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VECTOR BUNDLES ASSOCIATED TO
AN AUTOMORPHIC FACTOR

Byune Moon Jun anp Jae-Hyun Yawne

1. Introduction

Let X be a symmetric bounded domain in CN and let I” be a discrete
group of holomorphic automorphisms of X with the following properties:

(a) The quotient space Y=7'\X is compact.

(b) I' acts freely on X.

By Kodaira's theorem (cf. [14]), Y=I\X is an algebraic manifold.
Let X* be the compact hermtian symmetric manifold which is dual to X
in the sense of E. Cartan. We denote by G° the simply connected
covering group of the connected biholomorphic transformations group of
X* and we let U the connected Lie subgroup of G° fixing a point
i X*. Let G* be the compact real form of G°. Then X*=G‘/U=
G*/K, where K=G" U. Given a holomorphic representation p of the
complexification K° of K into GL(r;C), the composition J,=p°J of p
and the canonical automorphic factor J on X (see §2.B, Definition 1) is
an automorphic factor of type p. This automorphic factor gives rise to
a holomorphic vector bundle E(J,) of rank r over Y=/"\X. Using a
representation p of K°, we get the so—called homogeneous vector bundle
E*(p) over X* in the sense of Bott. In this paper, we prove a vanishing
theorem for the cohomology groups H*(Y, E(J,)) under a certain condi-
tion on p and prove the stability of these vector bundles E*(p) and
E(J,).

In section 2, we review the hermitian symmetric manifolds and define
the concept of the canonical automorphic factor on a bounded symmetric
domain. And we introduce the holomorphic vector bundle E(J,) over
Y=7I\X and the homogeneous vector bundle E*(p) over X* in the sense
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of Bott. In section 3 and section 4, we describe the materials which are
needed in order to understand section 5. In section 5, we will prove
vanishing theorem on H*(Y, E(J,)) under the condition ¢,<{g which is
weaker than that of Ise (see Theorem 5.3). In section 6, we prove
that the vector bundles E*(p) and E(J,) are stable.

Norarions. 1) Lie groups are denoted by the great roman letters
G, U, K etc and their Lie algebras by the corresponding small German
letters g, u, t etc.

ii) The complexifications of Lie groups (resp. Lie algebras) are denoted
by G¢, Ue, K¢ etc(resp. g7, u’, £ etc).

2. Preliminaries and hermitian symmetric spaces

A. Let X be a symmetric bounded domain in C¥ and X* the compact
symmetric hermitian manifold which is dual to X in the sense of E.
Cartan(cf. [4]). The group-theoretical descriptions of X and X* are as
follows: We denote by G° the simply connected covering group of the
connected biholomorphic transformations group of X*. Then G° is a
connected semisimple complex Lie group and X*“=G°/U, where U is the
connected closed Lie subgroup of G° consisting of all elements of G*
which fix a point z§. A compact form G* of G° is also simply connected
and acts on X* transitively as transformations. Therefore X* can be
expressed as X*=G*/K, K=G*NU. If we set

m={yeg*: {z, y)=0 for all zc¥},
then we have

*=f+m (direct sum),

(£, m]Jcm, [m,m]ct
If we put

g=It+im (F=-1),
then g is a noncompact real form of g¢, the Lie algebra of G° and g
generates the real semisimple Lie group G whose center is finite and
simple components are all noncompact. G/K is identified with X and
GNG*=K, GNU=G*NU=K. Therefore if we define the mapping j
of X into X* by

j:gK——gU (g€U),
then j becomes an injection of X into X* which is compatible with the
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actions of G on X and X*. Thus X will be endowed with the G-inva-
riant complex structure from that of the open submanifold j(X) of X*.

Let z, be the point of X corresponding to K. We may identify im
with the tangent vector space T,, of X at the point z,. The complex
structure f on X defines a linear transformation Z, in each tangent vector
space T, (2€X) such that I?=—1. Let T be the complexification of
T,. Each u=T: is written uniquely in the form u=v+iw where
v,wET,. Put a=v—iw. We have Ti=T, 4+ T,", T,'=T,", T:'N
T.”=(0), where T,* (resp. T, ) denotes the i (resp. (—i))-eigens-
pace of I,, And we have gle=fc+me, F*Nme=(0) and idenified with
T:. Hence m¢ decomposes into direct sum

me=n*4+n", n-=nt,

We see that each complex vector field Yent (resp. Yen™) is cha-
racterized by the property that 7Y, T}, (resp. 7 Y,€T;u) for
every s&G, where 7, is the projection of G onto X=G/K. In fact, 1
defines a linear isomorphism I, of s#m which commutes with the adjoint
action of K on im and I?=-—1. n* (resp. n”) is the i-eigenspace
(resp. (—i)—eigenspace) of I, It is known that

@ [, w0 1=(0), [0, n1=(0),

) [fe,nt]cn®, [f,nJan .

