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HARDY-LITTLEWOOD INEQUALITIES FOR THE
WEIGHTED BERGMAN SPACES

Do Youne Kwak¥

1. Preliminaries

For z=(z,, -**, 2s) and {=(g,, +*-,{,) EC", we write {(z,{)=2z;-F; 4
+2,:La, ll2ll=4¢z, 2)172, B={z&C": ||2l|<1} is the unit ball in C" and
4 is the unit disk in C. The class of all holomorphic functions on a
domain D in C* is denoted by O(D). For ¢>0 we define

doy (@) =-LEED (1) ™o @)

where dv is the Euclidean volume element. If we let dv,(z) mean the
unit surface measure ds on the boundary 9B of B, then we see that

f dv,(2) =1(¢>0).

With these notations the weighted Bergman spaces are defined in an
obvious manner:

A2 (B)=At={f=0(B) : || fll5, <00}
where || flf,,,= [flf(z) l”dvq}l/p for ¢>0 and || fll,o=sup M,(f:7r)=

sup { f | f(r2) |*dvy (2) ] " The following theorems which are the starting
point of this research is due to Beatrous and Burbea [1].

THEOREM 1.1. For 0<p<lr<{oo, p<k<oo, ¢=>0 and fEAL, we
have

([ a-oy1ar(r 2 p)do} "<Clf e

where = (n+q)/p—n/r and C, is independent of f.
* Partially supported by Korea Ministry of Education.
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THEOREM 1.2, For 0<p,<p1<co and ¢, ¢:=0 with (n+gq)/p=
(n+qz) /P2, there is a continuous injection from A} into Al

2. Estimates of Taylor coeflicients of functions in A4,

For a=(ay, -+, a,) EZ,* and z=(z,, -*, 2,) EC* we write |a|=a;+ -
@y, al=a;!-a,! and 2*=2,"1- 2%,

We prove the following generalization of a Hardy-Littlewood inequality
[6].

THEOREM 2.1. Let f (z)=;oa.,z“ be in AP, Then for 0<p<<2 and
g>0, we have

1 p/2
@1 Zal+ D@2 gt ) 0 el f 1,

where ¢, is independent of f and the exponent is best possible when n=1.

For the proof, we derive some estimates M; (f: p) of and follow the
idea of T.M. Flett [5].

LEMMA 2.2, If a;>0, i=1,,1,0<p<1, then
I () < (5

PROPOSITION 2.3. Let 0<p<lco, ¢=>0, and let f(z) =3 a.2* be in
O(B). Then for any positive integer m we have, with l=max{l, p}

/2

2.2) M(S: 0) 2apm(mt D omne 3 (et )

where c, is independent of f,

Proof. We use the polar coordinates to get

[Flenyzan=2LD_[* 'roxmt (L= idr [ (pre) (72) da )

I'(n)I'(q)
—a.p'® a!l’(n+q)
Tt [al +9)

For |a]|=m, we have
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prata,=2-LEARED [ rems =y tdr [ f(pra)zedo )

It follows that

Pmd! laal =%% :sn+m/2—l (1—3)‘7_1(18

x [1£Go vs2) |+ 11 do 2.

We multiply both sides by (m!/a!)'/? and sum over all indices a with
la]l=m to obtain

Fintm+q) [ pimso— -
tal)l/2 S\ Y) 2-1(1 .
0 I‘!Z}_m(m al)t?la,| < Twr@ Jo (1—s)*ds

x [1£Go w31 ( 53 _(m1/at)!/*|z))do ).

By the Cauchy-Schwarz inequality and the fact that M,(f:r) is an
increasing function of r, we have

2.3) pmlzzzm(mzag)lfz|au|g_llft_li:_(%m( "+ﬁ"1 )“2

I'(n+m/2) .
T(atm/2+9 My (f+ )

Taking p—th power, we obtain by Lemma 2, 2,
wm nt+m—1 \! Vo 1)272] 4 | 2
pm (1Y s lal)rrladl

= (6 L G M CL e D LA

which, by Sterling’s formula, is equivalent to

? H pm —atltpg/2 /2
M (f: p)2Cprm(m+1) Iu?—m( F(n+m+q)) |a.|?
for some C independent of f. This gives (2.2) for p<<1, and the case
#>1 is dealt with similarly.

Now we prove the main theorem. First assume 0<p<{l. Then by
Theorem 1.1,
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1
CUAIL = [ (A=) erriMa (S + p)dp

I=-1/m+2

=5 [ A=) M (f 2 11/ (1)) dp
=3 (m+ D™ (m+2) "0~ (m+2)" (m+ 1)+
=) (m+1)"H(m+2)"*
But (m+1)*(m+2) ™ — (m+2)" (m+1)"*
=(m=+2) [(m+1)"?(m+2)*— (m+2)*(m+1)"]
=(m+2)"(m+1)"[1—-£77],

where t=[{(m+1)/(m+2)]" and since 1—¢"2>(1—p) (1—t), above sum
is not less than

M2(f:1-1/(m+1))

—p e - D™[(m+2)*— (m+1)"] ‘11—
(1 P)mgo (m+1)"+"(m+2)" Ml’(f~ 1 1/(m+1))

2n(1-p)3; (m(;ﬂzz’)”’ L Mp(f1-1/ (D).
Since (1—1/(m+1))"*—e~? as m—>oo, Proposition 2.3 gives the result
for 0<p<{1. For p=2, the inequality becomes Parseval’s identity. We
shall use Marcinkiewcz interpolation theorem to obtain the result for
0<p=<2,

Define a space of sequences {{,2(Z}),dv} with v(a)=(|a|+1)"2"+e/®
for acZ,", and define (Tf)(a)=(|a|+1)"*2(al/T (n+ |a| +q))'"?|a.]
for fe=A2. Then for 0<p<1,

Ve s [(TH@I>d=_ 5 (lal+D2wern
SUsB(lal +D) 2@ @l /T (n+ |al +9))*%|ac|2.
Therefore, T as a mapping of {A2, dv,) into {I,#(Z,"),dv}, is of weak

type (p,2) for 0<<»<1. On the other hand, T is of strong type (2.2).
It follows that T is of strong type (p,p) for 0<<p<{2, which is (2.1).

The following dual result is easily obtained by considering the orthogonal
projection.

COROLLARY 2.4. Let 2<p<co, g=>0 and let f(2) =2a.z* be in O(B).
Then
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» (n+q/2) (p~2) al pE
110 <ergillal +D w1202 (g o) el

Jor some c, independent of f.
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