ON SOME PROPERTIES OF G-SPACES

Moo Ha Woo and Yeon Soo Yoon

In a series of papers [1] and [2], D.H. Gottlieb introduced and studied the evaluation subgroups $G_m(X)$ of $II_m(X)$. $G_m(X)$ is defined to be the set of all $\alpha \in II_m(X)$ for which there is a representative f of α and a map $F: X \times S^m \to X$ of type (1, f); that is, $F|_{X=1_X}$, the identity mapping of X and $F|_{S^m=f}$. A space X satisfying $G_m(X) = II_m(X)$ for all m is called a G-space. Any H-space is a G-space, but the converse is not true [6].

In this paper, we define a weakly cyclic map and study some properties of weakly cyclic maps, and characterize G-spaces by these maps. We find a condition, under which H-spaces and G-spaces are equivalent. Also, we study homotopy groups of free mapping space X^{s^s} with a weakly cyclic maps as base point, and generalize a Koh's result.

Unless otherwise stated, we shall work in the category of spaces with base points and having the homotopy type of locally finite CW-complexes. All maps shall mean continuous functions. As usual, all maps and homotopies are to respect base points. The base points as well as the constant maps will be denoted by *. 1 (sometimes with decoration) will denote the identity function of space when it is clear from the context.

The folding map $p: X \bigvee X \rightarrow X$ is given by p(x, *) = p(*, x) = x for each $x \in X$.

Varadarajan [7] generalized $G_m(X)$ to G(A, X) for any space A; G(A, X) is the subset of [A, X] containing all elements α which can be represented by a map $f: A \rightarrow X$ such that $V(1 \lor f): X \lor A \rightarrow X$ extends to a map $F: X \times A \rightarrow X$. The map $f: A \rightarrow X$, which is a representation of an element of G(A, X) is called "cyclic". Lim called a map $f: A \rightarrow X$ is cyclic [5] if there exists a map $F: X \times A \rightarrow X$ such that the following diagram is homotopy commutative; that is $Fj \sim V(1 \lor f)$,

This work was supported by the research grant of KOSEF.

$$\begin{array}{ccc}
X \times A & \xrightarrow{F} & X \\
\uparrow j & \uparrow \downarrow \downarrow \\
X \vee A & \xrightarrow{(1 \vee f)} & X \vee X
\end{array}$$

where $j: X \bigvee A \rightarrow X \times A$ is the inclusion and $p: X \bigvee X \rightarrow X$ is the folding map. However, in the category of spaces with base points and having the homotopy type of locally finite CW-complexes, the definition of Lim is equivalent to that of Varadarajan.

It is known [7] that if $f: A \rightarrow X$ is a cyclic map and $\theta: B \rightarrow A$ is an arbitrary map, then the composition map $f \circ \theta: B \rightarrow X$ is a cyclic map. In fact, the converse is also true. Therefore, a map $f: A \rightarrow X$ is a cyclic if and only if $f \circ \theta: B \rightarrow X$ is cyclic map for any space B and any map $\theta: B \rightarrow A$.

In [5], Lim showed that the following statements are equivalent;

- 1) X is an H-space
- 2) 1_X is cyclic
- 3) G(A, X) = [A, X] for any space A.

Now we introduce weakly cyclic maps in order to study G-spaces.

DEFINITION 1. A map $f: A \to X$ is called weakly cyclic if for any sphere S^n and any map $\theta: S^n \to A$, $f \circ \theta: S^n \to X$ is cyclic. The set of all homotopy classes of weakly cyclic maps from A to X is denoted by WG(A, X). In fact, $f: A \to X$ is a weakly cyclic if $f_*(\Pi_n(A)) \subset G_n(X)$ for each n.

Clearly any cyclic map is weakly cyclic, but the converse does not hold (see Remark 5).

LEMMA 2. Let $f: A \rightarrow X$ be a weakly cyclic map and $\theta: B \rightarrow A$ is an arbitrary map. Then $f \circ \theta: B \rightarrow X$ is weakly cyclic.

LEMMA 3. If $g: X \rightarrow Y$ has a right homotopy inverse, then g induces a map $g_*: WG(A, X) \rightarrow WG(A, Y)$ for any space A.

