THE STRUCTURE OF REGULARITY OF NEAR-RINGS

Yong Uk Cho

1. Introduction

The concepts of regularity of near-rings have been studied by many authers, J.C. Beidleman, S. Ligh, D.Z. Chao, H.E. Heatherly and A. Oswald, their main results are in G. Pilz [12].

In 1980, G. Mason [9] introduced the notions of strong regularity of near-ring. He proved that for any zero-symmetric near-ring with identity, the concepts of left regularity, strong left regularity and strong right regularity of near-rings are equivalent, and in 1984, the notion of strong regularity of near-rings has been studied further by C.V.L.N. Murty [10].

The Von Neumann regularity of rings and generalizations were studied by J.W. Fisher, R.L. Snider [4], Y. Hirano, H. Tominaga [5] and T.R. Savage [14].

In 1985, M. Ohori [11] studied the characterization of strong π -regularity of rings and also in 1985 L. Li and B.M. Schein [7].

In section 3, we will generalize or improve some of the main results of Beidleman and Ligh in [12] and we will introduce the concepts π -regularity of near-rings which are more general concepts of regularity of near-rings.

Characterization of strong regularity and strong π -regularity of near-rings are investigated, and the purpose of this section is to prove that the concepts of left regularity, strong left regularity, strong right regularity, π -regularity and strong π -regularity of near-rings with some conditions are equivalent for arbitrary near-rings.

In section 4, semi π -regularity and κ -regularity will be introduced, and we shall characterize relationships between them. Finally, we will investigate their equivalent condition under zero-symmetric reduced nearring.

In this paper, N will represent a (right) near-ring. A near-ring N is said to be zero-symmetric if a0=0 for all a in N and reduced if it has no non-zero nilpotent element.

We refer the reader to the book by G. Pilz [12] and [13] for the remainder definition and basic concepts of near-ring theory.

2. Regularity and π -regularity of near-rings

THEOREM 3.1. Let N be a near-ring. N is regular if and only if for each $a \in \mathbb{N}$, there exists an idempotent $e \in \mathbb{N}$ such that $a \in \mathbb{N}a$ and $\mathbb{N}a = \mathbb{N}e$.

Proof. Suppose N is regular and let $a \in N$. Then there exists $x \in N$ such that a=axa. Since xa and ax are idempotents in N, take xa=e, we have $a=axa \in Na$ and $Na=Naxa \subset Nxa=Ne$. Hence Na=Ne.

Conversely, assume the conditions. Let $a \in N$, by assumption, there exists an idempotent e in N such that $a \in Na$ and Na = Ne.

Now, since $a \in Ne$, a=xe for some element x in N, and $e=ee \in Ne=Na$, so e=ya for some element y in N. It follows that a=xe=xee=xeya=aya. Hence N is regular.

COROLLARY 2.2. (Beidleman [1], Ligh [8], [12]) Let N be a near-ring with identity. N is regular if and only if for each a in N there exists an idempotent e in N such that Na=Ne.

THEOREM 2.3. Every regular near-ring contains no non-zero nil N-subgroups.

COROLLARY 2.4. (Beidleman [1], [12]). Any regular near-ring with identity contains no non-zero nil N-subgroups.

A near-ring N is said to be π -regular if for every a in N, there exists x in N and exists positive integer n such that $a^n = a^n x a^n$. Such an element a is called π -regular.

A near-ring N is called left (right resp.) π -regular, if for each element $a \in \mathbb{N}$, there exists a positive integer n, such that a^n is left (right resp.) regular.

REMARK 2.5. Every regular near-ring is π -regular. But not conversely.

THEOREM 2.6. Let N be a near-ring. N is π -regular if and only if

for any a in N, there exists a positive integer n, and idempotent e in N such that $a^n \in Na^n$ and $Na^n = Ne$.

REMARK 2.7. A π -regular near-ring may have non-zero nil N-subgroups.

The set $Z(N) = \{x \in N | ax = xa \text{ for each } a \in N\}$ is called the center of a near-ring N. If N is distributive near-ring, then Z(N) is a subnear-ring of N.

