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NONLINEAR ERGODIC THEOREMS FOR NONEXPANSIVE

SEMIGROUPS IN BANACH SPACES

KWANG PAK PARK AND lONG Kvu KIM

I. Introduction

In this paper, we are going to extend the reresult of N. Hirano ([IOJ)
for a nonexpansive semigroup in a uniformly convex Banach space which
has a Frechet differentiable norm. That is to say, we will prove the
existence of the weak limit of the Cesaro means

AtS(h)x= ~ f:S(s+h)xds

uniformly in h~O. Analogous problems were studied in [2J, [l3J and
[20J.

Some rudiments in the geometry of Banach spaces are necessary for
the proof of the main theorem of this paper.

Let X be a Banach space and X* its dual. The value of x*EX* at
xEX will be denoted by (x, x*). With each x in X, we associate the
set

J(x) = {x*EX* : (x, x*)=lIxW=lIx*W}.

Using the Hahn-Banach theorem it is immediatedly clear that J(x) =l=t/>
for any x in X. Then the multi-valued operator J: X-+X* is called the
duality mapping of X. Let B= {xEX: Ilxll = I} stand for the unit sphere
of X. Then, the norm of X is said to be Gateaux differentiable (and X
is said to be smooth) if

lim IIx+tyll-lIxll
t~O t

exists for each x and y in B. It is said to be Frechet differentiable if
for each x in B, this limit is attained uniformly for y in B. It is well

-71-



72 Kwang Pak Park and Jong Kyu Kim

known that if X is smooth, then the duality mapping J is single-valued.
And we also know that if the norm of X is Frechet differentiable, then
J is norm to norm continuous (DJ, [6J and [7J). Let C be a closed
convex subset of X. A family {Set) : t~O} of mappings from C into
itself is called a nonexpansive semigroup on C if

(I) S(t+s) =S(t)S(5) for all t, s~O,
(n) S(0)=1 (identity),
(I) Um S(t)x=x for every xEC,

1-0

(IV) \IS(t)x-S(t)YII~lIx-y\l for all x,y in C and t~O.

For a subset D of X, convD denotes the convex hull of D, and i5
the closure of D. Let F(S) = nF(S(t» be the set of all common :fixed

1;';0

points of {Set) : t~O}.
For x and y in X, sgn[x, y] denotes the set

{AX+(l-A)Y: O~A~l}.

In this paper, unless otherwise specfied, X will denote a uniformly
convex Banach space with modulus of convexity o. The modulus of
convexity of X is the function 0 : [0, 2J-'{0, 1] defined by

o(e)=inf {1- IIx ;y\I :I/xll~l, l/yll~l, I/x-YIl ;G:e}

for 0~e~2. X is uniformly convex if and only if o(e) >0 for £>0 ([3],
[6], [17J and [19J). It is shown in [9J, [18J and [23J that a is
nondecreasing. Hence, if X is uniformly convex and 0(e,,) -+0, then E,,-+

O. Furthermore

a(e) 5:.1-J1- ~2 ([6J).

It is well known that if X is a uniformly convex Banach space, then
the set F(S) is nonempty ([1J) and a closed convex subset of C ([6J).

We define the Cesaro mean AtX by

AtX= ~ S:S(s)xds (for the continuous case)

for all xEC, t>O.
In this paper, we establish a convergence theorem for a nonexpansive
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semigroup in the framework of a uniformly convex Banach space. In
Banach spaces, Hilbert space techniques as seen in G. Rode ([21]) can
not play a role. Therefore, we shall introduce compact means, which
should be compared with measures with compact, support, to obtain the
result.

We denote by B([O, 00)) [resp. CB ([0, oo))J the Banach space of all
bounded [resp. bounded continousJ real valued functions on [0, 00) with
supremum norm.

