ON THE WALSH FOURIER COEFFICIENTS

Kyung-Hwa Kim and Young-Talk Chung

1. Introduction

Let $\{\phi_n\}$ be a system of functions orthonormal and uniformly bounded over an interval (a, b). Suppose $|\phi_n(x)| \leq M$ for all $x \in (a, b)$ and all n.

We have the following Paley's theorems on Fourier Coefficients. (For the proofs, see [7])

Given a sequence of numbers c_1, c_2, \cdots we write

$$\mathcal{B}_{\tau}[c] = \{ \sum_{k} |c_{k}|^{\tau} k^{\tau-2} \}^{1/\tau}.$$

THEOREM 1.1. (i) If $f \in L^p$, $1 , and if <math>c_1, c_2, \cdots$ are the Fourier coefficients of f with respect to ϕ_1, ϕ_2, \cdots , then $\mathcal{B}_p[c]$ is finite and $\mathcal{B}_p[c] \le A_p M^{(2-p)/p} ||f||_p$, where A_p is a constant depending on p.

(ii) If given numbers c_1, c_2, \cdots satisfy the condition $\mathfrak{G}_q[c] < \infty$ for some $q \ge 2$, then there is an $f \in L^q$ having the c_n as its Fourier coefficients with respect to $\{\phi_n\}$, and such that $||f||_q \le A_q' M^{(q-2)/q} \mathfrak{G}_q[c]$.

The function f is the limit, in L^q , of $s_n = c_1\phi_1 + \cdots + c_n\phi_n$ as $n \to \infty$.

(iii) Moreover, we may take $A_{q'} = A_{q'}$, where q' is the conjugate exponent of q.

Given a sequence of complex numbers $c_k \to 0$, we denote by $\{c_k^*\}$ the sequence $|c_1|$, $|c_2|$, \cdots rearranged in decreasing order. Write $\mathcal{B}_r^*[c] = \mathcal{B}_r[c^*]$.

THEOREM 1.2. (i) Under the hypothesis of theorem 1.1 we have $\mathcal{B}_b^*[c] \leq A_b M^{(2-p)/p} ||f||_b$.

(ii) If c_1, c_2, \cdots are complex numbers tending to 0 such that $\mathcal{B}_q^*[c]$ is finite, then the c_n are the Fourier coefficients, with respect to the $\{\phi_n\}$, of an $f \in L^q$ satisfying $||f||_q \leq A_q' M^{(q-2)/q} \mathcal{B}_q^*[c]$.

Received June 19, 1987.

In this paper we apply the above theorems to Walsh Fourier coefficients and give a necessary and sufficient condition that a certain sequence of numbers should be the Walsh Fourier coefficients of a function in some L^p .

2. Main results

We first give the Walsh versions of the theorems 1.1 and 1.2.

Consider the Walsh functions $\{w_n\}$, $n=1, 2, \dots$, of orthonormal and uniformly bounded, $|w_n(x)|=1$, over an interval [0, 1).

Given a sequence of numbers c_1, c_2, \cdots we write

$$\mathcal{B}_{r,w}[c] = \{ \sum_{k} |c_k|^r (2^{k_1+1})^{r-2} \}^{1/r},$$

where k_1 is the natural number which satisfies $2^{k_1} \le k < 2^{k_1+1}$ for each k and $\mathcal{B}_{r,w}^*[c] = \mathcal{B}_{r,w}[c^*]$.

THEOREM 2.1. (i) If $f \in L^p(0, 1)$, $1 , and if <math>c_1, c_2, \cdots$ are the Walsh Fourier coefficients of f with respect to w_1, w_2, \cdots , then $\mathcal{B}_{p,w}[c]$ is finite and $\mathcal{B}_{p,w}[c] \le A_p ||f||_p$.

- (ii) If given numbers c_1, c_2, \cdots satisfy the condition $\mathcal{B}_{q,w}[c] < \infty$ for some $q \ge 2$, then there is an $f \in L^q$ having the c_n as its Walsh Fourier coefficients with respect to $\{w_n\}$, and such that $||f||_q \le A_q' \mathcal{B}_{q,w}[c]$. The function f is the limit, in L^q , of $s_n = c_1 w_1 + \cdots + c_n w_n$ as $n \to \infty$.
 - (iii) Moreover, we may take $A_q' = A_{q'}$.

Proof. (i) Since $1 , <math>\mathcal{B}_{p,w}[c] \le \mathcal{B}_{p}[c]$.

By theorem 1.1 (i), with M=1, (i) holds.

(ii) Since $q \ge 2$, $\mathcal{B}_q[c] \le \mathcal{B}_{q,w}[c]$.

By theorem 1.1 (ii), with M=1, (ii) holds.

THEOREM 2.2. (i) Under the hypothesis of theorem 2.1 (i), we have $\mathfrak{B}_{\mathfrak{p},w}^*[c] \leq A_{\mathfrak{p}} ||f||_{\mathfrak{p}}$.

