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NONLINEAR ERGODIC THEOREMS FOR NONEXPANSIVE
SEMIGROUPS IN BANACH SPACES

Kwane Pax Park anp Jone Kvu Kim

1. Introduction

In this paper, we are going to extend the reresult of N. Hirano ([10])
for a nonexpansive semigroup in a uniformly convex Banach space which
has a Fréchet differentiable norm. That is to say, we will prove the
existence of the weak limit of the Cesaro means

AtS(h)x=%«f‘S(s+h)xds
(V]

uniformly in A=0. Analogous problems were studied in [2], [13] and
[201].

Some rudiments in the geometry of Banach spaces are necessary for
the proof of the main theorem of this paper.

Let X be a Banach space and X* its dual. The value of z*&X* at
2z X will be denoted by {z, z*). With each z in X, we associate the
set

J(@) = {z*&X* : Lz, o) =||=|[*=]z¥|]"}.

Using the Hahn-Banach theorem it is immediatedly clear that J(z)#¢
for any x in X, Then the multi-valued operator J: X—X* is called the
duality mapping of X, Let B={x&X: ||z||=1} stand for the unit sphere
of X, Then, the norm of X is said to be Gateaux differentiable (and X
is said to be smooth) if -

lim
-0

llz+ 2yl — il
t

exists for each r and y in B. It is said to be Fréchet differentiable if
for each = in B, this limit is attained uniformly for v in B. It is well
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known that if X is smooth, then the duality mapping J is single-valued.
And we also know that if the norm of X is Fréchet differentiable, then
J is norm to norm continuous ([1], [6] and [7]). Let C be a closed
convex subset of X, A family {S(¢) : £20} of mappings from C into
itself is called a nonexpansive semigroup on C if

(1) SE+s)=S()S(s) for all ¢, s=0,

(I S(0)=I (identity),

(B ltl_.rg S()x==z for every z&C,

(V) ISEOxz—-S®=Zllx—2ll for all =,y in C and £20.
For a subset D of X, convD denotes the convex hull of D, and D
the closure of D. Let F(S)=Q 0F(S (#)) be the set of all common fixed
=
points of {S(#) : £=0}.
For z and y in X, sgn[z,y] denotes the set
fax+ (Q—2y: 0151}

In this paper, unless otherwise specfied, X will denote a uniformly
convex Banach space with modulus of convexity 4. The modulus of
convexity of X is the function §: [0, 2]—[0, 1] defined by

s@=inf { 1-1ZEA - o<, o<1, o—slize |

for 0=e<2. X is uniformly convex if and only if () >0 for £ >0 ([3],
[6], [17] and [19]). It is shown in [9], [18] and [23] that & is
nondecreasing. Hence, if X is uniformly convex and 6(e,)—0, then e,—
0. Furthermore

() S1—,/1--=([61).
@ S1-,/1-2 (16D
It is well known that if X is a uniformly convex Banach space, then
the set F(S) is nonempty ([1]) and a closed convex subset of C ([6]).
We define the Cesaro mean A,z by
A,x=%—f:S (s)zds (for the continuous case)

for all z&C, t>0.

In this paper, we establish a convergence theorem for a nonexpansive
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semigroup in the framework of a uniformly convex Banach space. In
Banach spaces, Hilbert space techniques as seen in G. Rodé ([21]) can
not play a role. Therefore, we shall introduce compact means, which
should be compared with measures with compact, support, to obtain the
result.

We denote by B([0, o)) [resp. CB([0, c0))] the Banach space of all
bounded [resp. bounded continous] real valued functions on [0, o0) with
supremum norm.