Now we know that ¥ contains a Cartan subalgebra §) of g. Let 4 be the
root system of g° with respect to §°, and g, the root space of g° corres-
ponding to the root a=4. Let u—> @ be the conjugation of g¢ with
respect to the real form g. Then we have g,=g_, and dimcg,=1 for all
acd. By (1.1), we can easily see that

ﬂ+=2ae¢ Qas rr:Zaeqb Qs

where ¢ is a subset of 4. A root a is called a complementary root if
g.=n*+n". We may choose an ordering for the roots so that the roots
belonging to ¢ are all positivee. We fix such an ordering for the roots
once and for all. A root belonging to ¢ is called a positive comple-
mentary root. Let (, ) be the Cartan-Killing form of ge&. For each
a€U(—¢), choose an element Xeg such that (X, X_,)=1. We
have then X,=X_,. Moreover it is clear that either g,c¥f or g,cme.
In the first case the root is called compact, and in the second case
noncompact. And we have the decompositions
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F=9"+3, g, (@: compact), m<=73,z gz (B : noncompact).
Let u be the Lie algebra of U. Let N* (resp. N~) be the connected
Lie subgroup of G’ corresponding to n* (resp. n™) and K° the complexi-
fication of K. We know n~cu and U=K°N~ (the semidirect product).

B. We shall define the notion of the canonical automorphic faetor.
We first review the results of Harish-Chandra (cf. [5] or [6]). G°
contains N*K°N~ as an open subset, and the mapping of the complex
manifold N*XK°XN~ into G° defined by (n*, &, n")—> n*kn” (a* €EN¥,
k=K, n~N-) is a biholomorphic mapping of N*XK°XN~ onto the
open submanifold N*K°N- of G° and G is contained in N*K°N~. Hence
we see that GU is an open subset of N*U and N*U is that of G“.
Using GNU=K and N*N U= {1}, we then have

X=G/K < N* c G/U=X"
We shall denote by 7, (resp. j») the first (resp. the second) inclusion
mapping; they are holomorphic. Since G is contained in N*K°N-, each
gE€G is written uniquely in the form g=a'kn~ with n*€N*, kK",
n"EN". Put n*=n*(g). Then =" (gk)=n'(g) for all k€K and the
mapping N of G/K into N* defined by

N(z)=n"(g), r=gK=gr,€X,
is a holomorphic and bijective mapping of X onto an open bounded subset

of the complex manifold N* with a suitable metric. We see easily that
g 'N(gzg) €U for all g=G.

Lemma 1. N(gz) YW (gN(x)) €U for dall g€CG and z=X.

Proof. Let z=g'z,, g’€G. Then (gg’) 'N(gg'z,) = (gg’) N{gz)
€U. g 'N(z)=g"'N(gz,) €U. Therefore N(gz) (gN(z))=((gg’) !
N(gz)) 'g"'N(z) € U. This proves the lemma.

By Lemma 1, gN(z) is written uniquely in the form
gN(z)=N(gz) J(g, x)n’,

where J(g,z) €K* and # €N~. Then J is a C™—mapping of GXX into
K* and J(g, -) is holomorphic in the variable z& X. The mapping J :
GX X—> K° satisfies the following properties:

(i) J(gg',x)=J(g, g’z)J(g’, z) for all g,¢’€G and z€X.

(ii) J(g, zg) isthe K°~component of g&N*K°N~ and J(k, z)=Fk for
every k€K and z= X.
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(iil) J(,z)=1 for all z€X, and J(g, z)"1=J(g"}, gz) for every
g€G and z€ X,

Dermvition 1. The mapping J : GX X — K° introduced above is called

the canonical automorphic factor on the symmetric bounded domain
X=G/K.

DermniTion 2. A C* mapping R of GXX into the complex general
linear group GL(r : C)(r=1) is called an automorphic factor if

(i) R{g, z) is holomorphic in the variable z€ X.

(i) R(gg’,z)=R(g, g’'z) R(g’,z) for all g,2'€G and z&X.
A C’-valued holomorphic function f(z) on X is called an automorphic

form with respect to the automorphic factor R if f(gz)=R(g,z) f(z) for
all g&G and z€ X.

Given a representation p of K° in the complex vector space C’, we
now define the mapping J,=poJ: GXX —>GL(r; C) by

J (g, 2)=p(J(g, 2)), g€G, z€X.