For s~O and fEB([O, 00)) [resp. CB([O,oo))J, we define an
element r,J in B([O, 00)) [resp. CB([O,oo))J given by r.J(t)=f(t+s)
for all t~O. The mapping r. : f-r.J is a continuous linear operator in
B([O,oo)) [resp. CB([O,oo))J for all s~O. An element ,uEB([O, 00))*
is called a mean on [0,00) if 1I,u11=,u(l) =1 ([12J, [14J, [15J and
[22J). For every fEB([O,oo)) and ,uEB([O, 00))*, we denote the
value of ,u at f by ,u (f) or

f~f(s)d,u(s)

to specify the variable s of f. A mean,u on [0,00) is said to be compact
if there exists a compact subset K of [0, 00) such that ,u (lA) = 1, where
1i is a real valued function on [0,00) with value 1 on K and 0 elsewhere.
Especially, a compact mean ,u is said to be finite if the compact subset K
consists of finite points. If,u is a finite mean on [0, 00), then it follows

n

that fI is expressed by L;aio" for some Si~O and ai~O (i=1, 2,3. "', n)
;=1

n

such that L;a;=1, where 0, is a mean on [D.oo) defined by o,(f) =f(t)
;=1

for all fEB([D, 00)). A mean ,u on [0. 00) is said to be invariant [resp.
c-invariantJ if ,u(r.J) =,u(f) for all fEB([O, 00)) [resp. CB([O.oo))J
and s~D. Therefore this definition agrees with the M.M. Day's definition
of finite means in [4J.

Suppose that the set {S(t)x: t:2::0} is bounded for all xE-C. Then.
for a mean ,u on [0, 00) and xEC. we can define a continuous functional

1'" on x* by

1',,(x*) = J~<S(t)x. x*)d,u(t)

for each x*EX*. Since C is a closed convex subset and X is reflexive.
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by the Hahn-Banach theorem, 1>" is expressed by an element in C, which
is denoted by 5'px or

to specify the variable t. If p. is finite, say

n n

p.= 'L,a.o., (s. ~O, a. ~O, i= 1,2,3, ''', n, 'L,a.= 1)
i=1 i=1

then

n
5'px='L,a,s (s.) x.

;=1

If p. is a compact mean on [0,00), XEC and e>O, then there exists
a finite mean A on [0, 00) such that

for all t~O ([llJ).

11. Lemmas and Proposition

The following lemmas and proposition are crucial for our results. The
next Lemma 2.1 is known ([8J). It is simple consequence of the con­
dition of the modulus of convexity.

LEMMA 2.1. Let x and y be in X. If IIxll~r, Ilyll~r, r~R and
IIx-YII:<?:e>O, then

1I1x+ (I-A)YII~r(I -21(I-1)oR(e»

for all O~l~I, where OR (e) =o( ~ ).

The proofs of our following lemmas are based on methods used in
[16J.

LEMMA 2.2. Let C be a closed convex subset of X and {Set) : t:<?:O}
a nonexpansive semigroup on C. Let x be in C, fEF(S) and O<a~fJ<l.
Then for each e>O, there exists to~O such that for all t~to,

IIS(h) (lS(t)x+ (I-1)f) - (lS(t+h)x+ (I -A)f) 11 ~e
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for all h>O and a~l~fi.

Proof. Let r=lim IIS(t),x-fll, R=II,x-fll, and c=min{2A(l-l) :,....
a~l~fJ}. Since 0 is nondecreasing, for given e>O, we can choose d>O
so small that

(r~d) >l-co( r~d ),

where a is the modulus of convexity of the norm. And also, there exists
to~O such that for all t~to,

liS(t),x-fll~r+d.

For t~to, h>O and a~l~fJ, we put U= (I-1)(S(h)z- f) and
v=l(S(t+h),x-S(h)z) where z=lS(t)x+ (l-l)f. Then we have

IIS(h) (lS(t)x+ (l-l)f) - (lS(t+h)x+ (I-1)f) 1I=lIu-vll,
lIull~ (1-1) IIz- fll=l(1-l) liS (t) x- fll;:$;l(l-j!) (r+d)

and
IIvll~lIlS(t),x-zll ~A(I-1) (r+d).

Suppose that lIu-vll~e, for some e~O, then by Lemma 2.1, we have

l(I-A)IIS(t+h)x- fll = IIAu+ (l-l)vll

~1(I-A)(r+d)(1-2A(l-A)O(r~d ))

~A(l-A) (r+d)(l-co( r~d )).

