VECTOR BUNDLES ASSOCIATED TO AN AUTOMORPHIC FACTOR

Byung Moon Jun and Jae-Hyun Yang

1. Introduction

Let X be a symmetric bounded domain in \mathbb{C}^N and let Γ be a discrete group of holomorphic automorphisms of X with the following properties:

- (a) The quotient space $Y = \Gamma \setminus X$ is compact.
- (b) Γ acts freely on X.

By Kodaira's theorem (cf. [14]), $Y = \Gamma \setminus X$ is an algebraic manifold. Let X" be the compact hermian symmetric manifold which is dual to X in the sense of E. Cartan. We denote by G' the simply connected covering group of the connected biholomorphic transformations group of X^{μ} and we let U the connected Lie subgroup of G^{c} fixing a point $x_0^n \in X^n$. Let G^n be the compact real form of G^c . Then $X^n = G^c / U =$ G^{μ}/K , where $K=G^{\mu}\cap U$. Given a holomorphic representation ρ of the complexification K^c of K into $GL(r; \mathbb{C})$, the composition $J_{\rho} = \rho \circ J$ of ρ and the canonical automorphic factor J on X (see § 2. B, Definition 1) is an automorphic factor of type ρ . This automorphic factor gives rise to a holomorphic vector bundle $E(J_{\rho})$ of rank r over $Y=I\setminus X$. Using a representation ρ of K^c , we get the so-called homogeneous vector bundle $E^{u}(\rho)$ over X^{u} in the sense of Bott. In this paper, we prove a vanishing theorem for the cohomology groups $H^q(Y, E(J_\rho))$ under a certain condition on ρ and prove the stability of these vector bundles $E^*(\rho)$ and $E(J_{\rho})$.

In section 2, we review the hermitian symmetric manifolds and define the concept of the canonical automorphic factor on a bounded symmetric domain. And we introduce the holomorphic vector bundle $E(J_{\rho})$ over $Y=\Gamma\setminus X$ and the homogeneous vector bundle $E^{*}(\rho)$ over X^{*} in the sense

Received May 28, 1987.

This work was supported by the Ministry of Education.

of Bott. In section 3 and section 4, we describe the materials which are needed in order to understand section 5. In section 5, we will prove vanishing theorem on $H^q(Y, E(J_\rho))$ under the condition $q_\rho < q$ which is weaker than that of Ise (see Theorem 5.3). In section 6, we prove that the vector bundles $E^{\mu}(\rho)$ and $E(J_\rho)$ are stable.

Notations. i) Lie groups are denoted by the great roman letters G, U, K etc and their Lie algebras by the corresponding small German letters g, u, f etc.

ii) The complexifications of Lie groups (resp. Lie algebras) are denoted by G^c , U^c , K^c etc(resp. g^c , u^c , t^c etc).

2. Preliminaries and hermitian symmetric spaces

A. Let X be a symmetric bounded domain in \mathbb{C}^N and X^u the compact symmetric hermitian manifold which is dual to X in the sense of E. Cartan(cf. [4]). The group-theoretical descriptions of X and X^u are as follows: We denote by G^c the simply connected covering group of the connected biholomorphic transformations group of X^u . Then G^c is a connected semisimple complex Lie group and $X^u = G^c/U$, where U is the connected closed Lie subgroup of G^c consisting of all elements of G^c which fix a point x_0^u . A compact form G^u of G^c is also simply connected and acts on X^u transitively as transformations. Therefore X^u can be expressed as $X^u = G^u/K$, $K = G^u \cap U$. If we set

$$\mathfrak{m} = \{ y \in \mathfrak{g}^u : \langle x, y \rangle = 0 \text{ for all } x \in \mathfrak{k} \},$$

then we have

$$g^{u}=t+m$$
 (direct sum), $[t, m] \subset m$, $[m, m] \subset t$.