For s=0 and f&B([0,00)) [resp. CB([0,00))], we define an
element r.f in B([0, o0)) [resp. CB([0,c0))] given by r,f(¢) =f(t+5)
for all £20. The mapping r, : f—r,f is a continuous linear operator in
B([0, c0)) [resp. CB([0,c0))] for all s=0. An element p<=B([0, 0))*
is called a mean on [0,00) if ||gll=p(1)=1 ([12], [14], [15] and
[22]). For every f&B([0,o0)) and p=B([0, 0))*, we denote the
value of u at f by p(f) or

[Crode

to specify the variable s of f. A mean g on [0, o) is said to be compact
if there exists a compact subset K of [0, 00) such that px(1:)=1, where
1; is a real valued function on [0, co) with value 1 on K and 0 elsewhere.
Especially, a compact mean g is said to be finite if the compact subset K
consists of finite points. If g is a finite mean on [0, o), then it follows

that u is expressed by éa;&,, for some 5,20 and ;=0 (:=1,2,3, -, »n)
such that _‘éa.:l, where 8, is a mean on [(, 00) defined by &,(f)=/F()

for all f=B([0,00)). A mean p on [0, o) is said to be invariant [resp.
c-invariant] if p(r, f)=p(f) for all f&EB([0, o)) [resp. CB([0,0))]
and s=0. Therefore this definition agrees with the M.M. Day’s definition
of finite means in [4].

Suppose that the set {S(&)x: £=0} is bounded for all z&C. Then,
for a mean g on [0, c0) and z&C, we can define a continuous functional
¢. on X* by

3.2 = [ (SO, 2%du(®

for each z*<=X*, Since C is a closed convex subset and X is reflexive,
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by the Hahn-Banach theorem, ¢, is expressed by an element in C, which
is denoted by 7« or

[ s@aduo
to specify the variable ¢, If y is finite, say
p=Yad, (520, a20, i=1,2,3,,n, Ta=1)
then
T =i4:‘n]1a,-S (s)) x.

If p is a compact mean on [0, 00), X&C and ¢>0, then there exists
a finite mean 2 on [0, o0) such that

7.8 @) z—T.S®) xl|<e
for all £z0 ([11]).
II. Lemmas and Proposition

The following lemmas and proposition are crucial for our results. The
next Lemma 2.1 is known ([8]). It is simple consequence of the con-
dition of the modulus of convexity.

LEMMA 2.1. Let z and y be in X. If ||zlISr, lyllEr, r<R and
lz—3l1=e>0, then

laz+ A=)yl =r(1-22(1—2) 8 (e))

for all 0SA=<1, where ak(e)xa(.%),

The proofs of our following lemmas are based on methods used in

[16].

LEMMA 2.2. Let C be a closed convex subset of X and {S(£) : =0}
a nonexpansive semigroup on C. Let x be in C, fEF(S) and 0<a<p<1.
Then for each ¢>0, there exists ty=0 such that for all t=1,,

IS@® AS@Ox+ 1—-Df)— @S¢+ z+ A-D) )l =e
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for all >0 and aSA<P.
Proof. Let r=}im IS@Wz—fll, R=llz—fIll, and c=min{22(1—2) :

aS2<p}. Since & is nondecreasing, for given ¢>0, we can choose d>0
so small that

o)

where § is the modulus of convexity of the norm. And also, there exists
t,20 such that for all t=¢,,

IS z—fll=r+d.
For t=t, h>0 and asi1sB, we put u=(1—2) (S{E)z—f) and
v=2(S@¢+h)z—S(h)z) where 2=1S@)z+ (1—2)f. Then we have

ISR AS@ z+ (1-D.f) — AS¢+m) z+ A=) ) lI=Ilu— vl
Hell= A—=Dliz—fFl=2Q - DS O z—F 1 <2QA—2) (r+d)

and
ol alIS (@) z—2ll=2(1—2) (r+4d).