Hence we have,

which is a contradiction. Therefore, for all t"?;'to

IIS(h) (lS(t)x+ (I-A)f) - (AS(s+h)x+ (l-A)f) lI<e

for all h>O and a;:$;A~fi.
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LEMMA 2.3. Let C be a closed convex subset of X and {S(t)x: t>O}
a bounded set in C. Let zEW(x) = nconv{S(t)x : t6;to}, yEC and {Pt}

to;';O

a net of elements in C with PtEsgn[y, S(t) x] and I/Pt-zl/=min{llu-zll
: uEsgn[y, S(t)x]}. If {Pt} couverges strongly to y as t-+oo, then

y=z.
Proof. Since the duality mapping J is single valued, it follows from

Theorem 2. 5 in [5J

(u-p" J(Pt-z) 6;0

for all uEsgn [y, S(t)xJ. Putting u=S(t)x, we have

(S(t)x-p" J(Pt- Z ) 6;0.

Since, Hm Pt=y and {S(t)x: t~O} is bounded, there exists a X>O and
t-CO

"S(t)x-yll~K and lIPt-zII~K

for all t6;to• Let e>O and choose a>o and choose a>o so small that
2aK<e. Since the norm of X is Frechet differentiable, J is norm to
norm continuous, and so we can choose t' 6;to such that for all t '?;,t' •
IIPt-yll~a and IIJ(pt-z) -J(y-z)l/~o. Since for t'il:.t',

I(S(t)x-p" J(Pt-z)-(S(t)x-y, J(y-z) I
= I(S(t)x-p" J(Pt-z)-(S(t)x-y, J(Pt- z)

+(S(t)x-y, J(Pt-z)-(S(t)x-y, J(y-z) >I
~IIPt-yllllpt-zl/+IIS(t)x-yl/"J(Pt-z) -J(y-z) 11

~aK+oK=2,aK<e,

we have

(S(t)x-y, J(y-z)'?;,(S(t)x-p" J(Pt-z)-e
'il:.O-e=-e.

Since zEW(x), we have (z-y, J(Y-z)'?;,-e. This implies IIz-yll=O
and hence z=y.

By using Lemma 2. 2 and Lemma 2. 3, we can prove the following
lemma.
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LEMMA 2. 4. Let C be a closed convex subset of X and F(S) *1>. Then

for any %Enconv {S(t)x: t~s} nF(S) and yEF(S), there exists to~O
.;;:;0

such that for all t'~to

(S(t)x-y, J(y-z»:a;O.

Proof. If y=% or x=y, then the result is obvious. So, let y=l=% and
x=l=y. For any t~O, taking a unique element Pt such that ptEsgn
[y, S (t) x] and IIp,-ItIl=min {IIu-zll: uEsgn [y, S(t) x]}. Then since
y=:f:.z, by Lemma 2.3, {Pt} doesn't converge to y. Hence, we obtain
c>O such that for any t~O, there is to~O with to~t and IlPt.-YII!1;c.
Setting Pt.=atoS(to)x+ (I -a,.)" O:a;a'e:a; I, then there exists co>O so
small that at. ~co. (in fact, since x=l=Y, yEF(S) and S(to) is nonex·
pansive,

c~IIPto-yll=lIat.S(to)x+ (I-at.)Y-YII
=at.IIS(to)x-ylI :'5:at.llx-YII.

Hence. put Co= IIx~YII .).

Putting K=limIlS(t)x-YII, we have K>O. If not. then we have
t-'"

lim S(t)x=y, and so lim Pt=Y which contradicts.
t ...oo ,-co

Now, we can choose e>O so small that

R~e >l-a( ~~e ),

where a is the modulus of convexity of X and R=lIz-yll. Then by
Lemma 2. 2, there exists t'~0 such that

IIS(s) (coS(t)x+ (I-co)y) - (coS(s+t)x+ (I -co)Y) lI<e

for all s~O. Fix to~O with to~t' and IIPt.-yll~c. Then since at.~co,

we have

coS(to)x+ (l-co)YEsgn[y, at.S (to) x+ (l-ato)Y]
=sgn[y, Pte].