(ii) If c_1, c_2, \cdots are complex numbers tending to 0 such that $\mathcal{B}_{q,w}^*[c]$ is finite, then the c_n are the Walsh Fourier coefficients, with respect to the $\{w_n\}$, of an $f \in L^q$ satisfying $||f||_q \leq A_q' \mathcal{B}_{q,w}^*[c]$.

Proof. (i) since $1 , <math>\mathcal{B}_{p,w}^*[c] \le \mathcal{B}_p^*[c]$.

By theorem 1.2 (i), with M=1, (i) holds.

(ii) Since $q \ge 2$, $\mathcal{B}_q^*[c] \le \mathcal{B}_{q,w}^*[c]$.

By theorem 1.2 (ii), with M=1, (ii) holds.

We now give a necessary and sufficient condition that a certain sequence of numbers should be the Walsh Fourier coefficients of a function in some L^p .

Given a sequence $c_0, c_1, c_2 \cdots$ tending to 0, let $c_0^* \ge c_1^* \ge c_2^* \ge \cdots$ be the sequence $|c_0|, |c_1|, |c_2|, \cdots$ rearranged in descending order of magnitude.

THEOREM 2.3. (i) A necessary and sufficient condition that numbers $c_n \rightarrow 0$ should be, for every variation of their arrangement, the Walsh Fourier coefficients of a function $f \in L^q$, $q \ge 2$, is that $\mathcal{B}_{q,w} * [c] < \infty$. If the condition is satisfied, then for every such f,

$$||f||_{a} \leq A_{a}' \mathcal{B}_{a,w}^{*}[c] \cdots (*)$$

(ii) A necessary and sufficient condition that the c_n should be, for some variation of their arrangement, the Walsh Fourier coefficients of an $f \in L^p$, $1 , is that <math>\mathcal{B}_{p,w}^*[c] < \infty$. Moreover, we have, for every such f,

$$\mathcal{B}_{b,w}^*[c] \leq A_b ||f||_b \cdots (**)$$

The proof is based on the following lemmas.

LEMMA 2.4. ([7]) Suppose f is a non-negative function defined for $x \ge 0$. Let r > 1 and s < r - 1. If $f^r(x)x^s$ is integrable over $(0, \infty)$, so is $\{x^{-1}F(x)\}^r x^s$, where $F(x) = \int_0^x f dt$.

LEMMA 2.5. If $a_0 \ge a_1 \ge a_2 \ge \cdots \to 0$, a necessary and sufficient condition that the function $g(x) = \sum a_n w_n(x)$ should belong to L^r , r > 1, is that the sum $S_r = \sum a_n^r (2^{n_1+1})^{r-2}$, where $2^{n_1} \le n < 2^{n_1+1}$, should be finite.

Proof. Let G(x) and H(x) denote, respectively, the integrals of g and |g| over the interval (0, x). Let $A_n = a_1 + a_2 + \cdots + a_n$. By B we shall mean a constant depending at most on r, but not necessarily always the same.

If $g \in L$, in particular if $g \in L'$, the series defining g is S[g]. So

$$G(1/2^{n}) = \int_{0}^{1/2^{n}} g(t) dt$$

$$= \int_{0}^{1/2^{n}} \left[\sum_{k=0}^{\infty} a_{k} w_{k}(t) \right] dt$$

$$= \sum_{k=0}^{\infty} a_{k} \int_{0}^{1/2^{n}} w_{k}(t) dt$$

$$= (\sum_{k=0}^{2^{n}} a_{k}) \cdot 1/2^{n}$$

$$\geq 2^{n} \cdot a_{2^{n}-1} \cdot 1/2^{n}$$

$$= a_{2^{n}-1}$$

$$\geq a_{2^{n}},$$

$$\sum_{n=2}^{\infty} a_{n}^{r} (2^{n_{1}+1})^{r-2} = \left[a_{2}^{r} + a_{3}^{r}\right] (2^{2})^{r-2} + \left[a_{4}^{r} + a_{5}^{r} + a_{6}^{r} + a_{7}^{r}\right] (2^{3})^{r-2} + \cdots$$

$$\leq 2 \cdot a_{2}^{r} (2^{2})^{r-2} + 2^{2} \cdot a_{2^{n}}^{r} (2^{3})^{r-2} + \cdots$$

$$= \sum_{n=1}^{\infty} a_{2^{n}}^{r} 2^{n} (2^{n+1})^{r-2}$$

$$\leq \sum_{n=1}^{\infty} G^{r} (1/2^{n}) (2^{n})^{r-1} \cdot 2^{r-2}$$

$$\leq \sum_{n=1}^{\infty} \left(\int_{0}^{1/2^{n}} |g(t)| dt\right)^{r} (2^{n})^{r-1} \cdot 2^{r-2}$$

$$= \sum_{n=1}^{\infty} H^{r} (1/2^{n}) \left(\frac{1}{1/2^{n}}\right)^{r-1} 2^{r-2}$$

$$\leq \sum_{n=1}^{\infty} \int_{1/2^{n}}^{1/2^{n-1}} \left(\frac{H(x)}{x}\right)^{r} (2^{n})^{-1} 2^{r-2}$$

$$\leq \sum_{n=1}^{\infty} \int_{1/2^{n}}^{1/2^{n-1}} \left(\frac{H(x)}{x}\right)^{r} 2^{r-2}$$

$$= B \int_{0}^{1} \left(\frac{H(x)}{x}\right)^{r}$$

$$\leq B \left(\frac{r}{r-1}\right)^{r} \int_{0}^{1} |g|^{r} dx$$

$$= B \int_{0}^{1} |g|^{r} dx,$$

by lemma 2.4.