Then J, is an automorphic factor in the sense of the above definition
and is called the automorphic factor of type p.

Let I' be a discrete subgraup of G which satisfies the following two
conditions:

(a) The quotient space I'\X is compact.

(b) Every element yer" different from the identity 1 has no fixed
point in X.

By Kodaira's theorem (cf. {14]), Y=7I\G/K is an algebraic manifold.
A holomorphic mapping f of X into C7 is called an automorphic form
of type p with respect to I' if f(y,z)=J,(r,z)f(z) for all y&rI' and
z€X. Now we introduce the holomorphic vector bundle E(J,) over
Y=I\X as follows: We define the action of G on the trivial vector
bundle X XC" over X by

go(z, u) = (gz, J,(g, z)u)

for g€G, z=X and «=C", and then the quotient manifold (X XC")/TI
is a holomorphic vector bundle over Y=I\X. This holomorphic vector
bundle will be denoted by E(J,) and is called the vector bundle over Y
defined by the automorphic factor J, We can see easily that an auto-
morphic form of type p can be identified with a holomorphic cross
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section of E(J,) and conversely.

C. We recall the concept of homogeneous vector bundle over X" (cf.
[31). Every holomorphic representation g of K° in C” can be extended
naturally to the holomorphic representation of U=K°N~ on C’, which
we also will denote by p. Conversely for every completely reducible
holomorphic representation p: U——> GL(r ; C), we can show that
p(N-)=1. So we may consider it as a representation of K°. From now
on we denote by Hom (XK, GL(r ; C)) (resp. Hom (U,GL(r ; C))) the
set of all holomorphic representations of K° (resp. U) on C’. For any
p € Hom(K°,GL(r ; C)), we define E*(p) as the quotient manifold
(G°XC™ /U of G°XC™ by U under the actions such that

so(g,u) =(gs™, p(s)u)
for all geG°, u=C" and s€U. Then E*(p)has a holomorphic vector

‘bundle structure over X* with the fibre C". We recall E*(p) the homo-
geneous vector bundle over X* with respect to p.

Lemma 2. The wvecior bundle E(J,) is holomorphically equivalent to
T\j*E*(p), where j: X —> X* is the mapping defined by j(gK)=gU
for every g<G.

ExameLe. Let 6y (resp. Ky) be the tangent bundle (resp. the cano-
nical line bundle) over Y. We denote by ©* and K* the tangent bundle
and the canonical line bundle over X*. Then I'\;j*6¢*=6y and I'\j*K*
=Ky. R. Bott teaches us that 8*=E*(Ady) and K*=E*(6x"!), where
Adg : K—— GL(n*) is the adjoint representation of K on n* and dx€
Hom (K°, C*) is the charaster whose differential is the sum of all
positive complementary roots. By Lemma 2, @y=E(AdxeJ) and Ky
—E(Gg 1),

D. Let (, ) be the Cartan—Killing form of g¢. Since the restriction
of (,) to §*Xb° is nondegenrate, there is a natural isomorphism of
(5°)*=Hom (§°, C) onto §°. For any A< (§°)* its image will be denoted
by H;,. Thus

A(H)=(H, H), 1< (H)*, HeEY
can define a symmetric nondegenerate bilinear form { ,) on (§°) * X (§°)*
by (4, z)=(H, H,), Lz )*. We note that H,%0 for any root
a€d and [X,, X ,]=[X., Xz]=H, for ac4. We set, for any root
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aed, oH
P ta ey

Then [X,, X,]=(a, a«)/2-H, for any root acd. For a simple root
a;(1=i<1), we set H,=H; (1=dim¢ %°). A {weight 1 on §°is a
linear form on §° such that A(H;) (1=<i<1) are all integers. The weight
A; (1£i=<1) such that A;(fH;)=06;; are called the fundamental dominant
weights. We put 6=2,.0 a. Then 6=2%/.,4;, We denote by dx the
sum of all complementary positive roots. Let 5 be the set of all simple
roots a4 such that X, €[H°,H]. We put d,=22,.cs 4.

3. The complexes A(/', X, p) and A, X, J,)

Let X be a symmetric bounded domain in C¥. As in the previous
section, we may write X=G/K where G is a connected semisimple Lie
group and K a maximal compact subgroup of G. Let I be a discrete
subgroup of G acting on X freely such that the quotient space Y=/I\X
© 1s compact. Let p be a representation of G in a complex wvector space
F. We denote by A’(I", X, p) the vector space of all F-valued smooth
p-forms 7 on X such that

VoL, =p(7)"

for all y&l', where L, is the translation of X by 7. The graded
module A(/', X, p) =2 ,A’(I', X, p) is a complex with the coboundary
operator defined by the exterior differentiation 4. We denote by
H?(I', X, p) the cohomology groups of the complex A([’, X,p). Let
m: G——> I'\G be a projection. Then tv defines an injection of g into
the Lic algebra of all vector fields on I'\G because I' is a discrete
subgroup of G. From now on we shall identify the Lie algebra g with
its image by this injection so that Aeg will be identified with the
vector field w(A) on I'\G.

