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VECTOR BUNDLES ASSOCIATED TO
AN AUTOMORPHIC FACTOR

BYUNG MOON JUN AND JAE-HYUN YANG

1. Introduction
Let X be a symmetric bounded domain in CN and let r be a discrete

group of holomorphic automorphisms of X with the following properties:
(a) The quotient space y=r\X is compact.
(b) r acts freely on X.
By Kodaira's theorem (cf. [14J) , y=r\X is an algebraic manifold.

Let X" be the compact hermtian symmetric manifold which is dual to X
in the sense of E. Cartan. We denote by GC the simply connected
covering group of the connected biholomorphic transformations group of
X" and we let U the connected Lie subgroup of GC fixing a point
xoEX". Let G" be the C'Ompact real form of GC. Then X"=Gc/U=
G"/ K, where K =G" n U. Given a holomorphic representation p of the
complexification KC of K into GL(r;C), the composition Jp=poJ of p
and the canonical automorphic factor J on X (see § 2. B, Definition 1) is
an automorphic factor of type p. This automorphic factor gives rise to
a holomorphic vector bundle E(Jp) of rank rover y=r\x. Using a
representation p of KC, we get the so-called homogeneous vector bundle
E"(p) over X" in the sense of Bott. In this paper, we prove a vanishing
theorem for the cohomology groups Hq(y, E(Jp)) under a certain condi­
tion on p and prove the stability of these vector bundles E" (p) and
E(Jp).

In section 2, we review the hermitian symmetric manifolds and define
the concept of the canonical automorphic factor on a bounded symmetric
domain. And we introduce the holomorphic vector bundle E(Jp) over
y=r\x and the homogeneous vector bundle E"(p) over X" in the sense
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of Bott. In section 3 and section 4, we describe the materials which are
needed in order to understand section 5. In section 5, we will prove
vanishing theorem on Hq(y, E(Jp)) under the condition qp<q which is
weaker than that of Ise (see Theorem 5. 3). In section 6, we prove
that the vector bundles E"(p) and E(Jp) are stable.

NOTATIONS. i) Lie groups are denoted by the great roman letters
G, U, K etc and their Lie algebras by the corresponding small German
letters g, u, f etc.
ii) The complexifications of Lie groups (resp. Lie algebras) are denoted
by Gc, Uc, Kc etc(resp. gC, uc

, fC etc).

2. Preliminaries and hermitian symmetric spaces

A. Let X be a symmetric bounded domain in eN and X" the compact
symmetric hermitian manifold which is dual to X in the sense of E.
Cartan(cf. [4J). The group-theoretical descriptions of X and X" are as
follows: We denote by G" the simply connected covering group of the
connected biholomorphic transformations group of X". Then G" is a
connected semisimple complex Lie group and X"=G" / U, where U is the
connected closed Lie subgroup of G" consisting of all elements of G"
which fix a point~. A compact form G" of G" is also simply connected
and acts on X" transitively as transformations. Therefore X" can be
expressed as X"=G"/ K, K=G" nu. If we set

m= {yEg" : (x, y)=O for all xEf},

then we have

g"=t+m (direct sum),
[f, mJcm, [m, mJct

If we put

g=f+im (t'2=-I),

then 9 is a noncompact real form of gc, the Lie algebra of G" and 9
generates the real semisimple Lie group G whose center is finite and
simple components are all noncompact. G/K is identified with X and
GnG"=K, G nU=G" nU=K. Therefore if we define the mapping j

of X into X" by

j: gK-gU (gEU),

then j becomes an injection of X into X· which is compatible with the
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(1.1)

actions of G on X and X". Thus X will be endowed with the G-inva­
riant complex structure from that of the open submanifold j(X) of X".

Let Xo be the point of X corresponding to K. We may identify im
with the tangent vector space T x , of X at the point Xo. The complex
structure I on X defines a linear transformation Ix in each tangent vector
space Tx (x E X) such that 13,2= -1. Let T ~ be the complexification of
Tx. Each uE T; is written uniquely in the form u=v+iw where
v,wETx' Put u=v-iw. We have T~=Tx++Tx-, Tx+=Tx-, Tx+n
Tx-=(O), where Tx+ (resp. Tx-) denotes the i (resp. (-i»-eigens­
pace of Ix. And we have gfc=tc+mc, fc nmc= (0) and idenified with
T:,. Hence mc decomposes into direct sum

mc=n++n-, n-=n+.

We see that each complex vector field YEn+ (resp. YEn-) is cha­
racterized by the property that 7t'oY.E T:,(,) (resp. 7t'oY.E T;,(,» for
every sEG, where 7t'0 is the projection of G onto X=G/K. In fact, I
defines a linear isomorphism 10 of im which commutes with the adjoint
action of K on im and 10

2 = -1. n+ (resp. n-) is the i-eigenspace
(resp. (-i)-eigenspace) of 10• It is known that

[n+,n+]=(O), [n-,n-]=(O),
[tc, n+]cn+, [tc, n-]cn-.

