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THE STRUCTURE OF REGULARITY OF NEAR-RINGS

Yone Uz Cuo

1. Imtroduction

The concepts of regularity of near-rings have been studied by many
authers, J.C. Beidleman, S. Ligh, D.Z. Chao, H.E. Heatherly and A.
Oswald, their main results are in G. Pilz [12].

In 1980, G. Mason [9] introduced the notions of strong regularity of
near-ring. He proved that for any zero-symmetric near-ring with identity,
the concepts of left regularity, strong left regularity and strong right
regularity of near-rings are equivalent, and in 1984, the notion of strong
regularity of near-rings has been studied further by C.V.L.N. Murty
fiol. ‘ ‘ ‘

The Von Neumann regularity of rings and generalizations were studied
by J.W. Fisher, R.L. Snider [4], Y. Hirano, H. Tominaga [5] and
T.R. Savage [14].

In 1985, M. Ohori [11] studied the characterization of strong -
regularity of rings and also in 1985 L. Li and B.M. Schein [7].

In section 3, we will generalize or improve some of the main results
of Beidleman and Ligh in [12] and we will introduce the concepts
n-regularity of near-rings which are more general concepts of regularity
of near-rings.

Characterization of strong regularity and strong z-regularity of near-
rings are investigated, and the purpose of this section is to prove that
the concepts of left regularity, strong left regularity, strong right
regularity, n-regularity and strong z-regularity of near-rings with some
conditions are equivalent for arbitrary near-rings.

In section 4, semi n-regularity and s-regularity will be introduced,
and we shall characterize relationships between them. Finally, we will
investigate their equivalent condition under zero-symmetric reduced near-
ring.
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In this paper, N will represent a (right) near-ring. A near-ring N is
said to be zero-symmetric if 40=0 for all ¢ in N and reduced if it has
no non-zero nilpotent element.

We refer the reader to the book by G. Pilz [12] and [13] for the
remainder definition and basic concepts of near-ring theory.

2. Regularity and z-regularity of near-rings

THEOREM 3.1. Let N be a near-ring. N is regular if and only if for
each ac=N, there exists an idempotent ee=N such that a=Na and Na=
Ne.

Proof. Suppose N is regular and let a&=N. Then there exists &N
such that a=axe. Since xa and ax are idempotents in N, take za=e,
we have a=aza=Na and Na=NaraCNza=Ne. Hence Na=Ne,

Conversely, assume the conditions. Let a&N, by assumption, there
exists an idempotent ¢ in N such that a=Na and Na=Ne,

Now, since a=Ne, a=uxe for some element z in N, and e=eec=Ne=
Na, so e=ya for some element y in N. It follows that a=ze=zee=
zeya=aya. Hence N is reqular.

COROLLARY 2.2. (Beidleman [1], Ligh [8], [12]) Let N be a
near-ring with identity. N is regular if and only if for each a in N
there exists an idempotent ¢ in N such that Na= Ne.

THEOREM 2. 3. Every regular mear-ring contains no non-zero nil N-
subgroups.

COROLLARY 2.4. (Beidleman [1], [12]). Any regular near-ring with
identity contains no non-zero nil N-subgroups.

A near-ring N is said to be n-regular if for every a in N, there exists
z in N and exists positive integer » such that a"=qa"za". Such an element
a is called n-regular.

A near-ring N is called left (right resp.) n-regular, if for each element
a<N, there exists a positive integer z, such that ¢* is left (right resp.)
regular,

REMARK 2.5. Every regular near-ring is z-regular. But not conversely.

THEOREM 2. 6. Let N be a near-ring. N is n—regular if and only if
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Jor any a in N, there exists a positive integer n, and idempotent e in N
such that a*&Na* and Na*=Ne,

REMARK 2.7. A z-reqular near-ring may have non-zero nil N-
subgroups.

The set Z(N)={x&=N|azx=xa for each a=N} is called the center of
a near-ring N. If N is distributive near-ring, then Z(N) is a subnear-
ring of N.

THEOREM 2.8. The center of a distribut ve n-regular near-ring is also
n-regular.