Let 7 be a form in A*(/", X, p). If 7: G—— X is a projection of G
onto X, we define a form %° on G by putting 7,°=p(s1) (9ex), for
each s&G. The form %° is invariant under I’ and therefore 7° may be
considered as a form on /'\G. The image A}([', X, p) of A*(I', X, p)
by the mapping 7—7%° consists of all F-valued p~forms on I'\G satisfying
the {ollowing conditions

0(Z2)7° +p(Z)1° =0,
3.1 Lo
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for all Zet, where 6(Z) and i(Z) denote the operators of Lie derivation
and interior product by the vector field Z respectively. The graded
module A(T, X, p) is bigraded; A(], X, p) = DA T, X, p)=2,, A"?
(I', X, p). Here A**(I', X, p) consists of the (p, ¢)—forms on X. We
know that H"(I', X, p) decomposes into the direct sum 3., H"*
(I', X, p), where H**(I', X, p) is the subgroup of H"(I", X, p) consisting
of the elements represented by closed (p,¢)-forms ([16]). Let
Ab(I', X, p) be the submodule of A3**(I', X, p) corresponding to
A*»(TI', X, p) by the isomorphism 7—7°. A form 7° €A$**(I', X, p)
belongs to A%4([", X,p) if and only if the following condition is
satisied; if 7° (X4, ..., X,4p) %0 with X;&n*, then the number of X;
belonging to n* (resp. n~) equals p(resp. ¢) (see[16], p.400).

For a holomorphic representation = of K° in a complex vector space
S, i.e., rz€Hom (K% GL(S)), we define the canonical automorphic
factor of type z by

J.(g,x)=7(J(g,x)), g€G, z€X,
where J, is the canonical automorphic factor on X=G/K (see §2. B).
Let A"(I", X, J.) (resp. A™*(I', X, J.)) be the vector space of all S-
valued r—forms (resp. (p,¢)-forms) on X such that

(noLy)szt(T’ x)nz
for all z€X and yel'. We have A™(I', X, J.) =X o=, A" (I, X, J,).
We set A, X, J.) =2, A>*(I', X, J.). Then the operator d” defines
a coboundary operator of type (0,1) in A([, X,J.). We now denote
by H43(I', X,J.) the cohomology groups of this complex (A([, X,
J), d”).

For a form y€A**(I', X, J,), we define a (p+g)-form 7° on G by
setting 7° =J,(s, zo) 1 (Wox),, where s&G, zy=n(e), e the identity of
G. Then 7° is induced by the projection fv : G—I'\G from an S-valued
(p+q)-form on I'\G, which we also denote by 7°. The mapping 7—7°
maps the module A**(I", X, J,) bijectively onto the module A%4(rI, X,
J.) consisting of all S-valued (p, q)~forms on I'\G such that

0(Z)n° +7(Z)71° =0,

(3-2) {i(Z) 7 =0
for all Z&¥, and that if 7° (X, ..., X,.,) %0 with X;€n*, then the
number of X; belonging to n* (resp. n”) equals » (resp. ¢).

Prorosition 3.1 ([16], p. 408). Every cohomolgy class of H3*(I', X,
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3]
-1
o

J.) is represented by a unique harmonic (p,q)-form on X.

4. The complex of a Lie algebra

Let g° be a complex Lie algebra and tc a subalgebra of g¢. If Fis a
g-module, the action of g¢ on F is denoted by X-f(X€g¢, fEF). Let
Clge; F)=2.C(g°; F), n=0,1, 2, ..., be the standard complex of
(g¢, F). That is, C°(g°; F)=F and C*(g°; F) is the vector space of
all p-linear alternating forms on g¢ with values in ¥. On C(g¢; F), we

can define the operators €(X) and {(X) of Lie derivation and interior
product by Xegc as follows:

0(Z)f=2Z-f,
“4.1) W(Z)n) (Xy, ..., X)) =Z-1(X,, ..., X,)
—2ian(Xy, .., 2, X, Xy,
where Zeg¢, fEC°(g°; F), 7€C’(g¢; F) (p=1), while
i(Z)n=0 for 7€C(g°; F)=F,
G2 (Xy, oy Xpo1)=0(Z, X1, ooy Xp1)
for Zeg, 7=C’(g°; F) (p=1). Then there exists a unique operator d
of degree 1 such that {(Z)d+di(Z)=60(Z) for all Zeg® and d is given
by
@) (Xyy ooy Xpr) =200 (=D X 7(X,y, .