Suppose that |ju—v||=¢, for some ¢=0, then by Lemma 2.1, we have

AA=-DUS¢E+hm) z—fll=lau+ (1—2) vl

212 ¢+ (1-20-05(—27))

=2(1-2) (r+d)(1—c5( rj_d ))

Hence we have,

(7’+d)(1“"5( ,.j_d ))<r§ (r+d)(1——c'6( rj-d »

which is a contradiction. Therefore, for all 1=¢,

IS @SB z+ (1—).f) — @AS(s+r)z+ (1—-D) ) lI<e
for all 2>>0 and a<2<8,
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LEMMA 2.3, Let C be a closed convex subset of X and {S(t)x : £2>0}
a bounded set in C. Let z&=W(zx)= Qom Sz :t=ty, y=C and {p.}

a net of elements in C with p=sgn[y, S z] and ljpi—z||=min {Jlu—z||
cucssgnly, SW2]}. If {p) couverges strongly to vy as &->co, then
y=z,

Proof. Since the duality mapping J is single valued, it follows from
Theorem 2.5 in [5]

u—py, J(p—2)>20
for all ucsgn [y, S(£)x]. Putting u=S(¥)x, we have

S@z—p, J(0—2)) 20.
Since, {LI& 2=y and {S(®)x : >0} is bounded, there exists a K >0 and
to=0 such that
IS z—yl|<K and |lp—2llSK

for all 2=¢, Let ¢>0 and choose 6>0 and choose 3>>0 so small that
26K<e. Since the norm of X is Fréchet differentiable, J is norm to
norm continuous, and so we can choose t'=¢, such that for all =/,
lie—yll<d and ||J(p—2) —J(y—=2)||<8. Since for t=#,

[S@z—pr, J(pr—2))—<SB)z—y, J(y—2))]
=[SO z—p, J(p:—2)>—SOz—y, J(p:—2))
+S@Wx—y, J(p—2))— LSO z—y, J(y—2)>|
Zlpe—ylillpe— =2l +US @) z— YT (p—2) =T (y—2) |
S6K+0K=23K<e,

we have

S@z—y, J(y—2)>2S5@Ox—p, J(P:—2))>—¢
=0—e=—z¢,

Since =W(x), we have {z—y, J(y—2))>=—ec This implies [|z—9||=0
and hence z=3y.

By using Lemma 2.2 and Lemma 2.3, we can prove the following
lemma.
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LEMMA 2.4. Let C be a closed convex subset of X and F(S)+#¢p. Then
for any zegom S@Wx :t=s) F(S) and y=F(S), there exists t,=0

such that for all t=¢,

S@Oz—y, J(y—=)=0.

Proof. If y=2 or x=y, then the result is obvious. So, let y#z and
z#y. For any t=20, taking a unique element p, such that p,Ssgn
[y, S(&)z] and [|p;—zll=min {llu—=z|| : u=sgn [y, S()z]}. Then since
y#z, by Lemma 2.3, {p] doesn’t converge to y. Hence, we obtain
¢>0 such that for any £=0, there is £, =0 with {,=¢ and {[p,,—yll=ec.
Setting p,,=a, S(to)x+ (1—a,)y, 0Sa;, =1, then there exists ¢, >0 so
small that a, =c, (in fact, since x7#y, y=F(S) and S(¢,) is nonex-
pansive,

cE "Pt.,"‘.’)’” == Ila,.S(to)£+ (1 "ato)y_y"
=a,lIS{t) z—yll Sasllz—yll.

Hence, put co=—"chy"—~. ).

Putting K——-—;liox,nHS(t)x——yll, we have K>0. U not, then we have
lti_m S x=y, and so }Lm p=y which contradicts.

Now, we can choose ¢>0 so small that

Rf—e >1~5(~1€Lf?)’

where 6 is the modulus of convexity of X and R=||z—y|l. Then by
Lemma 2. 2, there exists #/ =0 such that

IS(s) (coS @)z + (1 —€0)y) — (coeS(s+ ) z+ (1—co) M) I<e

for all s=0. Fix 7,20 with ¢,=¢ and ||p,,—»ll=c. Then since a;,=c,,
we have

¢Sz + (1 —co) yEsgnly, a, S(t0) z+ (1 —ar)y]
=Sgn[y: Pn]-

Letting ¢,S(t)) 2+ (1—co)y=2y+ (1—2p:, for 0=2<1, then we have
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lay+ (1 =) pe, —2ll=ll2y+ (L — D) p,— 22— (1 — D =l|
ally—zll+ Q- i, — =l
Zally—=ll+ A-Dlly—=l|
=|ly—2]l.

