WEAK CONVERGENCE OF SEMIGROUPS OF ASYMPTOTICALLY NONEXPANSIVE TYPE ON A BANACH SPACE

HAN SOO KIM AND TAR HWA KIM

1. Introduction

Let G be a semitopological semigroup, i.e., G is a semigroup with a Hausdorff topology such that for each $a \in G$ the mappings $s \to a \cdot s$ and $s \to s \cdot a$ from G to G are continuous. G is called right reversible if any two closed left ideals of G has non-void intersection. In this case, (G, \ge) is a directed system when the binary relation " \ge " on G is defined by

$$t \geqslant s$$
 if and only if $\{s\} \cup \overline{Gs} \supseteq \{t\} \cup \overline{Gt}$, $s, t \in G$.

Right reversible semitopological semigroups include all commutative semigroups and all semitopological semigroups which are right amenable as normal semigroup (see [5, p.335]). Left reversibility of G is defined similarly. G is called reversible if it is both left and right reversible.

In 1976, Kirk [8] introduced any non-Lipschitzian self-mapping which extends, in a sence, an asymptotically nonexpansive mapping inherited by Goebel and Kirk [3]; a continuous mapping $T: K \rightarrow K$, K a nonempty closed subset of a real Banach space X, is said to be of asymptotically nonexpansive type if for each $x \in K$,

$$\limsup_{n\to\infty} \{ \sup[||T^n x - T^n y|| - ||x - y||] : y \in K \} \le 0.$$

Now, we introduce a semigroup of non-Lipschitzian self-mappings; let C be a nonempty closed convex subset of a real Banach space X with norm $\|\cdot\|$. A family $\mathcal{I} = \{T_s : s \in G\}$ of continuous mappings of C into C is said to be a right reversible semigroup of asymptotically nonexpansive type on C if the following conditions are satisfied:

(a) the index set G is a right reversible semitopological semigroup with the binary relation " \geqslant " defined as above;

- (b) $T_{st}x = T_sT_tx$ for all $s, t \in G$ and $x \in C$;
- (c) for each $x \in C$, $\inf_{t \ge s} \sup_{t \ge s} \{ \sup[||T_t x - T_t y|| - ||x - y||] : y \in C \} \le 0;$
- (d) T is continuous with respect to the strong operator topology: $T_sx \rightarrow T_tx$ for each $x \in C$ as $s \rightarrow t$ in G.

Left reversible semigroup of asymptotically nonexpansive type is defined similarly. $\mathcal{I} = \{T_s : s \in G\}$ is reversible if it is both left and right reversible. For semigroups of another non-Lipschitzian self-mappings, see [1], [6], [7] etc.

For each $x \in C$, $\mathcal{T}(x) = \{T_s x : s \in G\}$ is called the orbit of x under \mathcal{T} and a point $x \in C$ such that $\mathcal{T}(x) = \{z\}$ is called a common fixed point of \mathcal{T} . We denote by $F(\mathcal{T})$ the set of common fixed points of \mathcal{T} and by $\omega_w(x)$ the set of weak subnet limits of the net $\{T_s x : s \in G\}$. We set $E(x) = \{y \in C : \lim_{s \in G} ||T_s x - y|| \text{ exists}\}.$

It is the purpose of this paper that some of the weak convergence of semigroups of nonexpansive mappings carries over to the larger class of mappings defined above.

2. Opial's condition and weak convergence

Unless other specified, let $G, X, C, \mathcal{I} = \{T_s : s \in G\}$ be as before. When $\{x_{\alpha}\}$ is a net in X, then $x_{\alpha} \rightarrow x(\text{resp. } x_{\alpha} \rightarrow x)$ will denote norm(resp. weak) convergence of the net $\{x_{\alpha}\}$ to x.

We begin with the following result.

LEMMA 2.1. For each $x \in C$, $F(\mathcal{I}) \subseteq E(x)$.

