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HARDY-LITTLEWOOD INEQUALITIES FOR THE
WEIGHTED BERGMAN SPACES

Do YOUNG KWAK*

1. Preliminaries

For Z= (Zlo "', Z,.) and ,= ('1, "', ',,)EC", we write (z, ')=ZI"1+'"
+z"·C,,, IIzll=(z, Z)1I2. B= {zEC" : IIzll<n is the unit ball in C" and
J is the unit disk in C. The class of all holomorphic functions on a
domain D in C" is denoted by Q(D). For q>O we define

dvq(z)

where dv is the Euclidean volume element. If we let dvo(z) mean the
unit surface measure da on the boundary aB of B, then we see that

JdVq(z)=l(q~O).
With these notations the weighted Bergman spaces are defined in an

obvious manner:

A/(B)=Al= {fEQ(B) : IIfll"q<oo}.

where IIfll"q= (J I/(z) I'dVq } 1/, for q>O and IIfllp,o=sup Mp(f: r) =

sup (J If(rz) \Pdvo(z) }1/'. The following theorems which are the starting

point of this research is due to Beatrous and Burbea [l].

THEOREM 1.1. For O<p<r<oo, p<k<oo, q>O and IEAl, we
have

{J: (1- p)kP-lM/Cl: p)dp} Ilk<Cpll/llp,q

where p= (n+q)/p-n/r and Cp is independent of I.
* Partially supported by Korea Ministry of Education.
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THEOREM 1. 2. For O<P291<OO and ql, q2>0 with (n+ql)/p=

(n +q2) /P2, there is a continuous injection Irom A:: into At.
2. Estimates of Taylor coefficients of functions in Al

For a=(al,"',a,,)EZ+,' and z=(Zl,"',z,,)EC" we write lal=al+'"
all, a! =al! "'a,,! and z«=ZI"l ...z"....

We prove the following generalization of a Hardy'Littlewood inequality
[6J.

THEOREM 2. 1. Let fez) = :Ea,,%" be in A/. Then lor O<P<2 and
&2:0

q>O, we have

(
, )P12(2.1) :E(lal +l)(lI+qI2)(jl-2l a. la"I'<cpl//I/:,q

,,~o F(n+ lal +q)

where cp is independent 01 I and the exponent is best possible when n=l.

For the proof, we derive some estimates M1 (I; p) of and follow the
idea of T.M. Flett [5J.

LEMMA 2.2. 11 a;>O, i=l, "',1, O<P<I, then

I I
1'-1 (:Ea;')< (:Ea;) p.

;=1 ;=1

PROPOSITION 2. 3. Let O<P<00, qzO, and let f (z) = :Ea..z« be in
O(B). Then lor any positive integer m we have, with l=max{l,p}

(2.2) M 1'(f; p»cpp""(m+I)H1-lIHpqI2:E ( a! )PI2 Ia"IP
1,,1=.. r(n+m+q)

where c, is independent 01 I.

Proof. We use the polar coordinates to get

!
1(pz)Z"dV = 2F(n+q) !lr2"-1 Cl-r2)q-ldr!l(prz) (rz)"da(z)

q r(n)F(q) 0

=aIlP'''' a!r(n+q)
r(n+ lal +q)

For lal =m, we have
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p"'a!a..=2 r~(~~~5) J:r2n-l(l-r2)q-ldrJ f(prz) z"da(z)

It follows that

p"'a! la.. 1 F(n+m+q) J
1
sn+m/2-1 (l-s)q-1ds

F(n)r(q) 0

X J If(p ,Jsz) 1·1z«lda(z).

We multiply both sides by (m!/aDl/ 2 and sum over all indices a with
lal =m to obtain

p'" L; (m!a!)1/2Ia.. 1< r(n+m+q) J 1sn+",/2-1 (l-s)q-1ds
1"1='" r(n)r(q) 0

X JIf(p ';sz) I (I ~=..(m!la!) l/21 z"l)dq(z).

By the Cauchy-Schwarz inequality and the fact that Mt (I: r) is an
increasing function of r, we have

(2.3) pm :E (m!a!)1/2Ia.. l< r(n+m+q) ( n+m-l )112
1.. 1=", F(n) m

F(n+m/2) M:(f' )
r(n+m/2+q) 1 • P

Taking p-th power, we obtain by Lemma 2.2,

pF« n+m-l )':-l}: (m!aD, /2 Ia.. !t'
m 1.. 1='"

« F(n+m+q) )'( n+m-l )'/2( F(n+m/2) )'M'(f: p)
- F(n) m r(n+m/2+q) t ,

which, by Sterling's formula, is equivalent to

M1'(I: p) >CpF«m+ 1)-n+1+N /2 L; ( a! )'/2 1a.. Ip
1.. 1=", F(n+m+q)

for some C independent of f. This gives (2.2) for P<l, and the case
p>1 is dealt with similarly.

Now we prove the main theorem. First assume O<P<l. Then by
Theorem 1. 1,
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Cllfll~,'1>J:(1- p)n+q-np
-lM/(I: p)dp

CD J1-1/.,+2:2E (1- p)n+q-np-IM/(f: 1-1/(m+ l))dp
...=0 1-1/...+1

_~ (m+l)np(m+2)(nW -(m+2)np(m+l)n+q p .-;;0 (m+l)n+'1(m+2)n+'1 M 1 (I· l-l/(m+l))

But (m+1)"P(m+2) (,,+'1)_ (m+2)np(m+1)n+'1
:2 (m+2)'1[(m+ l)np(m+2)n- (m+2)n p(m+ l)n]
= (m+2)q+n(m+ l)np[l-t1- P],

where t=[(m+l)/(m+2)]n and since I-t1- P:2(l-p) (l-t), above sum
is not less than

(1-P)E (m+l) "P[(m_+2t'- (m+l)nl M P(/: l-l/(m+1))
...=0 (m+ 1),,+q(m+2)" 1

CD ( +1)"p-1-q
:2n(l-p)E m M/(/: 1-1/(m+1)) .

...=0 (m+2)"

Since (1-1/ (m +1))"'P-+e-P as m-+oo, Proposition 2. 3 gives the result
for O<P<l. For P=2, the inequality becomes Parseval's identity. We
shall use Marcinkiewcz interpolation theorem to obtain the result for
O<P<2.

Define a space of sequences {ll(Zn, dv} with v (a) = (Ial +1)-2:n+qI2)

for aEZ+,', and define (Tf) (a) = (Ial + 1)n+q/2(a l/r(n+ lal +q))1/2Ia.. 1
for fEAl. Then for O<P<l,

v{a: I(TI) (a) I>s}= E (lal+l)-2~n+'1/2)
(TI)(/d)s

<1/sPE(lal +1) (,,+qI2)(P-2' (a!/r(n+ la\ +q)) PI2 Ia.. lp.
..01;0

Therefore, T as a mapping of {Al. dvq} into {ll (z+n). dv}. is of weak
type (p,p) for O<P<l. On the other hand, T is of strong type (2.2).
It follows that T is of strong type (p, p) for O<P<2, which is (2. 1).

The following dual result is easily obtained by considering the orthogonal
projection.

CoROLLARY 2.4. Let 2<p<'oo, q>O and let f(z) = Ea..%" be in O(B).
Then
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11 f\ll' <c:E (I a I+1) <ft+qI2l<p-2> ( a! )P12 1a,,'!p"q- PIIil;O F(n+ lal +q)

for some Cp independent of f.
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