Now we know that t contains a Cartan subalgebra qof g. Let.1 be the
root system of gc with respect to qC, and 9" the root space of gc corres­
ponding to the root aE.1. Let u - u be the conjugation of gc with
respect to the real form g. Then we have 9"=9-,, and dimc9,,=l for all
a E 4. By (1. 1), we can easily see that

n+= 2:"E,p ga, n-= 2:aE,p 9",

where cjJ is a subset of .1. A root a is called a complementary root if
g"cn++n-. We may choose an ordering for the roots so that the roots
belonging to <f; are all positive. We fix such an ordering for the roots
once and for all. A root belonging to cjJ is called a positive comple­
mentary root. Let (, ) be the Cartan-Killing form of gc. For each
aEcjJ U (-cjJ) , choose an element XEg such that (X"' X-a) =1. We
have then Xa=X-a• Moreover it is clear that either 9"ctc or 9"cmc.
In the first case the root is called compact, and in the second case
noncompact. And we have the decompositions
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tC='f)C+~a Ba (a: compact), mc=~,8 9,8 (~: noncompact).

Let u be the Lie algebra of U. Let N+ (resp. N-) be the connected
Lie subgroup of GC corresponding to n+ (resp. n-) and KC the complexi­
fication of K. We know n-cu and U=KcN- (the semidirect product).

B. We shall define the notion of the canonical automorphic fa<ltor.
We first review the results of Harish-Chandra (cf. [5J or [6J). GC
contains N+KCN- as an open subset, and the mapping of the complex
manifold N+XKcXN- into GC defined by (n+,k,n-)--7n+kn-(n+EN+,
kEK, n-EN-) is a biholomorphic mapping of N+XKcXN- onto the
open submanifold N+ KCN- of GC and G is contained in N+KCN-. Hence
we see that GU is .an open subset of N+ U and N+ U is that of GC.
Using Gn U=K and N+ n U= {1}, we then have

X=G/K c N+ c GC/U=X·.

We shall denote by h (resp. j2) the first (resp. the second) inclusion
mapping; they are holomorphic. Since G is contained in N+ KCN-, each
gEG is written uniquely in the form g=n+kn- with n+EN+, kEKC,
n-EN-. Put n+=n+(g). Then n+(gk)=n+(g) for all kEK and the
mapping N of G/ K into N+ defined by

N(x)=n+(g), x=gK=gxoEX,

is a holomorphic and bijective mapping of X onto an open bounded subset
of the complex manifold N+ with a suitable metric. We see easily that
g-lN(gxo) E U for all gEG.

LEMMA 1. N(gX)-l(gN(x» E U for all gEG and xEX.

Proof. Let x=g'xo, g'EG. Then (gg')-lN(gg'xo)=(gg')-lN(gx)
EU. g-lN(x)=g-lN(gxo)EU. Therefore N(gX)-l(gN(x»=«gg')-l

N(gx»-lg-lN(x) E U. This proves the lemma.

By Lemma 1, gN(x) is written uniquely in the form
gN(x) =N(gx) J(g, x)n',

where J(g, x) EKCand n' EN-. Then J is a COO-mapping of GXX into
Kc and J(g, .) is holomorphic in the variable xEX. The mapping J:
GX X~ Kc satisfies the following properties:

(i) J(gg',x)=J(g,g'x)J(g',x) for all g,g'EG and xEX.
(ii) J(g, xo) isthe KC-component of gEN+KcN- and J(k, x) =k for

every kEKC and xE X.
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(iii) J(l,x)=l for all xEX, and J(g,X)-l=J(g-l,gX) for every
gEG and xEX.

DEFINITION 1. The mapping J: GXX-- KC introduced above is called
the canonical automorphic factor on the symmetric bounded domain
X=G/K.

DEFINITION 2. A G"" mapping R of GX X into the complex general
linear group GL(r : C) (r~l) is called an automorphic factor if

(i) R(g, x) is holomorphic in the variable xE X.
(ii) R(gg',x)=R(g,g'x) R(g',x) for all g,g'EG and xEX.

A Cr_valued holomorphic function f(x) on X is called an automorphic
form with respect to the automorphic factor R if f(gx) =R(g, x) f(x) for
all gEG and xE X.

Given a representation p of KC in the complex vector space Cr, we
now define the mapping Jp=poJ: GXX --GL(r; C) by

Jp(g,x)=p(J(g,x», gEG, xEX.

Then Jp is an automorphic factor in the sense of the above definition
and is called the automorphic factor of type p.