Proof. Let $y \in F(\mathcal{I})$ and $r = \inf_{s \in G} ||T_s x - y||$. Given $\varepsilon > 0$, there is $s_0 \in G$ such that $||T_{s_0} x - y|| < r + \frac{\varepsilon}{2}$. Since \mathcal{I} is of asymptotically nonexpansive type, there also exists $t_0 \in G$ such that

$$||T_tT_{s_0}x-y|| \le ||T_{s_0}x-y|| + \frac{\varepsilon}{2}$$
, for all $t \ge t_0$.

Let $b \geqslant a_0 = t_0 s_0$. Since G is right reversible, we may assume $b \in \overline{G}a_0$. Let $\{s_{\alpha}\}$ be a net in G such that $s_{\alpha}a_0 \rightarrow b$. Then, for each α ,

$$||T_{s_at_0}T_{s_0}x-y|| \leq ||T_{s_0}x-y|| + \frac{\varepsilon}{2}.$$

Hence, $||T_bx-y|| \le ||T_{s_0}x-y|| + \frac{\varepsilon}{2}$. So, we have

$$\inf_{s} \sup_{t \geq s} ||T_{t}x - y|| \leq \sup_{b \geq a_{0}} ||T_{b}x - y||$$

$$\leq ||T_{s_{0}}x - y|| + \frac{\varepsilon}{2} < r + \varepsilon.$$

Since e is arbitrary, we have

$$\inf_{s} \sup_{t \geq s} ||T_t x - y|| \leq r = \inf_{s \in G} ||T_s x - y||.$$

Therefore, $\lim ||T_sx-y||$ exists and so $y \in E(x)$.

Recall that a Banach space X satisfies Opial's condition if, for $\{x_{\alpha}\}\subset X$, $x\in X$, $x_{\alpha} \to x$,

(*)
$$\limsup ||x_{\alpha}-x|| < \limsup ||x_{\alpha}-y||, y(\neq x) \in X$$

(see [11, Lemma 1] and [9, Lemma 2.1]). For more details, see also [4], [10].

LEMMA 2.2. Let X satisfy Opial's condition and $x \in C$. If $\phi \neq \omega_w(x) \subseteq E(x)$, then the orbit $\mathcal{I}(x) = \{T_x x : s \in G\}$ converges weakly.

Proof. Since $\omega_w(x) \neq \phi$, it suffices to show that $\omega_w(x)$ is a singleton. To this end, let $y_1, y_2 \in \omega_w(x)$ and $y_1 \neq y_2$. Then there exist subnets $\{T_{s_a}x\}$, $\{T_{s_p}x\}$ of the net $\{T_sx: s \in G\}$ such that $T_{s_a}x \rightarrow y_1$ and $T_{s_p}x \rightarrow y_2$, respectively. Since $y_1, y_2 \in E(x)$, there also exist $d_1, d_2 \geq 0$ for which

$$d_1 = \lim_{s} ||T_s x - y_1||, \ d_2 = \lim_{s} ||T_s x - y_2||.$$

Then, Opial's condition (*) implies that

$$\begin{split} d_1 &= \lim_{\alpha} ||T_{s_{\alpha}}x - y_1|| < \lim_{\alpha} ||T_{s_{\alpha}}x - y_2|| = d_2 \\ &= \lim_{\beta} ||T_{s_{\beta}}x - y_2|| < \lim_{\beta} ||T_{s_{\beta}}x - y_1|| = d_1, \end{split}$$

which gives a contradiction. This completes the proof.

By using Lemma 2.1 and Lemma 2.2, we now obtain the following weak convergence of $\{T_sx:s\subseteq G\}$.

THEOREM 3.3. Let X be uniformly convex and satisfy Opial's condition

and $x \in C$. Then, the orbit $\{T_s x : s \in G\}$ converges weakly to an element of $F(\mathcal{I})$ if and only if $F(\mathcal{I}) \neq \phi$ and $T_{ts}x - T_sx \rightarrow 0$ for all $t \in G$.

