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THE STRUCTURE OF REGULARITY OF NEAR-RINGS

YONG UK eRO

1. Iu.troduetion

The concepts of regularity of near-rings have been studied by many
authers, I.C. Beidleman, S. Ligh, D.Z. Chao, H.E. Heatherly and A.
Oswald, their main results are in G. Pilz [l2J.

In 1980, G. Mason [9J introduced the notions of strong regularity of
near-ring. He proved that for any zero-symmetric near-ring with identity,
the concepts of left regularity, strong left regularity and strong right
regularity of near-rings are equivalent, and in 1984, the notion of strong
regularity of near-rings has been studied further by C.V.L.N. Murty
[10].

The Von Neumann regularity of rings and generalizations were studied
by I.W. Fisher, R.L. Snider [4J, Y. Hirano, H. Tominaga [5] and
T.R. Savage [14].

In 1985, M. Ohori [11] studied the characterization of strong ,,;­
regularity of rings and also in 1985 L. Li and B.M. Schein [7].

In section 3, we will generalize or improve some of the main results
of Beidleman and Ligh in [l2J and we will introduce the concepts
,,;-regularity of near-rings which are more general concepts of regularity
of near-rings.

Characterization of strong regularity and strong n-regularity of near­
rings are investigated, and the purpose of this section is to prove that
the concepts of left regularity, strong left regularity, strong right
regularity, n-regularity and strong n-regularity of near-rings with some
conditions are equivalent for arbitrary near-rings.

In section 4, semi ,,;-regularity and a:-regularity will be introduced,
and we shall characterize relationships between them. Finally, we will
investigate their equivalent condition under zero-symmetric reduced near­
ring.
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In this paper, N will represent a (right) near-ring. A near-ring N is
said to be zero-symmetric if aO=O for all a in N and reduced if it has
no non-zero nilpotent element.

We refer the reader to the hook by G. Pilz Cl2J and [I3J for the
remainder definition and basic concepts of near-ring theory.

2. Regularity and 'f-regularity of near-rings

THEOREM 3.1. Let N be a near-ring. N is regular if and only if for
each aEN, there exists an idempotent eEN such that aENa and Na=
Ne.

Proof. Suppose N is regular and let aEN. Then there exists xEN
such that a=axa. Since xa and ax are idempotents in N, take xa=e,
we have a=axaENa and Na = NaxaCNxa= Ne. Hence Na=Ne.

Conversely, assume the conditions. Let aEN, by assumption, there
exists an idempotent e in N such that aENa and Na=Ne.

Now, since aENe, a=xe for some element x in N, and e=eeENe=
Na, so e=ya for some element y in N. It follows that a=xe=xee=
xeya=aya. Hence N is reqular.

CoROLLARY 2.2. (Beidleman ClJ, Ligh [8J, [12J) Let N be a
near-ring with identity. N is regular if and only if for each a in N
there exists an idempotent e in N such that Na=Ne.

THEOREM 2. 3. Every regular near-ring contains no non-zero nil N­
subgroups.

CoROLLARY 2. 4. (Beidleman ClJ, [l2J) . Any regular near-ring with
identity contains no non-zero nil N-subgroups.

A near-ring N is said to be ~-regular if for every a in N, there exists
x in N and exists positive integer n such that a"=a"xa". Such an element
a is called ~-regular.

A near-ring N is called left (right resp.) ~-regular, if for each element
aEN, there exists a positive integer n, such that a" is left (right resp.)
regular.

REMARK 2.5. Every regular near-ring is ~-regular. But not conversely.

THEOREM 2.6. Let N be a near-ring. N is ~-regular if and only if
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for any a in N, there exists a positive integer n, and idempotent e in N
such that a"ENa" and Na"=Ne.

REMARK 2.7. A n-reqular near-ring may have non-zero nil N­
subgroups.

The set Z(N) = {xENlax=xa for each aEN} is called the center of
a near-ring N. If N is distributive near-ring, then Z(N) is a subnear­
ring of N.

THEOREM 2. 8. The center of a distribut 've n-regular near-ring is also
n-regular.

Proof. Let N be a n-regular near-ring and let aEZ(N) . Then there
exists x in N, exists a positive integer n such that a"=a"xa", so a"=
a"xa"xa". We will show that xa"xEZ(N).