Therefore
HeoS )z + (1 —co)y—=l| Slly—=2l|=R.
Hence we obtain

liceS (s+20) £+ (1—eo) y—=|
<NIS(8) (oS )z + (1 —co)y) —=l|+e
ZlleeS(20)z+ (1 —co)y—=ll+¢
=R+e

for all s=0.
On the other hand, since [ly—zlj=R<R+e¢ and

fleoS(s+ )z + (1—co)y—2) — (y—2) |
=|leoS (5 +20) z+ (L1 —co) y—yll=colIS s+ £) T—yl| = ¢ K

for all 5=0, by uniform convexity, we have

n _%_((cDS(s-i—to)x—i— (1—c)y—2)+(y—2)) ”

< (R+9) (1—5( I‘éofs ))<R

and hence
” %S(s+to)x+ (1-——%"—)y—z “ <R
for all s=0. Letting u,=—%‘-—S(s+to)x+ (1———"22-)y, since

— s — 2>~ lly—=ll,

we have for all a=],

.+ a (y—us) —2zl|=|| (1 — @) u,+ay—=zl|
=l(1—a) (@,—2) +a(y—2)|l
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=|(a—D (z—u) +a(y—2)I|
Zally—=z||— (@~ 1) llz—u.ll
Zally—zll— (@a— 1) lly—=l|
=|ly—=|l.

Hence, by Theorem 2.5 in [5], we have
Cust+a(y—u) —y, J(y—2)) 20 for all a1
and hence
{us—y, J(y—2)) =0.
Therefore
SGst+t)x—y, J(y—2))=0
for all s=0. Letting £=¢, then we have
$@z—y,J(y—=2))>=0.

PROPOSITION 2.5. Let X be a uniformly convex Banach space with a
Fréchet differentiable norm and C a closed convex subset of X, Let x=C
and F(S)#¢. Then the set W(x) \F(S) consists of at most one point.

Proof. Let y,z=W () VF(S). Then, since (y+2)/2 in F(S), it
follows from Lemma 2. 4 that there exists £,=0 such that

S@Ox—(y+2)/2,J((y+2)/2—2)) <0
for all =z, Since y=conv{S(f)x : t=¢,}, we have
y—(v+2)/2, J((y+2)/2—2)> <0
and hence
((y—2)/2,J((y—2)/2)) =0.
This implies that y==z.

Now, we prove lemmas which play a crucial role in the proof of our
main theorem in the next section. The following Lemma 2.6 ([11]) is
well known, and is an analogue of Lemma 4 in [10].

LEMMA 2.6. Let C be a closed convex subset of a uniformly convex
Banach space X with a Fréchet differentiable norm. Let (S(t) : t=0} be
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a nonexpansive semigroup on C. If p is a finite mean on [0, o), then
Jor all z&C,

lim supliS(s)7,5()z—T,S (s +) zl[=0.

LEMMA 2.7. Let X,C and {S(¢) : t=0} be as in Lemma 2.6. If p
is a compact mean on [(,c0), then for all z&=C,

%lrf sggHS(s)f,S @ z—F,S(G+)x||=0.

Proof. Since p is a compact mean on [(,00), there exists a finite
mean 4 on [0, co) such that

Ilf,.S(t)x—f,S(t)le%

for all 120 ([111). From Lemma 2.6, there exists £,=0 such that for
all t ;to,

suplIS (7.8 (1)) 2 — S (s+1) .1:||<-%.
Therefore, we obtain for all t=¢,,
sg%)(lS T SH2—T,S(s+1)ll
ésgé) {ISETS@®x—S(s)T:S(¢) ||

+ISOTS () z—T:S (s+1) z]]

+IT:S s+ 5z —T,S(s+8) ||}
=TS ®)z—T:S (@)l

+supllS ())7:5 (1) 2~ T3S (s+2) z|

+s121?|[.713(s+t)x—-;‘7,,8(s+t)xli
e, e & _.
<'—3“+~3—+—-3— &,
Hence for all z<C,
%}g} sgopHS(s)ﬂ',lS(t)x-ﬂ',,S(s-!—t)xll=0.