--:;)2!1, ---aAX/H-l)
_“_Zu<v (_1)u+v7]([Xm Xv:]s Xl: vesy Xw ---,Xz‘y LR ] Xp+l)-

Since d?=0, the module C(gc; F) is a complex with coboundary oper-
ator d. We call this complex the cochain complex of g¢ with coefficients
in the g*-module F. We denote by H?(g°; F) the cohomology groups of
this complex. Let C*(g¢, t; F) be the subspace of C’(g¢; F) consisting
of all elements 7€C?(g¢ ; F) such that 0(X)7=i(X)7=0 for all X&te.
The submodule C(g¢, t¢; F) = 3 ,C?(g¢, ¥ ; F) is stable under d and thus
a subcomplex of C(g°; F). We shall this complex C(g¢, f¢; F) the
cochain complex of §° relative to ¥¢ with coefficients in I and the coho-
mology groups of this complex will be denoted by H’ (g, ; F)

From now on we assume that X=G/K is a symmetric bounded domain
in CV. We will resume the notation in §2. Let @ be the vector space
of all complex valued C™-functions on I'\G and let F=O&cF, where I
is a finite dimensional complex vector space. Then the g*~module structure
is given on & by defining
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m(Z) (fRQu)=Z2fQu + fQp(Z)u

for all Zegs, f€D and u=F. Here p is a representation of G° in a
complex vector space F. Let C(g°; F)=X,C*(g°; &), and 6(Z) (resp.
i(Z)) be the derivation (resp. the interior product) by Z in C(g°; &).
Let C(g%, ¥ ; &) be the cochain complex of g¢ relative to I¢ with cce-
flicients in &. We can easily see that the complex A¢(I, X, p) may be
identified with the complex C(g¢, t¢; &F). Therefore the complex
A", X, p) will be identified with the complex C(g, ¥ ; &) and so the
cohomology groups H*(I', X, p) with the relative cohomology groups
H*(g¢, t¢; ). Since me=n*@n (cf. §2. B), the complex C(g, ¥ ; &)
is then bigraded; C?(g¢,tc; &) consists of all C"(g%, ¥ ; &) (r=p-+q)
such that if (Y3, ..., Y,) %0 and Y;=n* for i=1, 2, ..., 7, then the number
of Y; belonging to n* (resp. n™) equals p (resp. ¢). We easily see that
C? (g7, t ; F) may be identified with A*(I", X, p). Hence H**(I', X, p)
can be identified with H?‘(gc, ¢ ; &F).

We now identify the module C»%(g¢,¥¢; &) with a subspace of

S‘@n*én" in the following way. Let ¥={ay,...,an} be the set of
the positive complementary roots and let {X,; a€¥} and {X;; ac¥}
be the eigenvectors of roots as introduced in §2. We put X;=X,,
and X;=2X,, for a;€¥. Since {X;} and {X;} are bases of n* and n~
respectively and (X, X;) =8;;, n* (resp. n~) may be identified \:rith qI’che
dual of n* (resp. n). We define I:C~ge, f; &F) —> FRn*Q@n~
by setting
1(77)=Zi1<---<ip2f1<---<1’q 77(Xz'p caey Xi,,,
RN X, QNLr X,e
We simply write 7(X;, ..., X

X5 eems qu)

ipr J1r eees qu)::ﬂil"".pjl”'jq'

If we restrict the representation o of g¢ onto the abelian subalgebra n~,
we may regard F as an n"-module. Let C(n~, F)=2,C'(n", F) be the
cochain complex of n~ with coefficients in F, and denote by d~ its
coboundary operator. We identify C(n~, F) =X ,C'(n~, F) with F&Q An*
=21, FQOA® n*. Then we have

d =245 p(Xp® e(Xp),
where ¢(X) denotes the exterior multiplication by X. We define a posi-
tive definite hermitian inner product in C(n™, F) by
(6,¢") =220 <vr iy (Coyenipr € i1enig) Fo

where ¢=2 25 coon cif€iy - 1, QXA o AX;) and =220 < 4,
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11Xy Ao AX;) and (, dp is an admissible inner product on
F (cf. [16], p.375). Let 6~ be the adjoint operator of d~ with
respect to this inner product and we define a Laplacian 4~ by

4" =d o +o d.
We call a cocycle ¢ of C(n™, F) harmonic if 4-¢=0. Every cohomology
class in H¢(n™, F) is represented by a unique harmonic cocycle (cf, [17]).