THEOREM 2. 8. The center of a distribut ve π -regular near-ring is also π -regular.

Proof. Let N be a π -regular near-ring and let $a \in Z(N)$. Then there exists x in N, exists a positive integer n such that $a^n = a^n x a^n$, so $a^n = a^n x a^n x a^n$. We will show that $x a^n x \in Z(N)$.

Let $c \in N$, since $a^n \in Z(N)$, $a^n x \in Z(N)$. Indeed, $(a^n x) c = a^n (xc) = (xc) a^n = (xc) a^n x a^n = a^n (xcx) a^n = a^n x a^n cx = a^n cx = c (a^n x)$.

Similarly, $xa^n \in Z(N)$. Now, $(xa^nx)c = x(a^nx)c = xc(a^nx) = x(a^nc)x = (a^nx)cx = c(a^nx)x = c(xa^n)x = c(xa^nx)$. Hence Z(N) is π -regular.

COROLLARY 2.9. The center of a distributive regular near-ring is also regular.

REMARK 2. 10. $(A_4, +)$ is alternating group on 4-letters which is not abelian. We can define multiplication such that $(A_4, +, \cdot)$ is a distributive π -regular near-ring, but not a ring.

3. Strong regularity and Strong π -regularity of near-rings

N is said to be strongly π -regular if it is both left and right π -regular, and strongly left (right resp.) π -regular if for any element $a \in N$ there exists a positive integer n, such that a^n is strongly left (right resp.) regular.

LEMMA 3.1. Let N be a left (or right) regular near-ring. If for any a, b in N with ab=0 then $(ba)^n=b0$, for all positive integer n.

LEMMA 3.2. Let N be a left (or right) regular near-ring. If for any a, b in N with ab=0 and $a^n=a0$, for all positive integer $n\geq 2$, then a=0. In this case, if N is zero-symmetric then N is reduced.

LEMMA 3.3. (G. Mason [9]). Let N be a zero-symmetric, reduced near-ring. If for any a, b in N with ab=0, then ba=0 and N has I.F.P.

LEMMA 3.4. Let N be a zero-symmetric near-ring with left identity. If N is reduced, then every idempotent is central.

LEMMA 3.5. If N is a left regular near-ring, then N is regular. Moreover, if $a=xa^2$ for some x, a in N, then ax=xa.

Proof. Let $a \in \mathbb{N}$. Since N is left regular, $a = xa^2$ for some x in N. (a-axa)a=0, by Lemma 3.1, a(a-axa)=a0.

Hence $(a-axa)^2=a0-axa0=(a-axa)0$. So, by Lemma 3. 2, a=axa. Therefore N is regular.

Next, since (ax-xa)a=0, a(ax-xa)=a0. Thus we have $(ax-xa)^2=ax0-xa0=(ax-xa)0$. Consequently ax=xa.

COROLLARY 3.6. If N is left regular then N is right regular, furthermore, it is strongly right regular.

LEMMA 3.7. If N is either a left or right regular near-ring, then, for any $a \in \mathbb{N}$ and any $e^2 = e \in \mathbb{N}$ such that $ea^n = ea^n e$ for all positive integer n.

THEOREM 3.8. If N is left π -regular and right regular, then N is π -regular and if $a^n = xa^{2n}$ for some a, x in N and some positive integer n, then $a^nx = xa^n$.

Proof. Let $a \in \mathbb{N}$. Since N is left π -regular, there is an element $x \in \mathbb{N}$, such that $a^n = xa^{2n}$ for some positive integer n.

Form $(a^n - a^n x a^n) a^n = 0$, $a^n (a^n - a^n x a^n) = a^n 0$ by Lemma 3.1.

So, $(a^n - a^n xa)^2 = a^n (a^n - a^n xa^n) - a^n xa^n (a^n - a^n xa^n) = (a^n - a^n xa^n) 0.$

By Lemma 3.2, $a^n = a^n x a^n$. Hence N is π -regular.