LEMMA 2.8. Let X,C and {S(t) : t=0} be as in Lemma 2,6 and {p,}
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a net of compact means on [0,00). Suppose that {T,S(s.+h)x} converges
weakly to p=C uniformly in h=0 for all x=C and s5,=0 as a—co,

Then for every c~invariant mean 7 on [0, 00), T,x=p.

Proof. Since {y.} is a net of compact means on [(, o0), for any >0,
there exists a finite mean 2, for each g, such that

17:.8() 2~ T, S () zll<5

for all s=0 ([11]). For z*=X* with ||z*||<1, define f:[0,00)— R

by f(B)=<{S(h)x, z*), which is continuous. From the hypothesis there
exists a, such that

|{T, S(sat+ )z, 2%y — {p, z*) | <_52_

for every a=a, and h=0. Thus for all A=0,

l <g'1¢S ($¢+h) Z, $*> - <p: x*> I

= TSE+B)z T, S(sth)z, %) |
+ [T e S (atb) 7, %) — b, %) | e.

If 2u=:21ai6:, (si=0, ai=0, i=1,2,3,n, é;‘,a.-rs=1) for some a(=ay),
then

T S(sath)z, ¥ = éla,- (S(si+ sutB) z, 2
=§"lasf(s.- +5,+h)

= (Sarusef) (B,

Hence we have,

sup| (Tiairs,so,f) (B) = (b, 2| <.

Therefore we have, for a c-invariant mean 7,
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|70 =<8, &) | =| T s f) = b, 2]
= I v({;airs‘+s,f) '— <P1 .'L'*> l
= l L/} (izilairsﬁs,f—' <P, x*> * 1) I

<lllsup| (Sairi,ss. ) (B) —<p, 2% |

=e,

Letting ¢e—0, we have
b, 5 =1(H) = [ fWar (i)
= [Tz, axran () = Tz, 5.
Since z*(||lz*||<1) is arbitrary, we have T,z=p.

III. Main Result

Now, we can prove a nonlinear ergodic theorem for a nonexpansive
semigroup in uniformly convex Banach spaces with a Fréchet differentiable
norm.

In [2], R.E. Bruck proved the mean ergodic theorem for nonexpansive
mappings.

THEOREM 3.1. Let C be a bounded closed convex nonempty subset of a
uniformly rotund Banach space X which has a Fréchet differentiable norm
and T : C—C a nonexpansive mapping. Then the Cesaro mean of {T*z)
converges weakly to a fixed point of T.

In [10], N. Hirano also proved the following theorem.

THEOREM 3. 2. Let X be a uniformly convex Banach space which has
a Fréchet differentiable norm. Let C be a closed convex subset of X and
T : C—»C a nonexpansive mapping. Then the following conditions are
equivalent:

(a) F(T)+#g,

(b) {T"x} is bounded for each z in C,
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(¢) For each x in C, S,.Tkx=—’];—'ilT Arig
i=0

converges weakly to y in F(T) uniformly in k==1,2, ---.

THEOREM 3.3. Let C be a closed convex subset of a uniformly convex
Banach space X with a Fréchet differentiable norm and {S(¢) : t=0) «a
nonexpansive semigroup on C. If F(S)+#¢, then for all x=C,

1 t
ASHz= f 'S(s+h)zds

converges weakly to a point p=F(S) uniformly in h=0 as t—o0,
Proof. Let for all z*=X*,

(A, ¥y =1 f ;<s () z, 2%)ds

and let

b

for every >0 where J, is a mean on [0, o©) defined by &,(f)=rf(s) for
all f&L',.([0, o0)). Then each 7, is a continuous linear functional on

B([0, 00)) NL'16c([0, c0)) and
7e(D) =1=lirdl.

Therefore, by the Hahn-Banach theorem, there exists a mean p; on
[0, o), which is an extension of 7, andJ,x=Ax.
Let K,=[0, ¢t] which is compact. Then we have

ﬂt(lx,) =Tt (1x,) =1.