5. Vanishing theorems for the cohomology groups H°(Y, E(J,))

First we recall Bott’s results concerning the induced representations
with respect to homogeneous vector bundles (cf. [3]). Suppose that
peHom (K° GL(r; C)) is an irreducible representation. The action of
g&G° on E“(p) as bundle isomorphism induces the linear automorphism

on the C-module H(X", E*(p)), which we will write p(g). The
representation (p@, H*(X*, E*(p)) of G* thus obtained is by definition
the g-th induced representation of p. Let A be the highest weight of p.
Let A be the highest weight of p. Then the induced representations
p@(0=g<N) are determined only by 4:

Taeorem 5.1 (Bott, [3]). If there exists a root acd such that
(/H—-%—(S, a)=0, then all p¥ (0=<q=<N) are the the Q-representations.
Otherwise, there is one and only one induced representation p9 which is
irreducible and its highest weight A’ is given by

rp 1l s 1
A+2 o a(A+25),
where ¢ is the element of the Weyl group which is the product of q
reflections with respect to the simple root planes a;=0 and it is uniguely

determined by the condition (X' +13,a)>0015i5).

We define 1 and ¢ in Hom(%%, C) as follows (cf. §2. D).
A=1+ﬂ, A= §g m,-Ai, p= %ﬁmj/lj.
Ise (cf. [10]) obtained the following results using Bott’s results ([3]).

Tueorem 5.2. 1) Suppose that
(A—p—08y, @) >0

for all complementary positive roots . Then
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H'(Y,E(J,))=0 for all ¢<N.
il) Suppose that
(446, a) <0

for all complementary positive roots «. Then
H'(Y,E(J,)))=0 for all ¢>0.

Tueorem 5.3. If there exists at least one complementary positive root
a such that (A, a)>0, then

H(Y, E(J,)) =0.

Matsushima and Murakami{ef. [17]) showed the following:

TueoreM 5.4. Let q, be the number of roots a €U such that (A, a)>0.
Then
I, X, J,)=(0) for ¢,<q.
If (A, a)>0, for i=1, ..., s, where o, ..., a, are the simple roots
belonging to ¥, then
H(T, X, J,)=(0)  for g<(N.

Here U denotes the set of all positive complimentary roots.

TuroreMm 5.5. Suppose that (A, @) >0 for all positive roots a of 9°.
Then for all p+qg=N,
H*(I', X, p)=(0).

Tueorem 5.6. Let A be the lowest weight of p. Let p, be the number
of roots a in T such that (A, a)<0. Then the cohomology group
H?(I', X, p) wvanishes for p<p,.

Remarg 1. By a theorem of Hirzebruch [8], we have
LY)=p.(Y)A(X"),
where p,(Y) denotes the arithmetic genus of Y and X(Y) (resp. X(X,))

is the Euler characteristic of the complex manifold Y (resp. the compact
form X* of X). Moreover, Hirzebruch [7] gave the following formula

X(Y)=(—m)"Ndyv(Y),
where X is irreducible, v(Y) denotes the total volume of Y with respect
to the Bergman metric on X and
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o Meer(50,0)
"TTRGR

Here 7 denotes the unique simple root belonging to #. It is known that
2(0g, v)=1. Thus we get

dN =3 Haew(‘%—a, a)x(xu).
Hence we obtain

£2(V) = (=) V] ser (58, @) (D).
By Wey!l’s formula,

X(X*).

1
<A+75, a)

T

By the way, we have(cf. [19])

r= l_la>0

5 (—1)* dimcH* (I, X, p)=ri(¥).
p=
Theorem 5.5 yields the following
HX T, X, p)=(0) if p=N.
1
na>0(A+'§‘6, a)

Mees (32.0)

Remark 2. If p is irreducible, we let p=p,@D---@Dp; denote the de-
composition of p into irreducible components. We have E(J,)=E(J,)
@...E(J,) (® denotes the Whitney sum). Hence we have

3
Hq(Y,E(Jp))=§1Hq(Y,E(Jp;)), 0<g<N.
Remark 3. It is known (cf. [10]) that

(Y, E(J,)) =X(Y)L(X* E*(p)).

If X i sirreducible, X(Y)=(—x) "Ndyv(Y) (cf. Remark 1). X(X* E*(p))
can be computed by Theorem 5. 1. Finally we can compute X(Y, E(J,))

dimcHN(I', X, p)=(—n) N X(X*)v(Y).