Next, since $a^n = a^n x a^n = x a^{2n}$, $(a^n x - x a^n) a^n = 0$ and $(a^n x - x a^n) a^n x = 0$. Then $a^n (a^n x - x a^n) = a^n 0$ and $a^n x (a^n x - x a^n) = a^n x 0$. Hence $(a^n x - x a^n)^2$

 $=a^{n}x0-xa^{n}0=(a^{n}x-xa^{n})0$. Therefore $a^{n}x^{n}=xa^{n}$.

COROLLARY 3.9. If N is left π -regular and right regular, then N is strongly left π -regular and strongly right π -regular.

THEOREM 3. 10. Let N be any arbitrary near-ring. The following statements are equivalent.

- (1) N is left regular.
- (2) N is strongly regular.
- (3) N is right regular and left π -regular.

- (4) N is right regular and strongly left π -regular.
- (5) N is right regular and strongly π -regular.
- (6) N is strongly left regular.
- (7) N is strongly right regular.
- (8) N is regular and for any idempotent $e \in \mathbb{N}$ and any $a \in \mathbb{N}$ such that $ea^n = ea^ne$ for all positive integer n.
- (9) N is regular and for any idempotent $e \in \mathbb{N}$ and any $a \in \mathbb{N}$ such that ea = eae.

Proof. (1) \Leftrightarrow (2). By Lemma 3.5. (2) \Rightarrow (3). Since left regular is left π -regular. (3) \Rightarrow (4). By Corollary 3.9. (4) \Rightarrow (5). By Theorem 3.8.

(5) \Rightarrow (1). Suppose N is right regular and strongly π -regular.

Let $a \in N$. Since N is left π -regular, there exists an element $x \in N$ such that $a^n = xa^{n+1}$ for some positive integer n.

If n=1 or n=2, clearly N is left regular. It suffice to show the case positive integer n>2. $(a^{n-1}-xa^n)a=0$ and $(a^{n-1}-xa^n)a^{n-1}=0$.

By Lemma 3.1, $a(a^{n-1}-xa^n)=a0$ and $a^{n-1}(a^{n-1}-xa^n)=a^{n-1}0$.

Now $(a^{n-1}-xa^n)^2=a^{n-1}(a^{n-1}-xa^n)-xa^n(a^{n-1}-xa^n)=a^{n-1}0-xa^n0=(a^n-xa^n)0$. By Lemma 3. 2, $a^{n-1}=xa^n$.

Continuing this procedure, we obtain that $a=xa^2$. Therefore N is left regular. $(1) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (9)$.

These implications follow from the previous Lemma 3.5 and Lemma 3.7.

Finally, we will prove that $(9) \Rightarrow (1)$.

Suppose N is regular and for any $a' \in N$, and idempotent $e \in N$ such that ea' = ea'e.

Let $a \in \mathbb{N}$. Since N is regular, a = axa for some $x \in \mathbb{N}$.

Then $a=axa=axaxa=a(xax)a=a(xaxxa)a=axaxxa^2=ax^2a^2=ya^2$, where $y=ax^2$. Hence N is left regular.

4. Semi π -regularity and κ -regularity of near-rings

DEFINITION 4.1. A near-ring N is said to be left semi π -regular if for each $a \in N$, there exists $x \in N$ such that $a^n = axa^n$ for some positive integer n.

Analogously for right semi π -regular.

Such an element a is called left (right, resp.) semi π -regular.

A near-ring N is called left (right, resp.) κ -regular if for every $a \in N$,

there exists $x \in \mathbb{N}$ such that $a^n = xa^{n+1}$ $(a^n = a^{n+1}x, \text{ resp.})$ for some positive integer n.

REMARK 4.2. (1) Every π -regular near-ring is left (and, right) semi π -regular.

- (2) Every left (right, resp.) π -regular near-ring is left (right, resp.) semi π -regular.
- (3) Every right (left, resp.) π -regular near-ring is also right (left, resp.) κ -regular.
- (4) Every right (left, resp.) κ -regular near-ring is also right (left, resp.) semi π -regular.

There exist many examples of semi π -regularity and κ -regularity of near-rings, we can easily see for finite near-rings.

