) K(x,y)=a(2nlbl)-1I2exp {(ie/2b)x2}
exp{ (ia/2b) (y-x/a)2}.

It follows from (6.10) that, as b~O,

(6.11) K(x, y)dy~

[

ao(laol)-1I2ei./4exp( ~~: x 2) for a/b>0,

ao(laol)-1/2e-i./4exp( ~~: xz) for a/b<O,

where the subscript 0 indicates the limit as b~O.

We are going to the limit of the kernel (6.10) as 8~Xo. The condition
IXol <1C/2 means that ao=e" cos Xo>O, so that a/b>O for 8~Xo+0, and
a/b<O for 8~Xo-0. Thus from (6.1) and (6.4), a tends to ao=e-i•/4

or ao=ie-i•/4 according as 8---+'X.o+0 or O---+Xo-O. Hence the expression
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(6.14)

(6.11) shows that, as O-Xo+O

(6.12) JK(x, y)dy- (le' cos xol)-1I2exp{(-i/2)x2tan Io},

so that we have from (6. 10) and (6. 12), as 0-10 ,

(6.13) K(x, y)-exp(-i/2x2 tan 10) (I e' cos 10 1)-112

o«e' cos IO)-lx-y),

When '£'=<:=0, one has 10=0, so that Expression (6.13) reduces to
K(x, y)-o(x-y), which we have already obtained in (4.2).

In the same manner we obtain the limits of K(x, y) as O-Io+mr, n
being integers. We have indeed

K(x, y)-+i'exp[ (-i/2)x2 tan 10J (le' cos 10 1)-112

0« -1)'(e' cos XO)-lx-y)

as O-Io-hr, k= -2, -1,0,1. Expression (6.14) reduces to (4.9) when
'£'=<:=0. When '=0, one has 10 =0. Then expression (6.14) then reads

(6.15)

If 0-0, Expression (6. 15) with k=O reduces to (5. 6). However, if we
let tend to 211', (6.15) with k=-2 becomes

(6.16)

This means that for the matrix exp (2U2) , there are two canonical
transforms e-i,D and - e-i,D, which verifies that the canonical transforms
give a realization of SL2 (2, B) .

Thus we have defined the unitary operators U for all parameters of
SL2 (2, R) . The composition of operators UzUl = U21 is true for all
parameters of SLz(2, B) because of the continuity of U.

In conclusion, we point out that the canonical transformations we have
constructed have two invariant closed subspaces. which are the space of
even functions and of odd functions. To see this is an easy matter.

7. Canonical Transforms Representing SL (2. R)

In preceding sections we have proved that the quantization by the
Schrodinger procedure give rise to a representation of SLz(2. R) in
LZ (B). In this section we wish to remark that the quantization in LZ (W)
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will provide us with a unitary representation of SL (2, R) which is a
direct sum of unitary irreducible representations in the space of functions
of the radical variable. Though this fact is already claimed [19J, we
make a review of it from the viewpoint of reducing a quantum system.
We will also answer a question as to why SL(2, R) is represented, or
no covering group of SL(2, R) appear.

We begin with a classical system as in Sec. 2. Let (R4, w) be a
standard symplectic vector space endowed with the symplectic form

(7.1)

where (Xi, Pi), k= I, 2, are Cartesian coordinates. Consider the subgroup
80(2) xSL(2, R) of SP(4, R) given by

[expo(tN) 0 ] [olz b1zJ
exp (tN) cIz d1z

with

Les one-parameter subgroups of SL(2, R) act on R4. Then in the same
manner as in Sec. 2, we have Hamiltonian function Wj, j = I, 2, 3,
satisfying the sI (2, R) commutation relations under the Poisson bracket,

(7.3) W1=1/4 «p, p)-(x, x»),
Wz= 1/4«x, p)+<P, x»),
W3 = l!4 «p, p)+ (x, x»).

where (,) stands for the standard inner product in RZ, and x=

(~~), p=~~). From the action of SO(2) we have

(7.4) Wo= 1/2(p, Nx),

the angular momentum.
We turn to a quantum system on £2 (RZ). By Ji , k=l, 2, 3, we mean

the quantized operators associated with Wk , k= 1, 2, 3, by the Schrodinger
procedure (Pr+-i%xj). Further, we introduce oscillator annihilation
and creation operators by
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Then Jk take the form
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(7.6) J=I/4{(al+)2+ (al)2+ (a2+) 2+ (a2)2},
J 2=I/(4i) {(al+)2- (al)2+ (a2+)2- (a2)2},

J 3 = 1/2 {al+al +a2+a2+ I}.

We further mean by Jo-l/2 the quantized operator for Wo, half of the
angular momentum, which has the form

(7.7)

The Casimir operator Q is defined and related to Jo by

(7.8)

The operators Jk, k=O, 1, 2, 3, were employed in constructing oscillator
realization of SL(2, R) in Ref. 19.

To consider the problem of covering, we deal with the operator J3

related with the compact subgroup SO (2) of SL(2, B). Let !m, n> denote
the normalized eigenfunctions of the harmonic oscillator, the double of
J3• Then we have in a familiar way

(7.9) Im;n>= (m!nD-1I2(al+)m(a2+)nIO>,

J 3 Im;n>=l/2(m+n+l) Jm;n>,

Where m and n are non-negative integers. In contrast with the one­
dimensional case (2.14) the one-parameter group of unitary operators
e- itJ• has the same period 4;r as that of the corresponding classical one­
parameter group;.

(7.10)

Thus we are not involved with the difficulty of covering group in the
two dimensional case. In general, the covering group of SL (2, R) arises
for odd-dimensional quantum systems, but does not for even-dimensional
systems.

