ENVELOPING SEMIGROUPS AND EQUICONTINUITY OF TRANSFORMATION GROUPS

KEE JOON KIM

0. Introduction

The enveloping semigroup of a transformation group (X, T, π) has been introduced by R. Ellis [1] as the closure of the set $\pi^T = \{\pi^t | t \in T\}$ for the p.c. topology on X^X , having a semigroup structure. In the present paper, we introduce the u.c. enveloping semigroup of (X, T, π) as the closure of π^T for the u.c. topology on X^X having a semigroup structure. The purpose of this paper is to find some properties on the u.c. enveloping semigroups and the equicontinuity of transformation groups.

Throughout this paper we assume that X is the uniform space with a uniformity \mathcal{U} and the uniform topology. For every $U \in \mathcal{U}$ and $x \in X$, U[x] denotes the set of all y such that (x, y) belongs to U and X^x denotes the set of all functions of X into itself.

1. Preliminaries

A subspace S of X is said to be *precompact* if for each U in \mathscr{U} there exists a finite subset $\{x_1, x_2, \dots, x_n\}$ of S such that $S \subset \bigcup_{i=1}^n U[x_i]$. Every subspace of a precompact uniform space is also precompact. X is compact iff it is precompact and complete.

A subset F of X^X is said to be equicontinuous if for each U in $\mathscr U$ there exists a V in $\mathscr U$ such that $(x,y) \in V$ implies $(f(x), f(y)) \in U$ for all $f \in F$.

For each \mathscr{U} in U and x in X, U_x denotes the set of all (f,g) in $X^x \times X^x$ such that $(f(x), g(x)) \in U$ and U_x the set of all (f,g) in $X^x \times X^x$ such that $(f(y), g(y)) \in U$ for all $y \in X$. Then the family $\{U_x | U \in \mathscr{U}\}$ is a base for a uniformity for X^x , and the family $\{U_x | U \in \mathscr{U}\}$

^{*} This work was supported by a research grant from the Ministry of Education 1986.

 \mathcal{U} , $x \in X$ is a subbase for a uniformity for X^{X} .

The uniformity with the base $\{U_x | U \in \mathcal{U}\}$ is called the uniformity of uniform convergence for X^X , denoted by \mathcal{U}_u , and the uniformity with the subbase $\{U_x | U \in \mathcal{U}, x \in X\}$ is called the uniformity of pointwise convergence for X^X , denoted by \mathcal{U}_p . The uniform topology of \mathcal{U}_u is called the topology of uniform convergence or simply the u.c. topology on X^X , and the uniform topology of \mathcal{U}_p is called the topology of pointwise convergence or simply the p.c. topology on X^X .

The u.c. topology is finer than the p.c.topology since $U_x[f]$ is contained in $U_x[f]$ for all $(U, x, f) \in \mathcal{U} \times X \times X^x$. If X is complete, then so is the uniform space (X^x, \mathcal{U}_u) . We also can show that if X is precompact then a subspace F of (X^x, \mathcal{U}_u) is precompact iff for each U in \mathcal{U} there exists a finite partition \mathcal{A} of X such that $(f, A) \in F \times \mathcal{A}$ implies $f(A) \times f(A) \subset U$. Thus we obtain the followings.

THEOREM 1.1. Let X be compact and let F be a subspace of (X^X, \mathcal{U}_u) consisting of continuous functions. Then F is precompact iff it is equicontinuous.

Proof. Given any member U of \mathscr{U} , there exists a symmetric member V of \mathscr{U} with $V^3 \subset U$ and there exists a finite subset G of F such that $F \subset \bigcup \{V_X[g] | g \in G\}$. For each f in F there exists a g_f in G such that $V_X[g_f]$ contains f. But the function g_f is uniformly continuous since X is compact. Hence for every g_f in G there exists a W_{g_f} in \mathscr{U} such that $(x,y) \in W_{g_f}$ implies $(g_f(x),g_f(y)) \in V$.

Now we set $W = \bigcap \{W_{\varepsilon_f} | f \in F\}$. Then it is member of $\mathscr U$ since the set G is finite. Moreover for each f in F and (x, y) in W,

$$(f(x), f(y)) = (f(x), g_f(x)) \circ (g_f(x), g_f(y)) \circ (g_f(y), f(y)) \in V^3 \subset U.$$

Conversely, suppose that F is equicontinuous and U is any member of \mathscr{U} . Then there exists a V in \mathscr{U} such that $(f(x), f(y)) \in U$ for all $f \in F$ and $(x, y) \in V$. Since X is precompact there exists a finite partition \mathscr{A} of X such that $A \times A \subset V$ for all $A \in \mathscr{A}$. Thus $f(A) \times f(A) \subset U$ for all (f, A) in $F \times \mathscr{A}$. Therefore F is precompact.

