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WEAK CONVERGENCE OF SEMIGROUPS OF ASYMPTOTICALLY
NONEXPANSIVE TYPE ON A BANACH SPACE

Han Soo Kiv anp Tar Hwa Kin

1. Introduction

Let G be a semitopological semigroup, i.e., G is a semigroup with a
Hausdorff topology such that for each a=G the mappings s—a+s and
s—s-a from G to G are continuous. G is called right reversible if any
two closed left ideals of G has non-void intersection. In this case, (G, >>)
is a directed system when the binary relation “Z>” on G is defined by

t>s if and only if {5} UGs2 {8} UG, s, t=G.

Right reversible semitopological semigroups include all commutative sem-
igroups and all semitopological semigroups which are right amenable as
normal semigroup (see [5, p.335]). Left reversibility of G is defined
similarly. G is called reversible if it is both left and right reversible.

In 1976, Kirk [8] introduced any non-Lipschitzian self-mapping which
extends, in a sence, an asymptotically nonexpansive mapping inherited
by Goebel and Kirk [3]; a continuous mapping 7' : K—K, K a nonempty
closed subset of a real Banach space X, is said to be of asymptotically
nonexpansive type if for each &K,

limsup (sup[l| 7"z~ T*l|~l=—l] : y&K} S0.

Now, we introduce a semigroup of non-Lipschitzian self-mappings; let
C be a nonempty closed convex subset of a real Banach space X with
norm ||+ ||. A family 5= {T, : s&G} of continuous mappings of C into
C is said to be a right reversible semigroup of asymptotically nomex-
pansive type on C if the following conditions are satisfied:

(a) the index set G is a right reversible semitopological semigroup with
the binary relation “>>” defined as above;
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(b) Tyzx=T,Tx for all 5, t=G and z=C;
(¢) for each z&C,
inf sup {sup[ll 7.z — Tuyll—llz—Il] : y=C} <0

(d) T is continuous with respect to the strong operator topology:
Tax— Tz for each ze=C as s—¢ in G.

Left reversible semigroup of asymptotically nonexpansive type is defined
similarly. 7= {T,:s&G} is reversible if it is both left and right
reversible. For semigroups of another non-Lipschitzian self-mappings,
see [11,[61, [7] etec.

For each z=C, 7 (z)=(Twx : s&G) is called the orbit of z under 7
and a point 2<C such that 7(z)={z} is called a common fixed point
of 7. We denote by F(7) the set of common fixed points of 7 and by
o,(z) the set of weak subnet limits of the net {T.x: sEG} We set
E(z)={y=C: hmIIT,x 9l exists}.

It is the purpose of this paper that some of the weak convergence of
semigroups of nonexpansive mappings carries over to the larger class of
mappings defined above.

2. Opial’s condition and weak convergence

Unless other specified, let G, X,C, 7= {T, : s&G} be as before. When
{z.} is a net in X, then z.,—z(resp. z,—z) will denote norm(resp
weak) convergence of the net {z.} to x.

We begin with the following result.
LEMMA 2. 1. For each z&=C, F(9)CE(x).
Proof. Let y=F(J) and r———-infllT,x——yII Given ¢>0, there is s,=G

such that ||T,,z— y|l<r+7 Since 7 is of asymptotically nonexpansive

type, there also exists £,&G such that
IT. T,z = SN Tez— s+, for all £,

Let b>>a,=t,s,. Since G is right reversible, we may assume #&Ga,, Let
{s.} be a net in G such that s.a;—b. Then, for each «,

W ety Tz =y SN T — yll+——
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Hence, IITbx-—yH_S_llT,ox——-yll-’r%. So, we have
inf supl| Tz — yll <supl| Tuz— sl
s t=s LE=

SIT.z—sll+5<rte.
Since ¢ is arbitrary, we have

inf sup||Tx—y||<r=inf|| T,z —y||.
s t2s =1

Therefore, lim|| T,z —y|| exists and so y=E(x).

‘ Recall that a Banach space X satisfies Opial’s condition if, for {z.} C
X, z&X, x,—x,

() limsupllz, —zl<limsupllza—sll, y(zz)EX
(see [11, Lemma 1] and [9, Lemma 2.1]). For more details, see also
[41, [10].

LeMMA 2.2. Let X satisfy Opial's condition and :=C. If ¢pFw,.(x)
E(x), then the orbit T (z)={T,x : s&G)} converges weakly.

Proof. Since w,(x)#¢, it suffices to show that w,(z) is a singleton.
To this end, let yy, y.€0,(xr) and y,7#y,. Then there exist subnets
{T. .z}, {T.,x} of the net {T.x:s&G} such that T, x—y, and T,z—y,,
respectively. Since y,, y.=E(z), there also exist d;, d,=0 for which

d1=ligallTsx—-y1|l, dz=lirsn|IT,x-—yzll.