Letting coS(to)x+ (I-co)y=1y+ (1-1)Pt. for O~1~I, then we have
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1I1y+ (l-l)Pto -zll=1I1y+ (1-1)pto-lz- (1-1)zll
~llly-zll+(l-l)IIPto- z ll
~llly-zll+ (I-1) lIy-zll
=lIy-zlI.

Hence we obtain

IlcoS(s+ to) x+ (I-co)Y-zlI
~"S(s) (coS(to)x+ (I-co)y) -zll+e
~"coS(to)x+(l-co)Y-zlI+e
~R+e

for all S~O.

On the other hand, since lIy-zlI=R<R+e and

IlcoS(s+to)x+ (l-co)Y-z) - (y-z) 11

=lIcoS(s+to)x+ (l-co)Y-YII=coIIS(s+to)x-YII 6;coK

for all s~o, by uniform convexity, we have

11 ~ «coS(s+to)x+(l-co)Y-z)+(y-z» 11

~(R+e)(l-o( ~oJe ))<R

and hence

for all S~O. Letting u.= ~o S(s+to)x+ (1- ~o )y, since

-lIu.-zll>-lIy-zlI,

we have for all a ~ 1,

lIu.+a(y-u.) -zll=1I (l-a)u.+ay-zlI
=11 (1-a) (u.-z) +a(y-z)1I
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=11 (a-I) (z-u.) +a(y-z) 11

~ally-zll- (a-I) IIz-u.1I
~ally-zll- (a-I)lIy-zlI
=lIy-zll.

Hence, by Theorem 2.5 in [5J, we have

(u.+a(y-u.) -y, J(y-z» ~O for all a~l

and hence

(u.-y, J(y-z» ~O.

Therefore

(S(s+ to) x-y, J(y-z» ~o

for all s:2!:O. Letting t~to, then we have

(S(t)x-y, J(y-z» ~O.

PROPOSITION 2. 5. Let X be a uniformly convex Banach space with a
Frechet differentiable norm and C a closed convex subset of X. Let xEC
and F(S) =FcjJ. Then the set W(x) nF(S) consists of at most one point.

Proof. Let y,zEW(x)nF(S). Then, since (y+z)/2 in F(S), it
follows from Lemma 2. 4 that there exists to~0 such that

(S(t)x- (y+z)/2, J«y+z)/2-z»~0

for all t~to. Since yEconv{S(t)x: t~to}, we have

(y- (y+z)/2, J«y+z)/2-z» ~o

and hence

«y-z) /2, J( (y-z) /2» ;;;;;0.

This implies that y=z.

Now, we prove lemmas which play a crucial role in the proof of our
main theorem in the next section. The following Lemma 2.6 ([l1J) is
well known, and is an analogue of Lemma 4 in [10J.

LEMMA 2. 6. Let C be a closed convex subset of a uniformly convex
Banach space X with a Frechet differentiable norm. Let {Set) : t~O} be
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a nonexpansive semigroup on C. If p. is a finite mean on [0, 00), then
for all xEC,

LEMMA 2.7. Let X, C and {Set) : t~O} be as in Lemma 2.6. If p.
is a compact mean on [0,00), then for all xEC,

Proof. Since p. is a compact mean on [0, 00), there exists a finite
mean ;( on [0,00) such that

for all t~O ([llJ). From Lemma 2.6, there exists to~O such that for
all t~to,

Therefore, we obtain for all t~to,

supllS (s)"~S (t) x-"~S(s+ t) xli
.;;;0

~sup {liS (s)"I'S(t) x-S(s)"}.S (t) xII
.~o

+liS (s)"}.S (t)x-"}.S (s+t) x!l
+ !I,.}.S(s+t)x-"I'S(s+t) xII}

~ II"I'S (t)x-".tS(t)xll
+sup!lS(s),.}.S(t)x-,.}.S(s+t)x!l

.~o

Hence for all xEC,

Hm sup!lS(s)"I'S(t)x-"I'S(s+t)x!l=O.
t .....oo s~o

LEMMA 2.8. Let X, C and {Set) : t~O} be as in Lemma 2.6 and {p...}
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a net of compact means on [0,00). Suppose that {5"I'.S(s..+h)x} converges
weakly to pEG uniformly in h~O for all xEG and s..~O as a-+co.