Let cEN, since a"EZ(N) , a"xEZ(N). Indeed, (a"x) c=a" (xc) =
(xc)a"= (xc)a"xa"=a" (xcx)a"=a"xa"cx=a"cx=c(a"x).

Similarly, xa"EZ(N). Now, (xa"x) c=x(a"x) c=xc(a"x) =x(a"c) X=
(a"x)cx=c(a"x)x=c(xa")x=c(xa"x). Hence Z(N) is n-regular.

COROLLARY 2. 9. The center of a distrihutive regular near-ring is also
regular.

REMARK 2.10. (A4, +) is alternating group on 4-letters which is not
abelian. We can define multiplication' such that (A4• +, .) is a
distributive n-regular near-ring, but not a ring.

3. Strong regularity and Strong no-regularity of near-rings

N is said to be strongly n-regular if it is both left and right n-reqular,
and strongly left (right resp.) n-regular if for any element aEN there
exists a positive integer n, such that a" is strongly left (right resp.)
regular.

LEMMA 3.1. Let N be a left (or right) regular near-ring. If for any
a, h in N with ah=O then (ha) "=60, for all positive integer n.

LEMMA 3.2. Let N he a left (or right) regular near-ring. If for any
a, h in N with ab=O and a"=aO, for all positive integer n2:2, then a=O.

In this case, if N is zero-symmetric then N is reduced.

LEMMA 3. 3. (G. Mason [9J). Let N be a zero-symmetric, reduced
near-ring. If for any a, h in N with ab=O, then ba=O and N has I.F.P.
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LEMMA 3.4. Let N be a zero-symmetric near-ring with left identity.
If N is reduced, then every idempotent is central.

LEMMA 3. 5. If N is a left regular near-ring, then N is regular.
Moreover, if a=xaZ for some x, a in N, then ax=xa.

Proof. Let aEN. Since N is left regular, a=xa2 for some x in N.
(a-axa)a=O, by Lemma 3. 1, a(a-axa) =aO.

Hence (a-axa)2=aO-axaO= (a-axa)O. So, by Lemma 3.2, a=axa.
Therefore N is regular.

Next, since (ax-xa)a=O, a(ax-xa) =aO. Thus we have (ax-xa)2
=axO-xaO= (ax-xa)O. Consequently ax=xa.

CoROLLARY 3. 6. If N is left regular then N i.~ right regular, further­
more, it is strongly right regular.

LEMMA 3. 7. If N is either a left or right regular near-ring, then, for
any aEN and any e2=eEN such that ea"=ea"e for all positive integer n.

THEOREM 3. 8. If N is left n:-regular and right regular, then N is
n:-regular and if a"=xaZ" for some a, x in N and some positive integer
n, then a"x=xa".

Proof. Let aEN. Since N is left n:-regular, there is an element xEN,
such that a71=xaZ" for some positive integer n.

Form (a"-a"xa")a"=O, a"(a"-a"xa") =a"O by Lemma 3.1.
So, (a"-a"xa)2=a"(a"-a71xa") -a"xa"(a"-a"xa") = (a"-a"xo")O.
By Lemma 3.2, a"=a"xa". Hence N is n:-regular.
Next, since a"=a"xa"=xa2", (a"x-xa")a"=O and (a"x-xa")a"x=O.
Then a"(a"x-xa") =a"O and a"x(a"x-xa") =a"xO. Hence (a"x-xa")2

=a"xO-xa"O= (a"x-xa")O. Therefore a"x"=xa".

CoROLLARY 3. 9. If N is left tt-regular and right regular, then N is
strongly left tt-regular and strongly right n:-regular.

THEOREM 3. 10. Let N be any arbitrary near-ring. The following
statements are equivalent.

(l) N is left regular.
(2) N is strongly regular.
(3) N is right regular and left tt-regular.
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(4) N is right regular and strongly left 7T:-regular.
(5) N is right regular and strongly 7T:-regular.
(6) N is strongly left regular.
(7) N is strongly right regular.
(8) N is regular and for any idempotent eEN and any aEN such that

ea"=ea"e for all positive integer n.
(9) N is regular and for any idempotent eEN and any aEN such that

ea = eae.