Then, Opial’s condition (%) implies that
dy=lim|| T,z — 3 ll<liml|| T, .z — 35l = d;
=li§nI| T‘,:c-yzll<li;nIIT wT—Mll=d),

which gives a contradiction. This completes the proof.

By using Lemma 2.1 and Lemma 2.2, we now obtain the following
weak convergence of {T.x : s&G}.

THEOREM 3.3. Let X be uniformly comvex and satisfy Opial’s condition
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and z=C. Then, the orbit {T,x : s=G} converges weakly to an element
of F(T) if and only if F(J)#¢ and T,xz— Tx—0 for all t=G.

Proof. We need only prove the “if” part. Since F(7)+#¢, by Lemma
2.1., {T.x:s=G} is bounded; hence w,(z)#¢. By Lemma 2.1 and
Lemma 2.2, it suffices to show that w,(2)CF(J). To this end, let
¥&w,(z); hence there is a subnet {7, 2} of the net {T,x:s=G} for
which T, z—y. Since T, z— T,x—0 for all t=G, we have T, z—y for
all t&=G. Suppose that y&F(J) and set

re=limsup|| T x—y}l.
[: 3

With a proof as in Lemma 2.1, we can see that r=inf r,=limsup 7.
Since y&£F(T), r>0 easily follows.
For any fixed >0, choose ¢>0 so small that

et 3 )<

where & is the modulus of convexity of the norm. For the ¢>>0, there is

5¢&G such that r,,<r+—§—. Since 7 is of asymptotically nonexpansive

type, there exists £, &G such that
N T Tz — T SN Tepo,z— 3N +-,
for all £>¢, and each a. Then we have
limfupll Ty Tox— Tl S, +—%—<7‘ +¢,

and also

limsupll Tts. Ts,,x —y"<r + &,

for all £>>¢, Since y&EF(F), we choose a b>t, with T,y#y. Then,
there is s5,,&G such that

” TbsaTs..x—' Tby”, "Tbs,T:,x""y"<r+5’

for all s,>>s.,, By uniform convexity of X, we have
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I Tose Toiz— (Toy+3) /21 (r+0) [1 =8| Toy—yll/ (r+¢) ]
<r

for all s,2>s.,. Thus, Opial’s condition (*) implies that
755, imsupl|| Ts,, Ts x — (Thy+5) /2|
éstzls)” Tb,, T,_x— (Tby +y) /2|l<r

5 «y

This contradicts r=inf r,, Hence the proof is complete.
8

Similarly, using Lemma 2.1 and Lemma 2.2, we get

THEOREM 2.4. Let X be reflexive and satisfy Opial’s condition and
z&C. If E(x)+#¢ and Tx— Tywx—0 for all t=G, then the orbit {T.x :
s=G)} converges weakly to an element of F(7).

Proof. Since E(x)#¢, the orbit 7 (zx)={T,x: s&G} is bounded. By
reflexivity of X, 0,(z)#¢. By Lemma 2.1 and Lemma 2.2, it suffices
to show that w,(z)CF(J). Let y=w,(z); hence there is a subnet
(T, z} of the net {T\x : s&G} such that T, z—y. Given ¢>0, since 7
is of asymptotically nonexpansive type, there is £, &G such that

T T, x— Ty || Ts . x—yl| +e,
for all t>t, and each a. For fixed t>>t,, we have
I Tsxz— Tyl S| Toux— Tos 2|+ | T, Ty x — Teyll
ST, x— Tzl + | Tz~ +e,

for each a, Thus,

limsup|| T,z — Toy|| <limsup|| T,z — yl| 4.

Since ¢ is arbitrary, Opial’'s condition (¥) implies that 7,y=py, for all
t=t,. So, we have y=F (7). This completes the proof.

When T is a nonexpansive mapping of Cinto C and 7= {T": ac=N1},
this problem is equivalent to that of weak convergence of the sequence
{T"z : n=N} to a fixed point of 7 considered by Opial in [11] and
Pazy in [12]. For right reversible semigroups of nonexpansive
mappings on a Hilbert space, see Theorem 2.3 due to Lau [9]. If X is
uniformly convex and 7= {T,: s=G} is left reversible, and if there is
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a point x&C such that its orbit 7 (z)={T,x: s&G} is bounded, then
by the slight modification of Theorem 1 of [7], the asymptotic center
¢(x) of the orbit 7(z) with respect to C is in fact a common fixed
point of 7, Taking G=N in Theorem 2.3, we improve Emmanuele’s
result [2, Theorem 2].

COROLLARY 2.5. Let X be uniformly convex and satisfy Opial’s condition

If T:C—C is a mapping of asymptotically nonexpansive type, and if
there is a point x=C such that {T"z : n=N} is bounded, then T""'z—
T*x—0 implies that {T"z) converges weakly to the asymptotic center ¢(x)
of {T*x : n=N} with respect to C.
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