Proof. We need only prove the "if" part. Since $F(\mathcal{I}) \neq \phi$, by Lemma 2.1., $\{T_sx : s \in G\}$ is bounded; hence $\omega_w(x) \neq \phi$. By Lemma 2.1 and Lemma 2.2, it suffices to show that $\omega_w(x) \subseteq F(\mathcal{I})$. To this end, let $y \in \omega_w(x)$; hence there is a subnet $\{T_{s_a}x\}$ of the net $\{T_sx : s \in G\}$ for which $T_{s_a}x \rightarrow y$. Since $T_{ts}x - T_sx \rightarrow 0$ for all $t \in G$, we have $T_{ts_a}x \rightarrow y$ for all $t \in G$. Suppose that $y \notin F(\mathcal{I})$ and set

$$r_t = \limsup_{\alpha} ||T_{ts_{\alpha}}x - y||.$$

With a proof as in Lemma 2.1, we can see that $r = \inf_{s} r_{s} = \limsup_{s} r_{s}$. Since $y \notin F(\mathcal{I})$, r > 0 easily follows.

For any fixed $\eta > 0$, choose $\varepsilon > 0$ so small that

$$(r+\varepsilon)\left[1-\delta\left(\frac{\eta}{r+\varepsilon}\right)\right] < r$$

where δ is the modulus of convexity of the norm. For the $\varepsilon > 0$, there is $s_0 \in G$ such that $r_{s_0} < r + \frac{\varepsilon}{2}$. Since \mathcal{T} is of asymptotically nonexpansive type, there exists $t_0 \in G$ such that

$$||T_tT_{s_0s_a}x-T_ty||\leq ||T_{s_0s_a}x-y||+\frac{\varepsilon}{2},$$

for all $t \geqslant t_0$ and each α . Then we have

$$\limsup_{a} ||T_{ts_0}T_{s_a}x - T_ty|| \leq r_{s_0} + \frac{\varepsilon}{2} < r + \varepsilon,$$

and also

$$\limsup_{x} ||T_{ts_0}T_{s_n}x-y|| < r+\varepsilon,$$

for all $t \ge t_0$. Since $y \notin F(\mathcal{I})$, we choose a $b \ge t_0$ with $T_b y \ne y$. Then, there is $s_{\alpha_0} \in G$ such that

$$||T_{bs_0}T_{s_a}x-T_{b}y||, ||T_{bs_0}T_{s_a}x-y|| < r+\varepsilon,$$

for all $s_{\alpha} \gg s_{\alpha_0}$. By uniform convexity of X, we have

$$||T_{bs_0}T_{s_a}x - (T_by + y)/2|| \le (r+\varepsilon) [1-\delta(||T_by - y||/(r+\varepsilon)]]$$

$$< r$$

for all $s_{\alpha} \geqslant s_{\alpha n}$. Thus, Opial's condition (*) implies that

$$r_{bs_0} < \limsup_{a} ||T_{bs_0} T_{s_a} x - (T_b y + y)/2||$$

$$\leq \sup_{s_a \geq s_a} ||T_{bs_0} T_{s_a} x - (T_b y + y)/2|| < r.$$

This contradicts $r=\inf r_s$. Hence the proof is complete.

Similarly, using Lemma 2.1 and Lemma 2.2, we get

THEOREM 2. 4. Let X be reflexive and satisfy Opial's condition and $x \in \mathbb{C}$. If $E(x) \neq \phi$ and $T_s x - T_{ts} x \to 0$ for all $t \in \mathbb{G}$, then the orbit $\{T_s x : s \in \mathbb{G}\}$ converges weakly to an element of $F(\mathcal{I})$.