Proof. (l) <==> (2). By Lemma 3. 5. (2) :;> (3) . Since left regular is left
7T:-regular. (3):;> (4). By Corollary 3. 9. (4):;> (5). By Theorem 3. 8.

(5) =:> (1). Suppose N is right regular and strongly 7T:-regular.
Let aEN. Since N is left 7T:-regular, there exists an element xEN

such that a"=xa"tl for some positive integer n.
If n=l or n=2, clearly N is left regular. It suffice to show the case

positive integer n>2. (a"-I- xa")a=O and (a"-I- xa")a"-I=O.
By Lemma 3.1, a(an- 1-xa") =aO and an- 1 (a"-I- xa") =a"-10.
Now (a"-I_ xa")2=a"-I (a"-I_xan) -xa"(a"-I- xa")=a"-IO- xano= (a"­

xan)O. By Lemma 3.2, an- 1=xa".
Continuing this procedure, we obtain that a=xa2• Therefore N is left

regular. (1):;> (6):;> (7) =:> (8):;> (9).
These implications follow from the previous Lemma 3.5 and Lemma

3.7.
Finally, we will prove that (9):;> (1).
Suppose N is regular and for any a'EN, and idempotent eEN such

that ea' =ea'e.
Let aEN. Since N is regular, a=axa for some xEN.
Then a=axa=axaxa=a(xax)a=a(xaxxa)a =axaxxa2 = ax2a2 = ya2,

where y=ax2
• Hence N is left regular.

4. Semi no-regularity and ,,-regularity of near-rings

DEFINITION 4. 1. A near-ring N is said to be left semi 7T:-regular if
for each aEN, there exists xEN such that an=axan for some positive
integer n.

Analogously for right semi 7T:-regular.
Such an element a is called left (right, resp.) semi tr-regular.
A near-ring N is called left (right, resp.) ,.-regular if for every aEN,
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there exists xEN such that a"=xa,,+1 (a" = a"+1x, resp.)for some positive
integer n.

REMARK 4.2. (1) Every n-regular near-ring is left (and, right) semi
n-regular.

(2) Every left (right, resp.) n-regular near-ring is left (right, resp.)
semi n-regular.

(3) Every right (left, resp.) n-regular near-ring is also right (left,
resp.) ,t-regular.

(4) Every right (left, resp.) ,t-regular near-ring is also right (left,
resp.) semi x-regular.

There exist many examples of semi x-regularity and ,t-regularity of
near-rings, we can easily see for finite near-rings.

THEOREM 4. 3. If N is a left and right ,,-regular near-ring, then N
is n-regular.

Proof. Let aEN. Since N is left and right ,t-regular, there exists x
and y in N such that a"= xa,,+1, a"'=am+Iy for some positive integers n
and m. Thus, a"=xa,,+l=x(xa,,+1)a=x2a"a2=x2(xan+l)a2=ra"a3... =
x"'d'd"=x"'a,,+m.

Analogously, from am=am+1y, am=ad"y=a(am+1y)y=a"'+2y2=···=am+"y".
Consequently, a"+m=am+,, = ama"= am+"y"x"'a"+'" =a"+"'za"+"', where z=

y"x"'. Hence N is n-regular.

THEOREM 4. 4. If N is a left semi n-regular and right regular near­
ring, then N is regular.

THEOREM 4. 5. If N is x-regular and right regular, then N is right
,,-regular.

Proof. Let aEN. Since N is n-regular, there is an element xEN
such that a"=a"xa" for some positive integer n. Form (a"-I- a"xa"-I)a=
0, a(a"-I- a"xa"-I) =aO and (a"-I-a"xa"-I)2= (a"-I-a"xa"-I)O. Thus we
have that a,,-I=a"xa,,-I.

Continuing this process, it follows a=a"xa.
Hence a"'=a"'- la=am- 1a"xa=am+l (a"-2xa) =am+ly, where y=a"-2xa.
Therefore N is right ,t-regular.

THEOREM 4. 6. Let N is zero-symmetric with left identity, and reduced.
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The following statements are equivalent.
(1) N is 1C-regular.
(2) N is left ,,-regular.
(3) N is left semi 1C-regular.
(4) N is regular.
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