If we put

$$g=t+im (i^2=-1),$$

then g is a noncompact real form of g^c , the Lie algebra of G^c and g generates the real semisimple Lie group G whose center is finite and simple components are all noncompact. G/K is identified with X and $G \cap G^u = K$, $G \cap U = G^u \cap U = K$. Therefore if we define the mapping j of X into X^u by

$$j: gK \longrightarrow gU \ (g \in U),$$

then j becomes an injection of X into X^* which is compatible with the

actions of G on X and X^* . Thus X will be endowed with the G-invariant complex structure from that of the open submanifold j(X) of X^* .

Let x_0 be the point of X corresponding to K. We may identify im with the tangent vector space T_x , of X at the point x_0 . The complex structure I on X defines a linear transformation I_x in each tangent vector space T_x ($x \in X$) such that $I_x^2 = -1$. Let T_x^c be the complexification of T_x . Each $u \in T_x^c$ is written uniquely in the form u = v + iw where $v, w \in T_x$. Put $\bar{u} = v - iw$. We have $T_x^c = T_x^+ + T_x^-$, $T_x^+ = T_x^-$, $T_x^+ \cap T_x^- = (0)$, where T_x^+ (resp. T_x^-) denotes the i (resp. (-i))-eigenspace of I_x . And we have $\mathfrak{g}^{\mathfrak{k}c} = \mathfrak{k}^c + \mathfrak{m}^c$, $\mathfrak{k}^c \cap \mathfrak{m}^c = (0)$ and idenified with $T_{x_0}^c$. Hence \mathfrak{m}^c decomposes into direct sum

$$m^c = n^+ + n^-, n^- = \overline{n^+}.$$

We see that each complex vector field $Y \in \mathfrak{n}^+$ (resp. $Y \in \mathfrak{n}^-$) is characterized by the property that $\pi_0 Y_s \in T^+_{\pi_0(i)}$ (resp. $\pi_0 Y_s \in T^-_{\pi_0(i)}$) for every $s \in G$, where π_0 is the projection of G onto X = G/K. In fact, I defines a linear isomorphism I_0 of $i\mathfrak{m}$ which commutes with the adjoint action of K on $i\mathfrak{m}$ and $I_0^2 = -1$. \mathfrak{n}^+ (resp. \mathfrak{n}^-) is the i-eigenspace (resp. (-i)-eigenspace) of I_0 . It is known that

Now we know that \mathfrak{k} contains a Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Let Δ be the root system of \mathfrak{g}^c with respect to \mathfrak{h}^c , and \mathfrak{g}_{α} the root space of \mathfrak{g}^c corresponding to the root $\alpha \in \Delta$. Let $u \longrightarrow \bar{u}$ be the conjugation of \mathfrak{g}^c with respect to the real form \mathfrak{g} . Then we have $\mathfrak{g}_{\alpha} = \mathfrak{g}_{-\alpha}$ and $\dim_{C}\mathfrak{g}_{\alpha} = 1$ for all $\alpha \in \Delta$. By (1.1), we can easily see that

$$\mathfrak{n}^+ = \sum_{\alpha \in \phi} \mathfrak{g}_{\alpha}, \quad \mathfrak{n}^- = \sum_{\alpha \in \phi} \mathfrak{g}_{\alpha},$$

where ϕ is a subset of Δ . A root α is called a complementary root if $\mathfrak{g}_{\alpha} \subset \mathfrak{n}^+ + \mathfrak{n}^-$. We may choose an ordering for the roots so that the roots belonging to ϕ are all positive. We fix such an ordering for the roots once and for all. A root belonging to ϕ is called a positive complementary root. Let (,) be the Cartan-Killing form of \mathfrak{g}^c . For each $\alpha \in \phi \cup (-\phi)$, choose an element $X \in \mathfrak{g}$ such that $(X_{\alpha}, X_{-\alpha}) = 1$. We have then $\overline{X}_{\alpha} = X_{-\alpha}$. Moreover it is clear that either $\mathfrak{g}_{\alpha} \subset \mathfrak{k}^c$ or $\mathfrak{g}_{\alpha} \subset \mathfrak{m}^c$. In the first case the root is called compact, and in the second case noncompact. And we have the decompositions