Let r be a discrete subgraup of G which satisfies the following two
conditions:

(a) The quotient space r\X is compact.
(b) Every element rEr different from the identity 1 has no fixed

point in X.
By Kodaira's theorem (cf. [14J), y=r\GjK is an algebraic manifold.

A holomorphic mapping f of X into Cr is called an automorphic form
of type p with respect to r if fer, x) =J/r, x)f(x) for all rEr and
xEX. Now we introduce the holomorphic vector bundle E(Jp) over
y = r\ X as follows: We define the action of G on the trivial vector
bundle xxCr over X by

go (x, u) = (gx, Jp(g, x)u)

for gEG, xEX and uECr, and then the quotient manifold (xxcr) / r
is a holomorphic vector bundle over Y= r\ X. This holomorphic vector
bundle will be denoted by E(Jp) and is called the vector bundle over Y
defined by the automorphic factor Jp- We can see easily that an auto­
morphic form of type p can be identified with a holomorphic cross
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section of E(Jp ) and conversely.

C. We recall the concept of homogeneous vector bundle over xa (cf.
[3J). Every holomorphic representation p of Kc in Cr can be extended
naturally to the holomorphic representation of U=KCN- on Cr, which
we also will denote by p. Conversely for every completely reducible
holomorphic representation p: U~ GL(r ; C), we can show that
p(N-) =1. So we may consider it as a representation of KC. From now
on we denote by Hom(KC, GL(r ; C» (resp. Horn (U, GL(r ; C») the
set of all holomorphic representations of KC (resp. U) on Cr. For any
p E Hom(KC, GL(r ; C», we define Ea(p) as the quotient manifold
(Gc X cm) / U of GC X Cm by U under the actions such that

so (g, u) = (gs-l, p(s)u)

for all gEGc, uECr and sE U. Then E"(p)has a holomorphic vector
'bundle structure over x a with the fibre Cr. We recall E"(p) the homo­
geneous vector bundle over X" with respect to p.

LEMMA 2. The vector bundle E(Jp) is holomorpkically equivalent to
r\j*E"(p), where j: X~ X" is the mapping defined by j(gK) =gU
for every gEG.

EXAMPLE. Let By (resp. K y) be the tangent bundle (resp. the cano­
nical line bundle) over Y. We denote by (J" and K" the tangent bundle
and the canonical line bundle over X". Then r\j*Bu=(Jy and F\j*Ka
=Ky. R. Bott teaches us that e"=E"(AdK) and K"=E"Clh-1) , where
AdK : K~ GL(n+) is the adjoint representation of K on n+ and (hE

Hom (KC, C*) is the chara<rter whose differential is the sum of all
positive complementary roots. By Lemma 2, By=E(AdKoJ) and K y
=E(OK-1oJ) .

D. Let (, ) be the Cartan-Killing form of gc. Since the restriction
of ( , ) to ~c X ft is nondegenrate, there is a natural isomorphism of
(ft) *=Hom (~C, C) onto ~c. For any AE (~C) * its image will be denoted
by HA' Thus

A(H) = (H, HJ, AE (~C)*, HEW

can define a symmetric nondegenerate bilinear form < ,> on (~C) *X (ft) *
by (A, -r)=(HA,Hr), A,-rE(~C)*. We note that Ha~O for any root
aELI and [Xa, X-a] = [Xa, Xii] =Ha for aELI. We set, for any root
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- 2HH a=-(a_).
a,a

Then [Xa,X,,]=(a, a)/2·Ha for any root aEJ. For a simple root
a;(l~£~l), we set Hai=H; (l=dimc 'EO. A ~weight A. on l)c is a
linear form on l)c such that A. (H;) Cl ~ £~ 1) are all integers. The weight
A; Cl ~ i~ 1) such that A;(Hj) =Oij are called the f undamcntul dominant
wc£ghts. We put 0= I;a>o a. Then 0=2I;;~J Ai. We denote by rh the
sum of all complementary positive roots. Let E be the set of all simple
roots aEJ such that XaE [f)c, f)cl We put oM=2I;aiE l: A;.

3. The complexes A(r, X, p) and A(r, X, J,)

Let X be a symmetric bounded domain in eN. As in the previous
section, we may write X =G/K where G is a connected semisimple Lie
group and K a maximal compact subgroup of G. Let I' be a discrete
subgroup of G acting on X freely such that the quotient space Y =r\X
is compact. Let p be a representation of G in a complex vector space
F. We denote by A P (1', X, p) the vector space of all ],'-valued smooth
p-forms Y] on X such that

Y]oLT=p(r)Y]

for all rEI', where LT is the translation of X by r. The graded
moduleA(r,X,p)=I;pAP(F,X,p) isa complex with the coboundary
operator defined by the exterior differentiation d. We denote by
HP(F, X, p) the cohomology groups of the complex A(r, X, p). Let
m : G~ F\G be a projection. Then Iu defines an injection of 9 into
the Lie algebra of all vector fields on F\G because I' is a discrete
subgroup of G. From now on we shall identify the Lie algebra 9 with
its image by this injection so that A E 9 will be identified with the
vector field lu(A) on F\G.