Hence p. is a compact mean on [0, o0), Therefore, from the Lemma
2.7, there exists s,=0 for each g, such that

suplIS (9) AS (02— A8 (s-+0) 2| <

for all v.=0 with v,=s, Furthermore, it is clear that

ee—r* el [.—0
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as t—oo for each s=0, where r* is the conjugate operator of r, which
is a continuous linear operator in B([(, o) for all s>0 and || - ||. is the
norm of CB([0, o©)).

Let p be a limit point of {A4,S(s)x} with respect to the weak topology.
Next, for any ¢>0 and s=0, taking ¢ so large that —%—<—§- and

“ﬂt ra ﬂt”c< ZD »
where D"-—'igs)lls (B)z|| (since F(S)+#¢), we have

HAS (s) x— AS (s:+5) x|
= sup I<Ats(5t)$ Ats(3:+3)x z*) |

B T4

llx*lléll f S(setB)z, 2%)dp, (k)

1 f (S (seth+5) 2, *>dus (k)
= sup (ll—rpule supl<S(sg+h)x )

et
Zllge—r*plle- D
<.
Hence, we have
HAS(s) x—S(s) AS (sp) o}

=<AS () z— AS (s +5) =l
+A¢S(s,+s)x S AS(s) x|

2+<+2

This means that [|4,5S(s))x—S(s)A.S(s) z|l converges to 0 for all s=0.
Since I—S(s) is demiclosed, we have S(s)p=p and p<=F(S). It also
follows from the assumption of g, that S Q)c_c)ﬁ (S(w)z : w=h), If

not, then there exists h,=0, z*<X* and ¢>0 such that
{p, z*)+¢ < inf{{z, 2*) : xSconv {S(w)x : w=hy}}.
Since p is a weak limit point of {A4,S(s)z} and
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lze— 72 * eell.—0,
there exists £, such that

I (?: $*> - <A¢°S (S:n) x, x*) l <—%.
and
—, K c
"p“' T'ao l‘l."c< “ZD""“"‘—‘"x*" .

So, we have

(b 785 +e<linf {2, 2% : zcomv {S(w)z : who)}
<inf {({S(w)z, %) : wzhy}
sinf {(S(w)z, %) : wZho+s,,}

L[ *
S [ 4S ot st 2, 2, ()

= <At..s (o + Se,) z, z*)
={A;,S(ho+s1,) T~ A1, S (52,) 2, %)
+ <At.,s (St.) z, T*)

Slz* ey — rag*stelle- D+ <p, %) +—§-
<—5—+ (p, z*) +%= (p, 2*) +e.
This is a contradiction. Hence,
pE(\oonv {S(w)z : w2k} NF(S).

Since ‘(g‘\oconv {Sw)z: wzh} NF(S) is a singleton set from Proposition

2.5, {AS(s)x} converges weakly to pF(S). Furthermore, by a quite
similar argument, {AS(s;+k)z} converges weakly to p&F(S) uniformly
in A=0 for all z&C. And so, we obtain J,z=p for all c-invariant
mean 7 on [0, c0) from the Lemma 2.8,

Now, we shall show that {A,S(k)x} converges weakly to p uniformly
in hz0. If we deny the assertion, then there exists z*&X¥*, £>0, t,=8
and h;=0 for all g such that

| €A, S(h)z—p, z*) | Ze.
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We may assume, taking subnet, that p,=r,*u, converges to =
B([0,00))* with respect to the weak star topology. Then 7 is a
c-invariant mean on [0, o). Hence we have

(AS(hs) z, z*) =E1; f :f (S(hy k) x, %) dp, (h)
- —tl; f : SRz, 2¥Ddrs*pe,(B)
B —ilZ f .? (SB)Yz, z*ydn, (B)

= [ SWa,mam
= (T, 2= (b, 2%,

This is a contradiction. Hence
A,S(h)x=—%—ft8(s+h)xds
1]

converges weakly to pF(S) uniformly in k=0,
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