Let u be the Lie algebra of U. Let N^+ (resp. N^-) be the connected Lie subgroup of G^c corresponding to \mathfrak{n}^+ (resp. \mathfrak{n}^-) and K^c the complexification of K. We know $\mathfrak{n}^- \subset \mathfrak{u}$ and $U = K^c N^-$ (the semidirect product).

B. We shall define the notion of the canonical automorphic factor. We first review the results of Harish-Chandra (cf. [5] or [6]). G^c contains $N^+K^cN^-$ as an open subset, and the mapping of the complex manifold $N^+\times K^c\times N^-$ into G^c defined by $(n^+,k,n^-)\longrightarrow n^+kn^-(n^+\in N^+,k\in K,n^-\in N^-)$ is a biholomorphic mapping of $N^+\times K^c\times N^-$ onto the open submanifold $N^+K^cN^-$ of G^c and G is contained in $N^+K^cN^-$. Hence we see that GU is an open subset of N^+U and N^+U is that of G^c . Using $G\cap U=K$ and $N^+\cap U=\{1\}$, we then have

$$X=G/K \subset N^+ \subset G^c/U=X^u$$
.

We shall denote by j_1 (resp. j_2) the first (resp. the second) inclusion mapping; they are holomorphic. Since G is contained in $N^+K^cN^-$, each $g \in G$ is written uniquely in the form $g = n^+kn^-$ with $n^+ \in N^+$, $k \in K^c$, $n^- \in N^-$. Put $n^+ = n^+(g)$. Then $n^+(gk) = n^+(g)$ for all $k \in K$ and the mapping N of G/K into N^+ defined by

$$N(x) = n^+(g), x = gK = gx_0 \in X,$$

is a holomorphic and bijective mapping of X onto an open bounded subset of the complex manifold N^+ with a suitable metric. We see easily that $g^{-1}N(gx_0) \in U$ for all $g \in G$.

LEMMA 1. $N(gx)^{-1}(gN(x)) \in U$ for all $g \in G$ and $x \in X$.

Proof. Let $x=g'x_0$, $g' \in G$. Then $(gg')^{-1}N(gg'x_0) = (gg')^{-1}N(gx)$ $\in U$. $g^{-1}N(x) = g^{-1}N(gx_0) \in U$. Therefore $N(gx)^{-1}(gN(x)) = ((gg')^{-1}N(gx))^{-1}g^{-1}N(x) \in U$. This proves the lemma.

By Lemma 1, gN(x) is written uniquely in the form gN(x) = N(gx) J(g,x)n',

where $J(g, x) \in K^c$ and $n' \in N^-$. Then J is a C^{∞} -mapping of $G \times X$ into K^c and $J(g, \cdot)$ is holomorphic in the variable $x \in X$. The mapping $J: G \times X \longrightarrow K^c$ satisfies the following properties:

- (i) J(gg',x) = J(g,g'x)J(g',x) for all $g,g' \in G$ and $x \in X$.
- (ii) $J(g, x_0)$ is the K^c -component of $g \in N^+K^cN^-$ and J(k, x) = k for every $k \in K^c$ and $x \in X$.

(iii) J(1,x)=1 for all $x \in X$, and $J(g,x)^{-1}=J(g^{-1},gx)$ for every $g \in G$ and $x \in X$.

DEFINITION 1. The mapping $J: G \times X \longrightarrow K^c$ introduced above is called the *canonical automorphic factor* on the symmetric bounded domain X=G/K.