Let Y] be a form in AP(r, X, p). If n : G - X is a projection of G
onto X, we define a form Y]Q on G by putting Y]sc = pes-I) (Y]cn)s for
each sE G. The form r;o is invariant under r and therefore r;o may be
considered as a form on r\G. The image A{;(r,X,p) of AP(r,X,p)
by the mapping Y]_Y]0 consists of all l"-valued p-forms on r\G satisfying
the following conditions

(3. 1) { () (Z) y]0 +p (Z) r;o = 0,
£(Z)Y]° =0
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for all ZEf, where f)(Z) and i(Z) denote the operators of Lie derivation
and interior product by the vector field Z respectively. The graded
module A(F, X, p) is bigraded; A(F, X, p) = ~rA"(F, X, p) = ~p,q AP,q
(F, X, p). Here AP,q(r, X, p) consists of the (p, q)-forms on X. We
know that Hr(r, X, p) decomposes into the direct sum ~p+qHP,q

(r, X, p), where HP,q(r, X, p) is the subgroup of Hr(F, X, p) consisting
of the elements represented by closed (p, q)-forms ([16J). Let
As,q(r, X, p) be the submodule of As+q(r, X, p) corresponding to
AP,q(r, X, p) by the isomorphism r;~1l. A form r;o EAt+q(r, X, p)
belongs to As,q(r, X, p) if and only if the following condition is
satisfied; if r;o (XI. ... , X p+q) ='1=0 with Xjcn"', then the number of X j
belonging to n+ (resp. n-) equals p (resp. q) (see[16J, p. 400).

For a holomorphic representation 1: of KC in a complex vector space
S, i. e., rEHom (KC, GL(S», we define the canonical automorphic
factor of type r by

Jr(g, x) =r(J(g, x», gEG, xEX,

where Jr is the canonical automorphic factor on X =G/K (see § 2. B).
Let A" cr, X, J r ) (resp. A P

, q CF, X, J r » be the vector space of all S­
valued r-forms (resp. (p, q)-forms) on X such that

(r;oLr)x=JrCr, x)r;x
for all xEX and rEr. We have ArCF,X,Jr)=L.P+q=rAP,qcr,X,Jr).
We set A(r, X, Jr)=L.p,q AP,q(r,X,Jr). Then the operator d" defines
a coboundary operator of type co, 1) in A(r, X, Jr ). We now denote
by H~:,V(r, X, JJ the cohomology groups of this complex CA(r, X,
J r ), d").

For a form r;EAP,q(r,X,Jr), we define a (p+q)-form r;o on G by
setting r;o =Jr(s, xo)-l(r;on:>S, where sEG, xo=n:(e), e the identity of
G. Then r;o is induced by the projection ro : G-r\G from an S-valued
(p+q)-form on r\G, which we also denote by r;o. The mapping r;_r;o
maps the module A P, vcr, X, J r) bijectively onto the module At,q(r, X,
J r ) consisting of all S-valued (p, q) -forms on r\G such that

(3.2) {f)(z)rl +r(Z)r;O =0,
i(Z)r;O =0

for all ZEfc
, and that if r;o (XI. ... , X p +q) ='1=0 with XjEU±, then the

number of X j belonging to n+ (resp. n-) equals p (resp. q).

PROPOSITION 3.1 ([16J, p. 408). Every cohomolgy class of H!:,qcr, X,
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J r ) is represented by a unique harmonic (p, q)-jorm on X.

4. The complex of a Lie algebra

275

Let ge be a complex Lie algebra and Ee a subalgebra of ge. If F is a
gc-module, the action of ge on F is denoted by X·j(XEge, JEF). Let
C(ge; F) = 2:CC (ge ; F), n=O, 1, 2, "', be the standard complex of
(gc, F). That is, Co (ge ; F) = F and cP (ge ; F) is the vector space of
all p-linear alternating forms on ge with values in F. On C (ge ; F), we
can define the operators 0 (X) and i (X) of Lie derivation and interior
product by X E ge as follows:

O(Z)j=Z'j,

(4.1) (O(Z)7]) (Xl, "', X p) =Z '7](X I , ... , X p)

- 2:t=l1J(Xj, ... , [Z, X u ], ••• , X p),

where ZEge, jECO (ge; F), 7]EcP (ge; F) (p~l), while

i(Z)7]=O for 7]ECO(ge ; F) =F,

(i(Z) 7]) (Xl, ... , X p - 1) =7](Z, Xl, "', X p - 1)

for ZEge, 7]ECP (ge; F) (p~l). Then there exists a unique operator d
of degree 1 such that i(Z)d+di(Z) =O(Z) for all ZEge and cl is gl\'cn
by

(d1J)(Xl, ...,Xp+1)=I;t~i(-l)u+lX,,7](Xj, ,Xu, ""XP+1)

+2:u<v (-l)u+v7]([X", Xv], XI. , Xu, ... ,X,., ... , X p+1).