Proof. For a weakly cyclic map $f: A \rightarrow X$, $(gf)_*(\Pi_n(A)) = g_*f_*(\Pi_n(A)) \subset g_*(G_n(X)) \subset G_n(Y)$ for all n. The last part follows from Proposition 1.4 [2].

The next theorem shows that a G-space X may be characterized by several ways.

THEOREM 4. The followings are pairwise equivalent;

- i) X is a G-space
- ii) 1x is weakly cyclic
- iii) WG(A, X) = [A, X] for any space A
- iv) X is dominated by a G-space.

Proof. i) implies ii). Since $\Pi_n(X) = G_n(X)$ for all n, 1_X is weakly cyclic.

- ii) implies iii). Let A be any spaces and $[f] \in [A, X]$. Then $f=1_X f$ is weakly cyclic by Lemma 2.
- iii) implies i). Take A=X. 1_X is weakly cyclic, so that $\Pi_n(X)=G_n(X)$ for all n.
- i) implies iv). It is clear. iv) implies ii). Let X be dominated by a G-space Y. Then there exists maps $k: X \rightarrow Y$ and $h: Y \rightarrow X$ such that $hk: X \rightarrow X$ is homotopic to 1_X . Since Y is a G-space, $k: X \rightarrow Y$ is weakly cyclic. Thus we have, by Lemma 3, $1_X \sim hk$ is weakly cyclic.

REMARK 5. Siegel [6] produced an example of 3-dimensional manifold T that is a G-space but not an H-space. Also, It is known [5] that X is an H-space if and only if 1_X is cyclic. Thus we have, by Theorem 4, the map 1_T that is weakly cyclic but not cyclic; that is, $G(A, X) \neq WG(A, X)$ in general. However, the following theorem shows that G(A, X) = WG(A, X) under certain condition.

THEOREM 6. Let X be any space. If A is domonated by a sphere S^{m} , then a map $f: A \rightarrow X$ is cyclic if and only if $f: A \rightarrow X$ is weakly cyclic.

Proof. Clearly any cyclic map is weakly cyclic. Now, suppose that $f: A \rightarrow X$ is weakly cyclic. Since A is dominated by S^m , there exist maps $k: A \rightarrow S^m$ and $h: S^m \rightarrow A$ such that $hk: A \rightarrow A$ is homotopic to the map 1_A . Since $f: A \rightarrow X$ is weakly cyclic, $fh: S^m \rightarrow X$ is cyclic. Thus we have, by Lemma 1.3 [7], $f \sim (fh)k: A \rightarrow X$ is cyclic.

COROLLARY 7. If a G-space X is dominated by a sphere S^m , then X is an H-space. In particular, the sphere S^m is G-space iff m=1, 3, 7.

Let X^{s^p} denote the space of free mappings from S^r to X with compact open topology. Then the evaluation map $w: X^{s^p} \to X$ given by w(f) = f(*) is a fibre map. Now we study homotopy groups of free mapping space X^{s^p} with a weakly cyclic map as base point.

THEOREM 8. If $f: S^p \to X$ is weakly cyclic, then $\Pi_q(X^{S^p}, f)/\Pi_{p+q}(X, *)$ is isomorphic to $\Pi_q(X, *)$ for all q, where $\Pi_{p+q}(X, *)$ is, of course, imbedded in $\Pi_q(X^{S^p}, f)$ isomorphically.

Proof. For the fibration $w: X^{s^s} \rightarrow X$, let F be the fibre of w. Then we have a long exact sequence;

$$\cdots \to \Pi_q(F,f) \xrightarrow{i_*} \Pi_q(X^{S^p},f) \xrightarrow{w_*} \Pi_q(X,*) \xrightarrow{\partial} \Pi_{q-1}(F,f) \to \cdots$$