Tursorem A. Let g, the number of roots a €¥ such that (A, a)>0.
Then

H'(Y, E(J,))=(0) for ¢,<g.
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Moreover, if (A, a)>0 for every simple root « belonging to &, then
H»*(Y,E(J,))=(0) for ¢>>N.

Here N=dimc X and T is the set of all positive complementary roots.

Proof. Let #: X—I'\X=Y be the projection of X onto Y and let
o XXC"— (XXC")/I'=E(J,) be the canonical projection of XXC"
onto E(J,). For each z&X, let ¢, be the linear isomorphism of the
typical fibre C” onto the fibre E(J,), of E(J,) over the point z=z(z)&€Y
defined by

o (x)=0(z,8), £&C".

For each a€ A*»*(I', X,J,), we define the (p,¢)~form & on Y with
coefficients in E(J,) as follows:

02(7521, vy 7CZps “le ceesy EWq) :ngax(Zh seny Z}'J: Wh seey Wq):

where z&€X, z=n(z), Zy,...,2,€T,*(X) and Wy, ..., W,e T, (X).
The mapping a—8@ vyields an isomorphism of the bigraded module
A(l', X,J,) onto the bigraded module A(Y, (J))=A(E(W,))=
2i0.gAM(E(J,)). Thus the cohomology HZ* (I', X, J,) is isomorphic
to the cohomology H?? (Y, E(J,)). But the following exact sequence

”

00— 04 (E(T))—> AR (B(,) L A (E()) L -
is a fine resolution of the sheaf Q?(E(J,)) of thegerms of holomorphic
p—forms with coefficients in E(J,). Thus we have (cf. [9], p36)
HY(Y, Q*(B(J,))) =H#(Y, E(J,)) (Dolbeault).
Hence by Theorem 5.4, we have for p=0
HY(Y,E(J,))=H}(Y,E(J,))=H}(I', X,J,)=(0)

for g,<{q. The second assertion follows immediately from Theorem 5.4
and the above argument. Q.E.D.

Remark4. Let g° be a simple Lie algebra over € and let 7 be the
unique simple root of g¢ belonging to . Let ad be the adjoint represen-
tation of g¢ and p=ad, the representation of K° in n~. Then H2?
(I', X, J,) is isomorphic to H*(Y,0), where 8 is the tangent bundle of

.
Y. It is known that g, <—;—1?)——1. Hence the cohomology group H*
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(Y, 8) vanishes for q<ﬁ~l (cf. [4]).

6. Stability and Einstein condition of E(J,) and E*(p)

Before we study the stability of the vector bundle E(J,) and E*(p),
we first review the concept of stability and Hermitian-Einstein structure
on vector bundles.

Let E be a holomorphic vector bundle of rank r over a compact Kihler
manifold X. For a Hermitian metric & along the fibre of E, the Hermitian
connection, D : A°(E) — A!(E) is characterized by the properties

(a) d(h(s, t))=h(Ds, t)+h(s, Dt), s,t€A(E),

(b) D"s=d"s, where D" denotes the (0,1)-component of D.

With respect to a local frame {e,}, the connection matrix A= (Af)
(1=a, B<n) 1is given by

Aﬁ: (d,h'a?) hTﬁ’
where h,g=h(e, e5) and (h®F)=(h,z) "L

The curvature F=dA—AAA of the Hermitian connection for a
holomorphic vector bundle reduces to the (1, 1)-form with coefficients in
End(E)

F=d" A=h"\d"d’h+h7'd"h AB1d7 .

Conversely, the integrability theorem of Newlander-Nirenberg implies
that a complex vector bundle admits a holomorphic structure if there
exists a U(r) connection whose curvature is of type (1,1).

Given a Kihler metric g on X, we define an operation ¢r,:
AV 1(End(E))——> A"(End(E)) as follows. For a section F= (F%) € Ab!
(End(E)),

tr F= (ZngFij)1§a,5§n22j.kgszjZ,
where Fi=F! 3d2’ Adz* and Fjz= (Fiz) 120 p=r

DermviTion 1. A holomorphic vector bundle of rank r over a compact
Kihler manifold (X, g) is said to be Hermitian—FEinstein if there exists
a Hermitric b for which the Hermitian curvature F satisfies:

tr, F=pl,
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where T is the identity endomorphism of E and p is a constant.

Let & be a torsion—free coherent sheaf over a compact Kihler manifold
(X, g) of dimension n. Let w be the Kihler form; it is a real positive
closed (1,1)-form on X. Let ¢;(&) be the first Chern class of &, that
is, the first Chern class of the determinant bundle det(¥) over X. It
is represented by a real closed (1,1)—form on X. The degree of & is
defined to be

deg () =JM (& Ao L

The degree/rank ratio or slope () is defined to be
¢(F) =deg (&) /rank(F).