THEOREM 4.3. If N is a left and right κ -regular near-ring, then N is π -regular.

Proof. Let $a \in \mathbb{N}$. Since N is left and right κ -regular, there exists x and y in N such that $a^n = xa^{n+1}$, $a^m = a^{m+1}y$ for some positive integers n and m. Thus, $a^n = xa^{n+1} = x(xa^{n+1})a = x^2a^na^2 = x^2(xa^{n+1})a^2 = x^3a^na^3 \cdots = x^ma^na^m = x^ma^{n+m}$.

Analogously, from $a^m = a^{m+1}y$, $a^m = aa^my = a(a^{m+1}y)y = a^{m+2}y^2 = \cdots = a^{m+n}y^n$. Consequently, $a^{n+m} = a^{m+n} = a^ma^n = a^{m+n}y^nx^ma^{n+m} = a^{n+m}za^{n+m}$, where $z = y^nx^m$. Hence N is π -regular.

THEOREM 4.4. If N is a left semi π -regular and right regular nearring, then N is regular.

THEOREM 4.5. If N is π -regular and right regular, then N is right κ -regular.

Proof. Let $a \in \mathbb{N}$. Since N is π -regular, there is an element $x \in \mathbb{N}$ such that $a^n = a^n x a^n$ for some positive integer n. Form $(a^{n-1} - a^n x a^{n-1}) a = 0$, $a(a^{n-1} - a^n x a^{n-1}) = a0$ and $(a^{n-1} - a^n x a^{n-1})^2 = (a^{n-1} - a^n x a^{n-1})0$. Thus we have that $a^{n-1} = a^n x a^{n-1}$.

Continuing this process, it follows $a=a^nxa$.

Hence $a^m = a^{m-1}a = a^{m-1}a^nxa = a^{m+1}(a^{n-2}xa) = a^{m+1}y$, where $y = a^{n-2}xa$. Therefore N is right κ -regular.

THEOREM 4.6. Let N is zero-symmetric with left identity, and reduced.

The following statements are equivalent.

- (1) N is π -regular.
- (2) N is left κ -regular.
- (3) N is left semi π -regular.
- (4) N is regular.

References

- 1. J.C. Beidleman, A note on regular near-rings, J. of Indian Math. Soc. 33 (1969), 207-210.
- 2. H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral Math. Soc. 2 (1970), 363-368.
- 3. G. Ferrero and C. Ferrero Cotti, Conf. on Near-rings and Near-fields, San Benedetto del. Tronto (Italy) (1981).
- 4. J.W. Fisher and R.L. Snider, On the Von Neumann regularity of rings with regular prime factor rings, Pacific J. of Math. Vol. 54, No. 1 (1974), 135-144.
- 5. Y. Hirano and H. Tominaga, Regular rings, V-rings and their generalizations, Hiroshima Math. J. 9 (1979), 137-149.
- M.J. Johnson, Right ideals and right submodules of transformation near-rings,
 J. of Algebra 24 (1973), 386-391.
- 7. L. Li and B.M. Schein, Strongly regular rings, Semigroup Forum Vol. 32 (1985), 145-161.
- 8. S. Ligh, On regular near-rings, Math. Japon, 15 (1970), 7-13.
- 9. G. Mason, Strongly regular near-rings, Proc. Edin. Math. Soc. 23 (1980), 27-36.
- 10. C.V.L.N. Murty, Generalized near-fields, Proc. Edin. Math. Soc. 27 (1984), 21-24.
- M. Ohori, On strongly π-regular rings and periodic rings, Math. J. Okayama Univ. 27 (1985), 49-52.
- 12. G. Pilz, Near-Rings, North-Holland Pub. Company, Amsterdam, New-York, Oxford, (1983).
- 13. R.J. Roth, The structure of near-rings and near-ring modules, Doctoral Disertation, Duke University (1962).
- 14. T.R. Savage, Generalized inverses in regular rings, Pacific J. of Math. Vol. 87 No. 2 (1980), 455-467.

Kyungpook National University Daegu 635, Korea