This establishes the necessity of the condition in 2.5.

To show that the condition is sufficient we observe that

$$|g(x)| = |\sum_{\nu=0}^{\infty} a_{\nu} w_{\nu}(x)|$$

$$\leq |\sum_{\nu=0}^{2^{n}-1} a_{\nu} w_{\nu}(x)| + |\sum_{\nu=2^{n}}^{\infty} a_{\nu} w_{\nu}(x)|$$

$$\leq \sum_{\nu=0}^{2^{n}-1} a_{\nu} + \left| \sum_{\nu=2^{n}}^{\infty} (a_{\nu} - a_{\nu+1}) D_{\nu+1}(x) - a_{2^{n}} D_{2^{n}} \right|
\leq \sum_{\nu=0}^{2^{n}-1} a_{\nu} + \left| \sum_{\nu=2^{n}}^{\infty} (a_{\nu} - a_{\nu+1}) D_{\nu+1}(x) + a_{2^{n}} D_{2^{n}} \right|
\leq \sum_{\nu=0}^{2^{n}-1} a_{\nu} + \sum_{\nu=2^{n}}^{\infty} (a_{\nu} - a_{\nu+1}) \left| D_{\nu+1}(x) \right| + a_{2^{n}} \left| D_{2^{n}} \right|
\leq \sum_{\nu=0}^{2^{n}-1} a_{\nu} + a_{2^{n}} \frac{2^{2}}{x}.$$

If follows that $|g(x)| \le BA_{s^n}$ for $\frac{1}{2^{n+1}} \le x \le \frac{1}{2^n}$.

Hence $\int_0^1 |g|^r dx = \sum_{n=0}^{\infty} \int_{1/2^{n+1}}^{1/2^n} |g|^r dx < B\Sigma A_2^r - \frac{1}{2^{n+1}} < B\Sigma A_2^r - \frac{1}{n^2}$, and it remains to show that the last series converges if $S_r < \infty$. $S_r < \infty$ implies $\Sigma a_n^r n^{r-2} < \infty$.

Let a(x) denote the function equal to a_n for $n-1 \le x < n$ $(n=1, 2, \cdots)$, and A(x) the integral of a(t) over (0, x). The inequality $\sum a_n^r n^{r-2} < \infty$ implies that $a^r(x)x^{r-2}$ is integrable over $(0, \infty)$. So (by lemma 2.4 with s=r-2) is the function $\{x^{-1}A(x)\}^r x^{r-2} = A^r(x)x^{-2}$.

The integrability of the latter function is equivalent to the convergence of $\Sigma A_n r^{-2}$. Hence $\Sigma A_2 r^{-2}$ converges and lemma 2.5 follows.

We are now in a position to prove theorem 2.3.

(i) That the condition of (i) is sufficient follows from (ii) of theorem 2.2, whence also we can deduce the inequality (*).

To prove the necessity of the condition, consider the series $\Sigma c_n * w_n(x)$. Since $\Sigma c_n * w_n(x)$ belongs to L^q , by lemma 2.5 we see that

$$\mathcal{B}_{a,w}^*[c] = \{ \Sigma (c_n^*)^r (2^{n_1+1})^{r-2} \}^{1/r} < \infty, \text{ where } 2^{n_1} \le n < 2^{n_1+1}.$$

- (ii) By (i) of theorem 2.2, we see that the condition of theorem 2.3
- (ii) is necessary. Moreover, we can deduce the inequality (**).

To prove the sufficiency of the condition, consider the series $\Sigma c_n * w_n(x)$. Since $\mathscr{B}_{p,w}*[c] < \infty$, by lemma 2.5 $\Sigma c_n * w_n(x)$ belongs to L^p .

References

- 1. S.V. Bočkarev, On the Fourier-Walsh coefficients, Math. USSR. Vol. 4. No. 1-3. (1970), pp. 209-214.
- 2. J.E. Coury, Walsh series with coefficients tending monotonically to zero, Pacific J. Math. 54 (1974).
- 3. N.J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), pp. 372-414.
- 4. R.A. Hunt, Orthogonal expansions and their continuous analogues, Proceedings of the conference held at Southern Illinois University Edwardsville, April 27-29, 1967.
- 5. R.A. Hunt, Developments related to the a.e. convergence of Fourier series, (Preprint).
- 6. G.W. Morgenthaler, On Walsh Fourier series, Trans. Amer. Math. Soc. 84 (1957), pp. 472-507.
- A. Zygmund, Trigonometic series, 2nd, ed., Cambridge Univ. Press, New York, 1959.

Ewha Womans University Seoul 120, Korea