Since d2=O, the module C(ge ; F) is a complex with coboundary oper­
ator d. We call this complex the cochain complex of ge with coefficients
in the gc-module F. We denote by HP (ge ; F) the cohomology groups of
this complex. Let cP (gc, fe ; F) be the subspace of cP(ge ; F) consisting
of all elements 7]ECP (ge ; F) such that O(X)7J=i(X)7J=O for all XEEe.
The submodule C(ge, te ; F) = 2: pCP(gc, le; F) is stable under d and thus
a subcomplex of C(ge; F). We shall this complex C(ge, le; F) the
cochain complex of ge relative to fe with coefficients in F and the coho­
mology groups of this complex will be denoted by HP (gc, fe ; F)

From now on we assume that X = G/ K is a symmetric bounded domain
in eN. "Ve will resume the notation in § 2. Let Q) be the vector space
of all complex valued C~-functions on r\G and let ;}=W0cF, where F
is a finite dimensional complex vector space. Then the gc-module structure
is given on ;] by defining
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m(Z) (f®u) =Zf®u + j®p(Z)u
for all Z E ge, f E Q) and u E F. Here p is a representation of GC in a
complex vector space F. Let G(ge ; F) = L:pCP(ge ; ~), and o(Z)(resp.
i(Z» be the derivation (resp. the interior product) by Z in C(ge ; ~).

Let C (ge, fe ;~) be the cochain complex of ge relative to fe with coe­
fficients in ~. We can easily see that the complex Ao(r, X, p) may be
identified with the complex G (ge, fe ; ~). Therefore the complex
A(F, X, p) will be identified with the complex G(ge, fe ;~) and so the
cohomology groups HP(r, X, p) with the relative cohomology groups
HP(ge, fe; ~). Since me=n+(Bn-(ef. §2. B), the complex C(ge, le;~)
is then bigraded; Gp,q(ge, le ; ~) consists of all Cr(ge, fe ; %J) (r=p+q)
such that if (Yb ••• , Yr) ~O and YiEn± for i=l, 2, ... , r, then the number
of Yi belonging to n+ (resp. n-) equals p (resp. q). We easily see that
Gp,q(ge, fe; %J) may be identified with AP,q(F, X, p). Hence HP,q(F, X, p)
can be identified with HP, q (ge, fe ; %J).

We now identify the module CP, q (ge, fe ;~) with a subspace of
p q

~®n+®n- in the following way. Let qr = {al.' .. , aN} be the set of
the positive complementary roots and let {Xa ; a E W} and {Xii; a E W}
be the eigenvectors of roots as introduced in § 2. We put Xi= X ai

and X.=Xii; for aiE W. Since {Xi} and {X,.} are bases of n+ and n­
respectively and (Xi, X) =Oijo n+ (resp. n-) may be identified with the

p g

dual of n+ (resp. n-). We define 1: Gp,q(ge, fe; m~%J®n+~Jn-

by setting
l(1J)=L:il<···<ipL:h<... <Jq1J(Xip ... , X ip, XJI' ... , X]q)

®/'S=l Xit ®;\~=l X]s'

We simply write 1J(Xip ... , X ip, Xh, .•. , XJq) =1Jil'''iph''']q'

If we restrict the representation p of ge onto the abelian subalgebra n-,
we may regard F as an n--module. Let G(n-, F) = L:qCq(n-, F) be the
cochain complex of n- with coefficients in F, and denote by d- its
coboundary operator. We identify G(n-, F) = L:qCq(n-, F) with F®;\n+
=L:qF®/\q n+. Then we have

d-= L:/'!.l p(Xk) ® e(Xk),

where e(X) denotes the exterior multiplication by X. We define a posi­
tive definite hermitian inner product in C(n-, F) by

(c, c') = L:qL:il < <iq (c.l ....q, c'.l ...•qh,

where C=L: qL: il<"'<i8l 'q®(XiJ\ ... /\X iq ) and c'=L:qL:il<"'<iq
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C'il ...,/iJeXjl/\"'/\Xjq) and e, h is an admissible inner product on
F (cf. [16J, p.375). Let 0- be the adjoint operator of d- with
respect to this inner product and we define a Laplacian Ll- by

Ll- = d- 0-+0- d-.

We call a cocycle c of C(n-, F) harmonic if Ll-c=O. Every cohomology
class in Hq (n-, F) is represented by a unique harmonic cocycle (cf. [17J).