Now, we show that w_* is an epimorphism. Let $g: S^q \to X$ be a representative of an element of $\Pi_q(X,*)$. Since $f: S^p \to X$ is a cyclic map, there exists a map $F: S^p \times X \to X$ such that $Fj = \mathcal{V}(f \setminus 1_X)$. We take the map $G = F(1 \times g): S^p \times S^q \to X$. From the following commutative diagram;

we have $Gj = F(1 \times g)j = Fj(1 \vee g) = \overline{V}(f \vee 1_X)(1 \vee g) = \overline{V}(f \vee g)$. Thus the map $G: S^p \times S^q \to X$ determines a map $\overline{G}: S^q \to X^{S^p}$, and observes that $\overline{G}(*) = f$. Therefore \overline{G} represents an element of $H_q(X^{S^p}, f)$. Since $w(\overline{G})(s) = \overline{G}(s)(*) = G(*, s) = g(s)$, we have $w_*([\overline{G}]) = [g]$. Thus the boundary maps are zero maps. Therefore we obtain a short exact sequence

 $0 \longrightarrow \Pi_q(F,f) \xrightarrow{i_*} \Pi_q(X^{S^p},f) \xrightarrow{w_*} \Pi_q(X,*) \longrightarrow 0. \text{ The Hurewicz isomorphism } I_{\mathfrak{cf},\mathfrak{I}}: \Pi_q(F,f) \to \Pi_{\mathfrak{p}+1}(X,*) \quad [3] \text{ completes the proof.}$

COROLLARY 9. If X is a G-space, then for each $[f] \in \Pi_{\mathfrak{p}}(X,*)$, $\Pi_{\mathfrak{q}}(X^{\mathfrak{sp}},f)/\Pi_{\mathfrak{p}+\mathfrak{q}}(X,*)$ is isomorphic to $\Pi_{\mathfrak{q}}(X,*)$.

Note that the above result was obtained by Koh [4] on the case of an H-space X.

THEOREM 10. If $f: S^{\mathfrak{p}} \to X$ is weakly cyclic, then $\Pi_q(X^{\mathfrak{S}^{\mathfrak{p}}}, f)$ is isomorphic to $\Pi_{\mathfrak{p}+q}(X, *) \oplus \Pi_q(X, *)$ for all q > 1.

Proof. In proof of Theorem 8, we have a short exact sequence

$$0 \to \Pi_q(F, f) \xrightarrow{i_*} \Pi_q(X^{S^p}, f) \xrightarrow{w_*} \Pi_q(X, *) \to 0.$$

We only show this sequence is split. Since $f: S^p \to X$ is cyclic, there exists a map $F: X \times S^p \to X$ such that $Fj = V(1 \setminus f)$. Now we define a

map $k: (X,*) \to (X^{s^p}, f)$ by k(x)(s) = F(x, s). Then we obtain a homomorphism $k_*: \Pi_q(X,*) \to \Pi_q(X^{s^p}, f)$ such that w_*k_* is the identity on $\Pi_q(X,*)$. Therefore we have $\Pi_q(X^{s^p}, f) \cong \Pi_{p+q}(X,*) \oplus \Pi_q(X,*)$ for all q > 1.

Note that in the course of proof, we have shown that if $\Pi_1(X^{s^p}, f)$ and $\Pi_1(X, *)$ are abelian, then $\Pi_q(X^{s^p}, f)$ is isomorphic to $\Pi_{p+q}(X, *) \oplus \Pi_q(X, *)$ for all p, q, where $f: S^p \to X$ is a pointed weakly cyclic map. Since the constant map $*: S^p \to X$ is a weakly cyclic map, we can compute homotopy groups $\Pi_q(X^{s^p}, *)$ for all q > 1. Also, we know that if X is a G-space and $\Pi_{p+1}(X) = 0$, then for each $[f] \in \Pi_q(X, *)$, $\Pi_1(X^{s^p}, f)$ is an abelian group.

References

- D.H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math., 87 (1965), 840-856.
- 2. D.H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math., 91 (1969), 729-756.
- 3. I.M. James, Reduced product spaces, Ann. Math., 62 (1955), 170-179.
- 4. S.S. Koh, Note on the properties of mapping spaces X^S, Proc. Amer. Math. Soc., 11 (1960), 896-904.
- K.L. Lim, On cyclic maps, J. Austral. Math. Soc., (Series A) 32 (1982), 349-357.
- 6. J. Siegel, G-spaces, W-spaces, H-spaces, Pac. J. Math., 31 (1969), 209-214.
- K. Varadarajan, Generalized Gottlieb groups, J. Indian. Math. Soc., 33 (1969), 141-164.

Korea University Seoul 132, Korea and Hannam University Taejon 300, Korea