Derinition 2. A coherent sheaf & over a compact Kihler manifold
(X, g) is said to be stable (resp. semi—stable) if for every coherent sheaf
&F of lower rank, pu(F)<u(F) (resp. <).

Remargs. (i) & is reflexive if and only if F**=(F*)*=F. A reflexive
sheaf of rank one is a holomorphic line bundle.
(ii) A reflexive sheaf is locally free outside a subvariety of codimension
greater than or equal to 2.
(iii) The dual &F* of any coherent sheaf &F is reflexive.
(iv) & is (semi-) stable if and only if its dual §* is (semi~) stable.

Kobayashi (ef. [12]) obtained the following differential geometical
criterion for stability.

Tueorem (Kobayashi). Let E be a holomorphic vector bundle over a
compact Kihler manifold (X, g) with a Kaihler form w. If E admits
an irreducible Hermitian—Einstein connection, then E is stable.

The converse of the above theorem was known as Kobayashi's con-
jecture. Donaldson proved Kobayashi’s conjecture in the case X is an
algebraic surface. Quite recently Uhlenbeck and Yau (cf. [24]) proved
Kobayashi’s conjecture in the case X is of higher dimension.

Taeorem (Uhlenbeck and Yau). A stable holomorphic vector bundle
over a compact Kihler manifold admits a unique Hermitian—Einstein
connection.

We are now in a position to prove the stability of the vector bundles
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E'(p)_and E(J,). Ramanan ([22]), Umemura ([23]), and Kobayashi
([13]) indepently showed the following:

Tueorem (Ramanan, Umemura and Kobayashi). Let G° be a simply
connected, semisimple complex Lie group and U a parabolic subgroup
without simple factor. Let p be a finite dimensional irreducible holomorphic
representation of U. Then the homogeneous vector bundle over M=G*/U
defined by a representation p is H-stable for any ample line bundle H.

In 82.C, we mentioned the homogeneous vector bundle E*(p) over
X*, the compact hermitian symmetric manifold which is dual to a
bounded symmetric domain X=G/K in the sense of E. Cartan. X" can
be expressed as X*=G°/U (see §2.A). It is well-known that X* is
an algebraic manifold. Thus U is a parabolic subgroup of the simply
connected semisimple complex Lie group G°. Hence by the above theorem,
E‘(p) is stable. By Uhlenbeck and Yau, E*(p) admits a unique Her-
mitian—Einstein connection.

Let (,) be the standard inner product in C”. Since K° is the complexi-
fication of a compact Lie group K, there exists a hermitian inner pro-
duct {,> in €C" which is invariant under o(K*). This defines canonically
a hermitian metric in the fibres of E(J,) as follows. On the fibre E(J,),
over 2&Y, we define

[z,&], [z, 7D, =&, z€X, z=x(x), §neC,
where 7 : X——Y=/I\X is a projection and [z,&] is the equivalence

cass of (2,6) in XXCr, ie., [z, &l€E(J,), It is well defined.
Indeed, for each y€rI', z€X, & nel,
Lra, J,(r, 2)€1, Lra, J,(r, 2)1]).
=<Jp(7‘: x)sa Jp(Ta .1')77>
={pJ (1, 2))&, 0(J(1,2))M
={&,7) (since J(7,x) EKF)
={[x, €], [z, 71])..

Thus this hermitian metric gives rise to a flat structure on E(J,).
Hence it admits an irreducible Hermitian-Einstein connetion and so E(J,)
is stable.

Summarizing what we have proved, we state

TuaeoreM B. Let p be an irreducible holomorphic representation of K°
into GL(r ; C). Then E*(p) is H-stable for any ample line bundle H
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over X* and E(J,) admits an irreducible flat Hermitian—Einstein connec-
tion.

Remark. Let X be a bounded symmetric domain in C¥ and let I' be
a neat arithmetic group on X. Then Y=I'\X is a smooth quasi-pro-
jective algebraic variety. Consider the case Y=7I'\X is not compact.
Given a representation p of K, we have then a holomorphic vector bundle
E(J,) over Y. We obtain a smooth projective compactification ¥ by the
toroidal compactification and thus get the corresponding vector bundle
E(J,) over Y. We refer to D. Mumford [20] for detalis. The following
problem is still open.

Prosrem. Is E(J,) stable? In other words, does E (J,) admit a Her-
mitian-Einstein connection?
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