As is well known, oscillator realization (7.6) is reducible. Since the
eigenvalues of the Casimir operator are prescribed by the eigenvalues jo
of Jo (see (7. 8)), eigenspaces of Jo are invariant closed subspaces, where
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jo's are half integers. If we employ the polar coordinates (r, fJ), each
of them proves to be the space of functions of thee form ei<2i o-l>g(r)
with jo fixed. We note further that such spaces labeled by jo are identified
with L2(R+;rdr), R+ denoting the positive real numbers, by

J ei ,Zio-l>Ig1 (r)e i .2i ·-l>Igz (r)rdrd

=2'1:J:gl(r)8'z(r)rdr.

We may refer to this fact as the reduction of V(R2) to LZ(R+;rdr) by
the S1 action generated by the angular momentum 2Jo-1.

In terms of representation, the realization of SL(2. R) in LZ(B2) by
the Schrodinger quantization procedure is broken up into a series of
unitary irreducible representations of positive type discrete classes Dt.
D lIz+ appears once and D/. Jo=l, 3/2, ...• twice each [19J.

For the sake of consistency. we are to reproduce the oscillator realization
of SL(2, R) in V(R+;rdr) in the form of integral transforms [2.6.19].
However. we would like to claim that we are strict in the phase factor
of the integral kernel. Let SL(2. R) be given in the form (7.2). A
canonical transform Uis then determined in the same manner as in
preceding sections. The equation

(7.12) U(:1:)U-1=( d1z -b1z)(:&)
P -c1z a1z p

is integrated to give, for b:;t:o.

U1(x) = JK(x. p)f(p)dP.

with

(7.13) K(x. p) =a2 (211:Ibl)-lexp[i/(2b) (d(x. x)
-2(x. p) +a(p. q» J.

where dy=dYldyZ. The constant factor a2 must be the square of the for
the one-dimensional case. as easily seen from the matrix form of
SL(2. R) (see (7.12». Thus we have a!=e-iz/2p2 form (6.1). Since
p2=sgn b by (6.4). one has

(7.14)
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(7.15)

which shows that no covering groups of SL(2, R) appear.
If we adopt the polar coordinates by

x1=rcosO, xz=rsinO,
Y1=P cos,p, yz=p sin,p,

the integral kernel (7.13) is expanded in a Fourier series,

(7.16) K(x, y) = -i(sgn b) (21rlbl )-lexp[i/ (26) (dr2+apZ)J

X f.; (-i)mJ",(rp/b)e i '" ,-p).
m=-8

For functions ei ,2J.-1>Ig (r), the integral transform (7.13) reduces, for
each io, to the integral transform

(7.17)

where

f:Lj.(r, p)g(p)pdp,

Thus we have unitary irreducible representations D/ of SL(2, R) in
V (R+;rd1').

The results (7.17) are essentially due to Mukunda and Radhakrishnan
[19J, and related to the results due to Moshinsky, Wolf, et aI. [2,4, 6J
by the transformation g(1')_1'1/2g(1').

For one parameter subgroups of SL (2, R), the infinitesimal transfor­
mations of (7. 17) are obtained from J", k= 1, 2, 3, by restricting them
to the subspace of functions ei ,2j G-l>'g(1'). One has in effect

(7.18) J{=l/4 {-(fl/Orz-l/r%r-1'z+l/r2 (2jo-l)Z},
J{=I/(2i) (ro/ar+l),
J 3r=l/4{ -(fl/Or2-1/ro/ar+r2+ l/r2(2jo-l)2} ,

SL (2, R) is also regarded as a dynamical group of a radical free
particle with the Hamiltonian J{+J{.

Besides the series of unitary irreducible representations D jG+, the
quantization can give rise to a series of unitary irreducible representati­
ons of (nonexeptional) continuous class Cqo and Cq1l2, if a subgroup
SO (I, 1) x SL (2, R) of Sp(4, R) is taken into consideration [3, 6, 19J. See
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also Ref. 6 in which, though within Lie algebra representations, oscillator
realizations of SL(2, R) in £2(R) are coupled to give representations of
SL(2, R) in £2(R2) belonging to discrete series and to non-exceptional
continuous series.

In conclusion we make a remark on the action in a classical system,
which corresponds to the SL(2, R) action (7.17) on £2(R+;rdr). What
we need to do is to reduce the symplectic vector space (B4, w) by the
S1 action which are described by the first factor matrix in (7.2) [20J.
Consider the manifold M determined by 2Wo=p,=1, 1 being a non-zero
constant. By the action of SO (2) , the first factor matrix in (7.2), one
reduces M to the orbit manifold M R=MjSO(2), which can be realized
in R3 as one of two-sheeted 2-hyperboloid by the equation

(7.19)

The orbit manifold MR is endowed with coordinates r>O and Pr to be
identified tepologically with the product space R+ X R, and carries the
symplectic form dr/\dpr. We note here that since SO (2) and SL(2, B)
commute, SL(2, B) acts on MR. Further, the MR realized in R3 is
identified with an adjoint orbit of SL(2, B) in the dual space of the
Lie algebra si (2, R) , so that action of SL(2, B) reduces to that of
SL(2, R) jZ2=SO (1, 2), the identity component of the Lorentz group
00,2). In other words, the symplectic group 800 0,2) acts on the
phase space M R endowed with dr/\dpr. The group SOo0, 2) is thought
of as a dynamical group of Hamiltonian systems on MR reduced from
those on R4.

We summarize by saying that with reduced classical system (Mr, dr/\
dpr) admitting the symplectic action of SOo(I, 2) is associated the reduced
quantum system on £2(R+;rdr) admitting the unitary action of SL(2, R),
a double covering of SOo(l, 2). The classical system (MR, drl\dpr) is
parameterized by the angular meantime p,=l, so is the quantum system
V(B+;rdr) by the angular momentum 2Jo-i=2io-1.
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