5. Vanishing theorems for the cohomology groups Hq (Y, E (Jr »

First we recall Bott's results concerning the induced representations
with respect to homogeneous vector bundles (cf. [3J). Suppose that
pEHom (KC, GL(r ; C» is an irreducible representation. The action of
gEGc on EU(p) as bundle isomorphism induces the linear automorphism
on the C-module Hq(XU, EU(p», which we will write pCq) (g). The
representation (pCq\ Hq(XU, EU(p» of GC thus obtained is by definition
the q-th induced representation of p. Let A be the highest weight of p.
Let A be the highest weight of p. Then the induced representations
p(q)(O~q~N) are determined only by A:

THEOREM 5.1 (Bott, [3J). If there exists a root aELl such that

(A+ ~ 0, a) =0, then all pCq) (O~q~N) are the the O-representations.

Otherwise, there is one and only one induced representation pCq) which is
irreducible and its highest weight A' is given by

A'+ ~ o=e(A+ ~ 0),

where e is the element of the Weyl group which is the product of q
reflections with respect to the simple root planes aj=O and it is uniquely

determined by the condition (A'+ ~o,aj»O(l~i~I).

We define A. and fl, in Hom(~C,C) as follows (cf. § 2. D).

A=A+ fl" A=:E mjA j , fl,=:E mjAj.
aif£H «jEG

lse (cf. [1OJ) obtained the following results using Bott's results ([3J).

THEOREM 5.2. i) Suppose that

(A- fl,-OM, a»O

for all complementary positive roots a. Then
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ii) Suppose that
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(A+o.a)<O

for all complementary positive roots a. Then

Hq(y. E(Jp» =0 for all q>O.

THEOREM 5. 3. If there exists at least one complementary positive root
a such that (A. a»O. then

HO(Y. E(Jp» =0.

Matsushima and Murakami(cf. [17J) showed. the following:

THEOREM 5.4. Let qp be the number of roots a E lff such that (A. a) >0.
Then

HJ:,q(r. X, Jp) = (0) for qp<q.

If (A, a;»O. for i=l• ...• s. where ah ...• as are the simple roots
belonging to lff. then

HN (r, X, Jp) = (0) for q<N.

Here lff denotes the set of all positive complimentary roots.

THEOREM 5.5. Suppose that (A. a»O for all positive roots a of gc.
Then for all p+q=N.

Hp,q(r, X. p) = (0).

THEOREM 5. 6. Let A be the lowest weight of p. Let PP be the number
of roots a in lff such that (A. a) <0. Then the cohomology group
HP' ocr, X, p) vanishes for P<Pp.

REMARK 1. By a theorem of Hirzebruch [8J. we have

X(Y) =Pa(Y)X(XU
),

where Pa(Y) denotes the arithmetic genus of Y and X(Y) (resp. l(Xu»
is the Euler characteristic of the complex manifold Y (resp. the compact
form X U of X). Moreover. Hirzebruch [7J gave the following formula

X(Y) = ( - n:) - NdN V (Y) ,

where X is irreducible. v(Y) denotes the total volume of Y with respect
to the Bergman metric on X and
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1TI aEI1(ZO, a)
dN = (2 (OK, r) )N X(X").

Here r denotes the unique simple root belonging to W. It is known that
2 (OK, r) =1. Thus we get

dN = TIaEw(}O' a)X(X").

Hence we obtain

Pa(Y) = (-71:) -NTI aEiT( ~ 0, a)v(Y).

By Weyl's formula,

_ (A+1o,a)
r - 11 a> 0 (1 ).

2 o,a
By the way, we have(cf. [19J)

2N

L: (-l)P dimcHP(F, X, p) =rX(Y).
p=o

Theorem 5. 5 yields the following

HP(F, X, p) = (0) if p~N.

• N __ -N lla>o(A+io,a) "
dlmcH(F, X, p) - ( 71:) (1) X(X )v(Y).

llaES 20' a

REMARK 2. If p is irreducible, we let p=p/dJ···ff)Pk denote the de­
composition of p into irreducible components. We have E(Jp) =E(Jp)
ff) ... ff)E(Jp.) (ff) denotes the Whitney sum). Hence we have

k

Hq(y, E(Jp» = L: Hq(y, E(Jp), O~q~N.
i=1

REMARK 3. It is known (cf. [lOJ) that

X(Y, E(Jp» =X(Y)X(X", E"(p».

If X i sirreducible, X(Y) = (-71:)-NdNv(Y) (cf. Remark 1). X(X", E"(p»
can be computed by Theorem 5.1. Finally we can compute X(Y, E(Jp»

THEOREM A. Let qp the number of roots aEW such that (A, a»O.
Then
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Moreover, if (A, a) >0 for every simple root a belonging to l/f, then

HP, q(Y, E(Jp» = (0) for q>N.