THEOREM 1.2. If F is an equicontinuous subset of X^x equipped with the relative topology for the u.c. topology, then the map $\mu: (x, f) \mapsto f(x)$ of $X \times F$ into X is continuous.

Proof. Let (x, f) be a point of $X \times F$ and let U and V be any

members of $\mathscr U$ with $V^2 \subset U$. Since F is equicontinuous there exists a W in $\mathscr U$ such that $(g(y), g(z)) \in V$ for all $g \in F$ and $(y, z) \in W$. Then $W[x] \times (V_X[f] \cap F)$ is a neighborhood of (x, f) in $X \times F$ such that U[f(x)] contains $\mu(W[x] \times (V_X[f] \cap F))$.

In fact, if $(u, p) \in W[x] \times (V_x[f] \cap F)$ then $(p(x), p(u)) \in V$ and $(f(x), p(x)) \in V$, so that

$$(f(x), \mu(u, p)) = (f(x), p(u))$$

= $(f(x), p(x)) \circ (p(x), p(u)) \in V^2 \subset U.$

2. The Enveloping Semigroups

In the remainder of this paper, we assume that X is compact Hausdorff. The set X^{X} is provided with the semigroup structure such that for any f and g in X^{X} , $fg: X \rightarrow X$ is defined by (fg)(x) = g(f(x)) for all x in X. Then for each g in X^{X} the left translation L_{g} on the semigroup X^{X} is continuous for the u.c. topology. If a function g in X^{X} is continuous then the right translation R_{g} on the semigroup X^{X} is continuous for the u.c. topology.

We also can show that for a transformation group (X, T, π) the closure of π^T for the u.c. topology on X^X is a subsemigroup of X^X .

DEFINITION 2.1. The closure of π^T for the u.c. topology on X^X with the semigroup structure will be called the u.c. enveloping semigroup of the transformation group (X, T, π) and denoted by $E_u(X)$ or E_u . On the other hand, the enveloping semigroup defined by R. Ellis is denoted by E(X) or E.

REMARK 2.2. For a transformation group (X, T, π) , the u.c. enveloping semigroup $E_{u}(X)$ is a sub-semigroup of the enveloping semigroup E(X).

THEOREM 2.3. Every function in $E_u(X)$ is continuous. Hence, every right or left translation on $E_u(X)$ is continuous for the relative topology for the u.c. topology on X^{X} .

Proof. Let p be any function in $E_u(X)$ and x any point of X. Let U be a member of \mathcal{U} with $V^3 \subset U$ for some symmetric member V of \mathcal{U} . Then there exists a t in T such that $\pi^t \in V_X \lceil p \rceil$.

Moreover, since π^t is continuous, there exists a W in $\mathscr U$ such that $\pi^t(W[x]) \subset V[\pi^t(x)]$. Since $z \in W[x]$ implies $(\pi^t(x), \pi^t(z)) \in V$,

 $(p(x), p(z)) = (p(x), \pi^t(x)) \circ (\pi^t(x), \pi^t(z)) \circ (\pi^t(z), p(z)) \subset V^3 \subset U$. This means that $p(W[x]) \subset U[p(x)]$ and p is continuous.

REMARK 2.4. In general, it is not true that for each q in E(X) the right translation R_q on E(X) is continuous. In particular, if (X, T, π) is almost periodic then it is true [1].

THEOREM 2.5. The map $\nu:(p,t)\mapsto p\pi^t$ of $E_u\times T$ into E_u defines an action on E_u , where E_u has the relative topology for the u.c. topology and T has the discrete topology.

Proof. It is sufficient to show that ν is continuous. Let a net $\{(p_a, t_a)\}$ converge to (p, t) in $E_u \times T$. For each α , the right translation $p| \to p\pi^{t_a}$ on E_u is continuous, so $\{p_\beta \pi^{t_a}\}$ converges to $p\pi^{t_a}$. But the map $t| \to \pi^t$ of T into E_u is continuous since T is discrete. Hence $\{\pi^{t_a}\}$ converges to π^t in E_u . Moreover, $\{p\pi^{t_a}\}$ converges to $p\pi^t$ in E_u since the left translation L_p

3. Equicontinuous Transformation Groups

on E_{ν} is continuous. This means that ν is continuous.