Proof. Let N be a n-regular near-ring and let a=Z(N). Then there
" exists x in N, exists a positive integer » such that ¢*=a"za", so ao"=
a*ra*za®, We will show that xa’z=Z(N).

Let ¢&N, since a*=Z(N), a"z=Z(N). Indeed, (a"x)c=a"(xc)=
(zc)a*= (xc)a"za*=a"(xcx)@*=a za*cx=a"cx=c(a"z).

Similarly, za*=Z(N). Now, (za"z)c=zx(a"z)c=xc(a"x)=z(a"c)x=
(@*z)cx=c(a"x) x=c(za") x=c(xa"z). Hence Z(N) is n-regular.

COROLLARY 2.9. The center of a distributive regular near-ring is also
regular.

REMARK 2.10. (4,, +) is alternating group on 4-letters which is not
abelian. We can define multiplication - such that (4, +, *) is a
distributive z-regular near-ring, but not a ring.

3. Strong regularity and Strong z-regularity of near-rings

N is said to be strongly n-regular if it is both left and right z-reqular,
and strongly left (right resp.) n-regular if for any element ¢c&=N there
exists a positive integer », such that o¢* is strongly left (right resp.)
regular.

LEMMA 3.1. Let N be a left (or right) regular near-ring. If for any
a, b in N with ab=0 then (ba)*=b0, for all positive integer n.

LEMMA 3.2. Let N be a left (or right) regular near-ring. If for any
a, b in N with ab=0 and a*=a0, for all positive integer n>2, then a=0.
In this case, if N is zero-symmetric then N is reduced.

LemMA 3.3. (G. Mason [9]). Let N be a zero-symmetric, reduced
near-ring. If for any a,bin N with ab=0, then ba=0 and N has I.F.P.
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LEMMA 3.4. Let N be a zero-symmetric near-ring with left identity.
If N is reduced, then every idempotent is central.

LEMMA 3.5. If N is a left regular near-ring, then N is regular.
Moreover, if a=za® for some x, a in N, then axr=za.

Proof. Let a=N. Since N is left regular, a=xa? for some x in N.
(a—azxa)a=0, by Lemma 3.1, a(a—azxa)=a0.

Hence (a—axa)?=a0—azra0= (a—aza)0. So, by Lemma 3.2, a=axa.
Therefore N is regular.

Next, since (ax—za)a=0, a(ax—za)=a0. Thus we have (ax—za)?
=ax(—za0= (ax— za)(. Consequently azr=uza,

COROLLARY 3.6. If N is left regular then N is right regular, further-
more, it is strongly right regular.

LemMMA 3.7. If N is either a left or right regular near-ring, then, for
any a=N and any E?=e&=N such that ea®=ea"e for all positive integer n.

THEOREM 3.8. If N is left n-regular and right regular, then N is
n-regular and if a*=xa® for some a,z in N and some positive integer
n, then a"xr—xa”™.

Proof. Let a=N, Since N is left n~regular, there is an element 2N,
such that a"=za?" for some positive integer n,

Form (a"—a"za)a"=0, a"(a"—a"za™)=a*Q) by Lemma 3. 1.

So, (a*—a*za)?=a"(a"—a"xa") —a"za" (a"—a*za") = (a*— a"za™) ().

By Lemma 3.2, ¢"=a"xq". Hence N is n-regular.

Next, since ¢*=a*za"=za?", (a"zr—za")a*=0 and (a"z— za"*)a"z=(.

Then o*(a*z—za*) =a"0 and a"z(a"z—za*) =a"x0, Hence (a"x—xa*)?
=a"z)—za"0=(a"x—za")0. Therefore a"z"=za".

COROLLARY 3.9. If N is left n-regular and right regular, then N is
strongly left n-regular and strongly right n-regular.

THEOREM 3.10. Let N be any arbitrary near-ring. The following
statements are equivalent.

(1) N is left regular.

(2) N is strongly regular.

(3) N is right regular and left n-regular.
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(4) N is right regular and strongly left n-regular.

(5) N is right regular and strongly n-regular.

(6) N is strongly left regular.

(7) N is strongly right regular.