Here N=dimc X and l/f is the set of all positive complementary roots.

Proof. Let 71: : X~F\X=Y be the projection of X onto Yand let
SO : XXCT~ (XXCT) IF=E(Jp) be the canonical projection of xxCr
onto E(Jp). For each xEX, let SOx be the linear isomorphism of the
typical fibre CT onto the fibre E(Jp)", of E(Jp) over the point z=7I:(x) E Y
defined by

SOx(x) =SO(x, ~), ~ECr.

For each aEAP,qCF,X,Jp), we define the (p,q)-form 0 on Y with
coefficients in E (Jp) as follows:

8,,(7I:Z1> ... , 7I:Zp, 7I:Wh ... , 1t:Wq) =SOxax(Zl, ... , Zp, Wh ••• , Wq),

where xEX, Z=1t:(x) , Zb ..• ,ZpETx+(X) and Wh ... , WqETx-(X).
The mapping a--,>8 yields an isomorphism of the bigraded module
A(F,X,Jp) onto the bigraded module A(Y, (Jp»=A(E(Jp»=
I;p,qAP, q(E(Jp». Thus the cohomology H$:.q (F, X, Jp) is isomorphic
to the cohomology HJ.q (Y, E(Jp». But the following exact sequence

d" d"
00 _ QP(E(Jp»~ AP,O(E(Jp»--'> AP,I(E(Jp»--'> ...

is a fine resolution of the sheaf QP(E(Jp» of thegerms of holomorphic
p-forms with coefficients in E(Jp). Thus we have (cf. [9J, p36)

Hq(y, QP(E(Jp») 2!:H!:,q(y, E(Jp» (Dolbeault).

Hence by Theorem 5.4, we have for p=O

Hq(y, E(Jp» =H~:.q(y, E(Jp»=HS:·q(F, X, Jp) = (0)

for qp<q. The second assertion follows immediately from Theorem 5.4
and the above argument. Q. E. D.

REMARK4. Let gc be a simple Lie algebra over C and let r be the
unique simple root of gc belonging to l/f. Let ad be the adjoint represen·
tation of gc and p=ad+ the representation of KC in n-. Then H!:.q
(F, X, J) is isomorphic to Hq (Y, 8), where e is the tangent bundle of

.. h,j 1 h
Y. It is known that qp <-(--)-1. Hence the co omology group Hq

- r, r
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(Y,e) vanishes for q<-(1 )-1 (cf. [4J).r,r
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6. Stability and Einstein condition of E(Jp) and E"(p)

Before we study the stability of the vector bundle E(Jp) and E"(p),
we first review the concept of stability and Hermitian-Einstein structure
on vector bundles.

Let E be a holomorphic vector bundle of rank r over a compact Kahler
manifold X. For a Hermitian metric h along the fibre of E, the Hermitian
connection, D: AO(E)~ Al(E) is characterized by the properties

Ca) d(h(s, t))=h(Ds, t)+h(s, Dt), s,tEAO(E),

(b) D" s=d" s, where D" denotes the (0, I)-component of D.

With respect to a local frame {ea}, the connection matrix A= (A~)

(1< t::I<)' . b\ =a, f-I=n IS gIVen y

A"= (d'h -)hrP
a ar"

where haP=h(ea, e[3) and (haP ) = (hap)-l.

The curvature F = d A - A 1\ A of the Hermitian connection for a
holomorphic vector bundle reduces to the (1, I)-form with coefficients in
End (E)

F=d" A=h-1d"d'h+h-1d'hl\h-1d" h.

Conversely, the integrability theorem of Newlander-Nirenberg implies
that a complex vector bundle admits a holomorphic structure if there
exists a U (r) connection whose curvature is of type (1, 1).

Given a Kahler metric g on X, we define an operation trg:
Al.I(End(E))~AO(End(E))as follows. For a section F=(F~)EAI·l

(End (E) ),

trgF= (I;gik Ftjk ) I:>a,[3:>n= L,i,kgikFjk,

where F~=F~jkdzi I\dzk and Fik = (Ftjk)l~a.[3~r'

DEFINITION 1. A holomorphic vector bundle of rank r over a compact
Kiihler manifold (X, g) is said to be Hermitian-Einstein if there exists
a Hermitric h for which the Hermitian curvature F satisfies:

trgF=,uI,



282 Byung Moon Jun and Jae-Hyun Yang

where 1 is the identity endomorphism of E and fJ. is a constant.

Let ;;} be a torsion-free coherent sheaf over a compact Kahler manifold
(X, g) of dimension n. Let w be the Kiihler form; it is a real positive
closed (1, I)-form on X. Let Cl(~) be the first Chern class of a:, that
is, the first Chern class of the determinant bundle det (a:) over X. It
is represented by a real closed (1, I)-form on X. The degree of ~ is
defined to be

deg(~) = SM Cl (~) /\wn-l.