Then for every c-invariant mean 1) on [0, 00), 5"~x=P.

Proof. Since tu..} is a net of compact means on [0, co), for any e>O,
there exists a finite mean 1.. for each It.. such that

I15"A.S(s)x-5'l'aS (s)xll< ;

for all s~o ([llJ). For x*EX* with IIx*lI~l, define f: [0,00)-+ R
by f(h) = <S(h) x, x*), which is continuous. From the hypothesis there
exists ao such that

I<"I'.S(s.. +h)x, x*)-<p, x*) I< ~

for every a~ao and h~O. Thus for all h~O,

I<5'AaS(s..+h) x, x*) - <p, x*) I
~ I<5'A.S(s..+h)x-5'I'.S(s..+h) x, x*) I

+ I<5"I'.S(s..+h)x, x*) - <p, x*) I<e.

R R

If 1.. = "Eaio'l (Si~O, ai~O, i=1,2,3"',n, I::ai==l)forsomea(~ao),
;=1 ;=1

then

R

= "EaJ(si +s.. +h)
;=1

R

= ("Eair.l+•.!) (h).
;=1

Hence we have,

R

supl ("Eajr.l+•.!) (h) - (p, x*) I ~e.
h;:;O ;=1

Therefore we have, for a c-invariant mean 1),
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n
ITJ (f) - (p, x*) I= IL;aiTJ (r./+.J) - (P, x*) I

i=1

n

= ITJ ('2:.air.,+sJ) - (p, x*) I
i=1

n
= ITJ ('2:.air./+sJ- (p, x*) •1) I

i=1

n

~ IITJlIsup I (L;air.,+•• f) (h) - (p, x*) I
";';0 i=1

Letting e-+O, we have

(p, x*) =TJ(f) = f~f(h)dTJ(h)

= f: (S (h) x, x*)dTJ(h) = (!f,x, x*).

Since x* (1Ix*1I ~1) is arbitrary, we have !f~x=P.

Ill. Main Result

Now, we can prove a nonlinear ergodic theorem for a nonexpansive
semigroup in uniformly convex Banach spaces with a Frechet differentiable
norm.

In [2J, R.E. Bruck proved the mean ergodic theorem for nonexpansive
mappings.

THEOREM 3. 1. Let C be a bounded closed convex nonempty subset of a
uniformly rotund Banach space X which has a Frechet differentiable norm
and T: C-+C a nonexpansive mapping. Then the Cesaro mean of {Tnx}
converges weakly to a fixed point of T.

In [10J, N. Hirano also proved the following theorem.

THEOREM 3. 2. Let X be a uniformly convex Banach space which has
a Frechet differentiable norm. Let C be a closed convex subset of X and
T : C-+C a nonexpansive mapping. Then the following conditions are
equivalent:

(a) F(T)=!-p,
(b) {Tnx } is bounded for each x in C,
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1 n-l
(c) For each x in C, SnTkX=-BTHix

n i=O

converges weakly to y in F(T) uniformly in k=1, 2, ....

THEOREM 3. 3. Let C be a closed convex subset of a uniformly convex
Banach space X with a Frechet differentiable norm and {Set) : t~O} a
nonexpansive semigroup on C. If F(S) 1=1>, then for all xEC,

AtS(h)x= ; S:S(s+h)xds

converges weakly to a point PEF(S) uniformly in h~O as t-+oo.

Proof. Let for all x*EX*,

1 Jt(AtX, x*)=T O(S (s)x, x*)ds

and let

for every t>O where 0, is a mean on [0,00) defined by 0,(1) =f(s) for
all fEV1oc([O, 00)). Then each Tt is a continuous linear functional on
B([O, 00)) nV1oc([O, (0)) and

TI(l) =1=IITIII.

Therefore, by the Hahn·Banach theorem, there exists a mean fJ-t on
[0, (0), which is an extension of Tt and'-ptx=Atx.