(8) N is regular and for any idempotent e=N and any a=N such that
ea"=ea"e for all positive integer n.

(9) N is regular and for any idempotent e=N and any a=N such that
ea=-eae,

Proof. (1)=(2). By Lemma 3.5. (2)=>(3). Since left regular is left
n-regular. (3)=>(4). By Corollary 3.9. (4)=(5). By Theorem 3. 8.

(5)=(1). Suppose N is right regular and strongly n-regular.

Let a=N. Since N is left n-regular, there exists an element z&=N
such that a"=xq"*! for some positive integer 2.

If =1 or n=2, clearly N is left regular. It suffice to show the case
positive integer n>2. (@ '—za")a=0 and (" !—za®)a" =0,

By Lemma 3.1, a(a"!—zxa")=a0 and a" ' (a" ! —za") =a""0.

Now (a*'—za")2=a""'(a""' — za") — xa"(@" ' —za") =a"'0—za"0= (a"—
za®)0. By Lemma 3.2, a* '=uza"

Continuing this procedure, we obtain that a=xa? Therefore N is left
regular. (1)=>6)=>(7) = @)= (9).

These implications follow from the previous Lemma 3.5 and Lemma
3.7.

Finally, we will prove that (9)=>(1).

Suppose N is regular and for any a’&N, and idempotent e&=N such
that ea’=ed’e.

Let a=N. Since N is regular, a=axa for some r&N.

Then g=aza=azrara=a(zxar)a=a(xaxza)a =azrarza® = ar’a® = ya?,
where y=az? Hence N is left regular.

4. Semi 7z-regularity and x-regularity of near-rings

DEFINITION 4. 1. A near-ring N is said to be left semi z-regular if
for each a=N, there exists &N such that ¢"=azxa® for some positive
integer =,

Analogously for right semi z-regular.

Such an element a is called left (right, resp.) semi z-regular.

A near-ring N is called left (right, resp.) x-regular if for every a=N,
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there exists &N such that g*=zxa™*! (¢"=4a"*'x, resp.). for some positive
integer =,

REMARK 4.2. (1) Every n-regular near-ring is left (and, right) semi
z-regular,

(2) Every left (right, resp.) n-regular near-ring is left (right, resp.)
semi m-regular.

(3) Every right (left, resp.) n-regular near-ring is also right (left,
resp.) &-regular.

(4) Every right (left, resp.) s-regular near-ring is also right (left,
resp.) semi m-regular.

There exist many examples of semi rn-regularity and s-regularity of
near-rings, we can easily see for finite near-rings.

THEOREM 4.3. If N is a left and right r-regular near-ring, then N
is n-regular.

Proof. Let a=N. Since N is left and right s-regular, there exists =
and y in N such that a*=xa""!, a"=a*''y for some positive integers n
and m. Thus, a*=za""'=z(za*')a=2a"a*=2*(za"*')®=x3a"a% =
g a =z a"",

Analogously, from g®=a"tly, a"=aa"y=a(a"*'y)y=a"t2y?=="-:-=q"i"y",

Consequently, a*t®=g"t*=g"q"= g™t "y"z"g"** =g " mzg*** where z=
y*z™, Hence N is n-regular.

TurEOREM 4.4. If N is a left semi n-regular and right regular near-
ring, then N is regular.

THEOREM 4.5. If N is n-regular and right regular, then N is right
k-regular.

Proof. Let a=N, Since N is n-regular, there is an element x&N
such that a"=a"za* for some positive integer #. Form (" '—a"za" !)a=
0, a(e*'—aza™ ') =a() and (a" '—a"za")2=(a"'—a"zra*')0. Thus we
have that " '=g"za*".,

Continuing this process, it follows a=a"za.

Hence a"=a"'q=a""'a*ra=a"*'(a" %za) =a™"'y, where y=a"2za,

Therefore N is right s-regular.

THEOREM 4.6. Let N is zero-symmeiric with left identity, and reduced.
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The following statements are equivalent.
(1) N is z-regular.
(2) N is left x-regular.
(3) N is lejt semi n-regular.
(4) N is regular.
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