The degree/rank ratio or slope fJ.(a:) is defined to be

fJ.(~) = deg (a:) /rank(m.

DEFINITION 2. A coherent sheaf ~ over a compact Kahler manifold
(X, g) is said to be stable (resp. semi-stable) if for every coherent sheaf
~' of lower rank, fJ.(~') <fJ.(~) (resp. ;:£).

REMARKS. (i) a: is reflexive if and only if ~**= (a:*)*=;:J. A reflexive
sheaf of rank one is a holomorphic line bundle.
(ii) A reflexive sheaf is locally free outside a subvariety of codimension
greater than or equal to 2.
(iii) The dual ~* of any coherent sheaf ~ is reflexive.
(iv) ~ is (semi-) stable if and only if its dual ~* is (semi-) stable.

Kobayashi (cf. [12J) obtained the following differential geometical
criterion for stability.

THEOREM (Kobayashi). Let E be a holomorphic vector bundle over a
compact Kiihler manifold (X, g) with a Kiihler form w. If E admits
an irreducible Hermitian-Einstein connection, then E is stable.

The converse of the above theorem was known as Kobayashi's con­
jecture. Donaldson proved Kobayashi's conjecture in the case X is an
algebraic surface. Quite recently Uhlenbeck and Yau (cf. [24]) proved
Kobayashi's conjecture in the case X is of higher dimension.

THEOREM (Uhlenbeck and Yau). A stable holomorphic vector bundle
over a compact Kiihler manifold admits a unique Hermitian-Einstein
connection.

We are now in a position to prove the stability of the vector bundles
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E'(p)=and E(Jp). Ramanan ([22J), Umemura ([23J), and Kobayashi
([13J) indepently showed the following:

THEOREM (Ramanan, Umemura and Kobayashi). Let GC be a simply

connected, semisimple complex Lie group and U a paraboUc subgroup

without simple factor. Let p be a finite dimensional irreducible holomorphic
representation of U. Then the homogeneous vector bundle over M=GC / U
defined by a representation p is H-stable for any ample line bundle H.

In § 2. C, we mentioned the homogeneous vector bundle E' (p) over
X', the compact hermitian symmetric manifold which is dual to a
bounded symmetric domain X=G/ K in the sense of E. Cartan. X' can
be expressed as X'=GC / U (see § 2. A). It is well-known that Xu is
an algebraic manifold. Thus U is a parabolic subgroup of the simply
connected semisimple complex Lie group GC. Hence by the above theorem,
E'(p) is stable. By Uhlenbeck and Yau, E'(p) admits a unique Her­
mitian-Einstein connection.

Let ( , ) be the standard inner product in Cr. Since KC is the complexi­
fication of a compact Lie group K, there exists a hermitian inner pro­
duct ( , > in Cr which is invariant under p (KC). This defines canonically
a hermitian metric in the fibres of E(Jp) as follows. On the fibre EUp)z
over zE Y, we define

([x, ~J, [x, 1JJ>z=(~, 1J>' xEX, z=11:(x), ~,1JECr,

where 11:: X~Y=r\X is a projection and [x,~J is the equivalence
class of (x,';;:) in xxCr, i. e., [x, ~J EE(Jp)z' It is well defined.
Indeed, for each rEr, xEX, ~, 1J E Cr,

([r x , Jp(r, X)';;:J, [rx ,Jp(r,x)1JJ>z
=(J/r, x)';, Jp(r, X)1J)
=(p(J(r, x) )~, p(J(r, x) )1J>

=(~, 1J) (since J(r, x) EKe)

=([x, ~J, [x,1JJ)z.

Thus this hermitian metric gives rise to a flat structure on E(Jp ).

Hence it admits an irreducible Hermitian-Einstein connetion and so E(Jp)

is stable.

Summarizing what we have proved, we state

THEOREM B. Let p be an irreducible holomorphic representation of KC

into GL(r ; C). Then EU(p) is H-stable for any ample line bundle H
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over X" and E(Jp) admits an irreducible flat Hermitian-Einstein connec­

tion.

REMARK. Let X be a bounded symmetric domain in eN and let r be
a neat arithmetic group on X. Then y =r\X is a smooth quasi-pro­
jective algebraic variety. Consider the case y=r\X is not compact.
Given a representation p of K, we have then a holomorphic vector bundle
E(Jp) over Y. We obtain a smooth projective compactification Y by the
toroidal compactification and thus get the corresponding vector bundle
E(Jp) over Y. We refer to D. Mumford [20J for detalis. The following
problem is still open.

PROBLEM. Is E(Jp) stable? In other words, does E(Jp) admit a Her­
mitian-Einstein connection?
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