Let K 1= [0, t] which is compact. Then we have

Hence fJ-t is a compact mean on [0, 00). Therefore, from the Lemma
2. 7, there exists SI;:;; 0 for each fJ-I such that

for all Vt~O with Vt~St. Furthermore, it is clear that
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as t-+oo for each s;:;';;O, where r.* is the conjugate operator of r. which
is a continuous linear operator in B([O, (0) for all s>O and 11 • 11. is the
norm of CB([O, (0».

Let p be a limit point of {AtS(st)x} with respect to the weak topology.

Next, for any 8>0 and S 6; 0, taking t so large that ~ <; and

IIpt- r.*p,II.< 2~ ,

where D=supIIS(h)xll (since F(S) i=t}), we have
h~O

IIAtS (St) x-AtS(St+ s)xll
= sup I<AtS(st)x-AtS(st+s)x, x*) I

1I"*J1~1

= sup lIt It <S (s,+h) x, x*)dp,(h)
1I"*11~1 0

-}J:<S(s,+h+s)x, x*>dp, (h)!
~ sup <Ilp,-r.*p,II.· sup I<S (s,+h) x, x*) I)

1I"*1I~1 11;';;0

~ IIPt-r.*Ptll.· D

<;.
Hence, we have

IIAtS(s,) x-S(s) AtS (St) xII
~IIAtS(s,)x-AtS(s,+s)xll

+ A,8(s,+ s)x-S(s) AtS(s,) xII
8 I < e e

~2+T 2+2=8.

This means that IIA,8(s,)x-S(s)A,8(s,)xll converges to 0 for all $6;0.
Since 1-S(s) is demiclosed, we have S(s)p=p and PEF(S). It also
follows from the assumption of Pt that PEnCOiiV {S(w)x: w:<::h}. If

h~O

not, then there exists ho6;O, x*EX* and c>O such that

<p, x*> +c < inf {<z, x*) : ZEOOIlV{S(w) x : w6;ho}}.

Since P is a weak limit point of {AtS(st)x} and
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there exists to such that

and

So, we have

(P, x*) +c<inf {(z, x*) : zEoonv{S(w)x : w~ho}}
~inf {(S (w)x, x*) : w~ho}
~inf{(S(w)x, x*) : w~ho+s,.}

:s;.l !'e(S(ho+S,.+w)x, x*)dpt.(w)
to 0

= (A'eS (ho+St.) x, x*)
= (A,.S(ho+S'e) x-At.S(st.) x, x*)

+(A,.S(St.) x, x*)

;s;lIx*lIl1p,. -r1c.*p,.II.·D+ <p, x*)+ ~

< ~ +<p, x*)+ ~ =(p, x*)+c.

This is a contradiction. Hence,

pEnoonv{S(w)x: w~h} nF(S).
1cillO

Since nOOiiV{s(w)x: w~h} nF(S) is a singleton set from Proposition
1c;§O

2.5, {A,8(s,)x} converges weakly to pEF(S). Furthermore, by a quite
similar argument, {A,8(st+h)x} converges weakly to pEF(S) uniformly
in h~O for all xEC. And so, we obtain '-,x=P for all c-invariant
mean TJ on [0, 00) from the Lemma 2. 8.

Now, we shall show that {A,8(h)x} converges weakly to p uniformly
in h~O. If we deny the assertion, then there exists x*EX*, e>O, tp~[3

and h.B~O for all [3 such that

I(Atp(hp)x-p, x*) I~e.
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We may assume, taking subnet, that r;p=rh,*p.t, converges to r;E
B([O,oo))* with respect to the weak star topology. Then T) IS a
c-invariant mean on [0,00). Hence we have

1 f tP
(At,S (h ll)x, x*) = t; 0 (S (hp +h) x, x*)dp.t, (h)

1 f tP=t; 0 (S(h)x, x*)drh,*p.t,(h)

= tf~ (S (h) x, x*)dTjp(h)

--'I> ill f~ (S(h) x, x*)dr;(h)

= <5'~x, x*) = (p, x*).

This is a contradiction. Hence

AtS(h)x= ~ f:S(s+h)xds

converges weakly to pEF(S) uniformly in h;;;;O.
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