A transformation group (X, T, π) is said to be *equicontinuous* if π^T is equicontinuous. In this section, we obtain a necessary and sufficient condition for a transformation group (X, T, π) to be equicontinuous, related to the u.c. enveloping semigroup $E_{\pi}(X)$.

THEOREM 3.1. (X, T, π) is equicontinuous iff $E_u(X)$ is precompact in the uniform space (X^X, \mathcal{U}_u) .

Proof. It is clear by Theorem 1.1 and [4; Theorem 5.9].

REMARK 3. 2. In fact, since X is compact Hausdorff, so is $E_u(X)$ if (X, T, π) is equicontinuous. In this case, there exist a minimal subset and an idempotent in the transformation group (E_u, T, ν) defined in Theorem 2. 5. Moreover, M is a minimal subset of (E_u, T, ν) iff it is a minimal right ideal of E_u , and there exists an idempotent u in a minimal right ideal M of E_u . Furthermore, if $p \in M$ then up = p, and $Mu = \{pu \mid p \in M\}$ is a group with identity u.

LEMMA 3.3. If Y is a compact Hausdorff space with a group structure such that all the left or right translations on Y are continuous, then it is a topological group.

Proof. It is proved in [2; Theorem 2].

THEOREM 3.4. If (X, T, π) is equicontinuous then $E_u(X)$ is a topological group.

Proof. Since (X, T, π) is equicontinuous E_u is compact Hausdorff for the u.c. topology on X^X . There exists a minimal right ideal M of E_u and an idempotent u in M. Let x be any point of X and y=u(x). Then u(y)=u(x).

Since the map $\theta_{(x,y)}: p \mapsto (p(x), p(y))$ of E_x into $X \times X$ is continuous,

$$(u(x), u(y)) \subseteq \theta_{(x,y)}(E_u) = \theta_{(x,y)}(Cl(\pi^T)) \subset Cl((x,y)T).$$

Thus $Cl((x, y) T) \cap A(X)$ is nonempty. We have x=y by the distality of (X, T, π) . This implies that u(x)=x for all x in X. Therefore,

$$p=up \in ME_u \subset M$$

for all p in E_u . Hence E_u is a minimal right ideal.

Furthermore, $E_u = E_u u$ clearly. So E_u is a group. Thus the proof is completed from Lemma 3.3, Remark 3.2 and Theorem 2.3.

COROLLARY 3.5. If (X, T, π) is equicontinuous then $E_u(X)$ is a compact Hausdorff topological group consisting of homeomorphisms on X.

Proof. It follows from Remark 3.2, Theorems 2.3 and 3.4.

THEOREM 3.6. If T is a compact topological group then (X, T, π) is equicontinuous.

Proof. Let U be any member of $\mathscr U$ and V a symmetric member of $\mathscr U$ with $V^2 \subset U$. Since the map π is continuous, for every (x,t) in $X \times T$ there exist an open symmetric member $W_{(x,t)}$ of $\mathscr U$ and an open neighborhood $N_{(x,t)}$ of t in T such that $W_{(x,t)}{}^2[x]N_{(x,t)}$ is contained in V[xt]. Since the family $\{W_{(x,t)}[x] \times N_{(x,t)} | x \in X, t \in T\}$ is an open cover of the compact space $X \times T$. there exist $(x_1,t_1), (x_2,t_2), \cdots$,

$$(x_n, t_n)$$
 in $X \times T$ such that $X \times T = \bigcup_{i=1}^n W_{(x_i, t_i)}[x_i] \times N_{(x_i, t_i)}$.

Now we set $W = \bigcap_{i=1}^{n} W_{(x_i,t_i)}$. Then W belongs to \mathcal{U} . Moreover,

$$(x, y)t = (xt, yt) \in V^2 \subset U$$

for all (x, y) in W and t in T. This completes the proof.

COROLLARY 3.7. If (X, T, π) is equicontinuous, then the map μ : $(x, p) \mapsto p(x)$ of $X \times E_u$ into X defines an equicontinuous transformation group (X, E_u, μ) .

Proof. It follows from Theorems 1.2 and 3.6.

References

- 1. R. Ellis, Lectures on topological dynamics, W.A. Benjamin, New York, 1969.
- 2. R. Ellis, Locally compact transformation groups, Duke Math. J., 24 (1957), 119-125.
- 3. J.L. Kelly, General topology, Springer-Verlag, New York, 1955.
- W. Page, Topological uniform structures, John Wiley and Sons, New York, 1978.
- 5. S. Willard, General topology, Addison-Wesley, Reading, 1970.

Jeonju Woosuk University Jeonju 520, Korea