Proof. Since $E(x) \neq \phi$, the orbit $\mathcal{I}(x) = \{T_s x : s \in G\}$ is bounded. By reflexivity of X, $\omega_w(x) \neq \phi$. By Lemma 2.1 and Lemma 2.2, it suffices to show that $\omega_w(x) \subseteq F(\mathcal{I})$. Let $y \in \omega_w(x)$; hence there is a subnet $\{T_{s_a}x\}$ of the net $\{T_sx : s \in G\}$ such that $T_{s_a}x \rightarrow y$. Given $\varepsilon > 0$, since \mathcal{I} is of asymptotically nonexpansive type, there is $t_0 \in G$ such that

$$||T_tT_{s_a}x-T_ty|| \leq ||T_{s_a}x-y|| + \varepsilon,$$

for all $t \ge t_0$ and each α . For fixed $t \ge t_0$, we have

$$||T_{s_a}x - T_{ty}|| \le ||T_{s_a}x - T_{ts_a}x|| + ||T_{t}T_{s_a}x - T_{ty}|| \le ||T_{s_a}x - T_{ts_a}x|| + ||T_{s_a}x - y|| + \varepsilon,$$

for each α . Thus,

$$\limsup_{x} ||T_{s_a}x - T_ty|| \leq \limsup_{x} ||T_{s_a}x - y|| + \varepsilon.$$

Since ε is arbitrary, Opial's condition (*) implies that $T_t y = y$, for all $t \ge t_0$. So, we have $y \in F(\mathcal{I})$. This completes the proof.

When T is a nonexpansive mapping of C into C and $\mathcal{I} = \{T^n : n \in N\}$, this problem is equivalent to that of weak convergence of the sequence $\{T^nx : n \in N\}$ to a fixed point of T considered by Opial in [11] and Pazy in [12]. For right reversible semigroups of nonexpansive mappings on a Hilbert space, see Theorem 2.3 due to Lau [9]. If X is uniformly convex and $\mathcal{I} = \{T_i : s \in G\}$ is left reversible, and if there is

a point $x \in C$ such that its orbit $\mathcal{I}(x) = \{T, x : s \in G\}$ is bounded, then by the slight modification of Theorem 1 of [7], the asymptotic center c(x) of the orbit $\mathcal{I}(x)$ with respect to C is in fact a common fixed point of \mathcal{I} . Taking G = N in Theorem 2.3, we improve Emmanuele's result [2, Theorem 2].

COROLLARY 2.5. Let X be uniformly convex and satisfy Opial's condition If $T: C \rightarrow C$ is a mapping of asymptotically nonexpansive type, and if there is a point $x \in C$ such that $\{T^n x : n \in N\}$ is bounded, then $T^{n+1}x - T^n x \rightarrow 0$ implies that $\{T^n x\}$ converges weakly to the asymptotic center c(x) of $\{T^n x : n \in N\}$ with respect to C.

References

- 1. M. Edelstein and M.T. Kiang, On ultimately nonexpansive semigroups, Pacific J. Math., 101(1) (1982), 93-102.
- 2. G. Emmanuele, Asymptotic behavior of iterates of nonexpansive mappings in Banach spaces with Opial's condition, Proc. Amer. Math. Soc., 94(1), (1985), 103-109.
- 3. K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1) (1972), 171-174.
- 4. J.P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math., 40(3) (1972), 565-573.
- 5. R.D. Holmes and A.T. Lau, Nonexpansive actions of topological semigroups and fixed points, J. London Math. Soc (2), 5 (1972), 330-336.
- 6. M.T. Kiang, Fixed point theorems for certain classes of semigroups of mappings, Trans. Amer. Math. Soc., 189 (1976), 63-76.
- M.T. Kiang and K.K. Tan, Fixed point theorems for proximately nonexpansive semigroups, Canad. Math Bull., 29(2) (1986), 160-166.
- 8. W.A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math., 17 (1976), 339-346.
- 9. A.T. Lau, Semigroup of nonexpansive mappings on a Hilbert space, J. Math. Anal. Appl., 105 (1985), 514-522.
- I. Miyadera, Asymptotic behavior of asymptotically nonexpansive mappings in Banach spaces, Sci. Res. School of Education, Waseda Univ., 28 (1979), 13-21 (Japanese).
- 11. A. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597.
- 12. A. Pazy, On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space, Israel J. Math., 26(2) (1977), 197-204.

Kyungpook National University Taegu 635, Korea and National Fisheries University of Pusan Pusan 608, Korea