Definition 2. A C^{∞} mapping R of $G \times X$ into the complex general linear group GL(r:C) $(r \ge 1)$ is called an *automorphic factor* if

- (i) R(g, x) is holomorphic in the variable $x \in X$.
- (ii) R(gg', x) = R(g, g'x) R(g', x) for all $g, g' \in G$ and $x \in X$.

A C^r -valued holomorphic function f(x) on X is called an *automorphic* form with respect to the automorphic factor R if f(gx) = R(g, x) f(x) for all $g \in G$ and $x \in X$.

Given a representation ρ of K^c in the complex vector space C^r , we now define the mapping $J_{\rho} = \rho \circ J : G \times X \longrightarrow GL(r; C)$ by

$$J_{\rho}(g,x) = \rho(J(g,x)), g \in G, x \in X.$$

Then J_{ρ} is an automorphic factor in the sense of the above definition and is called the *automorphic factor* of type ρ .

Let Γ be a discrete subgraup of G which satisfies the following two conditions:

- (a) The quotient space $\Gamma \setminus X$ is compact.
- (b) Every element $\gamma \in \Gamma$ different from the identity 1 has no fixed point in X.

By Kodaira's theorem (cf. [14]), $Y = \Gamma \setminus G/K$ is an algebraic manifold. A holomorphic mapping f of X into C^r is called an automorphic form of type ρ with respect to Γ if $f(\gamma, x) = J_{\rho}(\gamma, x) f(x)$ for all $\gamma \in \Gamma$ and $x \in X$. Now we introduce the holomorphic vector bundle $E(J_{\rho})$ over $Y = \Gamma \setminus X$ as follows: We define the action of G on the trivial vector bundle $X \times C^r$ over X by

$$g\circ(x,u)=(gx,\ J_{\rho}(g,x)u)$$

for $g \in G$, $x \in X$ and $u \in C^r$, and then the quotient manifold $(X \times C^r)/\Gamma$ is a holomorphic vector bundle over $Y = \Gamma \setminus X$. This holomorphic vector bundle will be denoted by $E(J_\rho)$ and is called the vector bundle over Y defined by the automorphic factor J_ρ . We can see easily that an automorphic form of type ρ can be identified with a holomorphic cross

section of $E(J_{\rho})$ and conversely.

C. We recall the concept of homogeneous vector bundle over X^* (cf. [3]). Every holomorphic representation ρ of K^c in C^r can be extended naturally to the holomorphic representation of $U=K^cN^-$ on C^r , which we also will denote by ρ . Conversely for every completely reducible holomorphic representation $\rho: U \longrightarrow GL(r; C)$, we can show that $\rho(N^-)=1$. So we may consider it as a representation of K^c . From now on we denote by $\operatorname{Hom}(K^c, GL(r; C))$ (resp. $\operatorname{Hom}(U, GL(r; C))$) the set of all holomorphic representations of K^c (resp. U) on C^r . For any $\rho \in \operatorname{Hom}(K^c, GL(r; C))$, we define $E^u(\rho)$ as the quotient manifold $(G^c \times C^m)/U$ of $G^c \times C^m$ by U under the actions such that

$$s \circ (g, u) = (gs^{-1}, \rho(s)u)$$

for all $g \in G^c$, $u \in \mathbb{C}^r$ and $s \in U$. Then $E^*(\rho)$ has a holomorphic vector bundle structure over X^u with the fibre \mathbb{C}^r . We recall $E^u(\rho)$ the homogeneous vector bundle over X^u with respect to ρ .

Lemma 2. The vector bundle $E(J_{\rho})$ is holomorphically equivalent to $\Gamma \setminus j^*E^*(\rho)$, where $j: X \longrightarrow X^*$ is the mapping defined by j(gK) = gU for every $g \in G$.

Example. Let Θ_Y (resp. K_Y) be the tangent bundle (resp. the canonical line bundle) over Y. We denote by Θ^u and K^u the tangent bundle and the canonical line bundle over X^u . Then $\Gamma \setminus j^*\Theta^u = \Theta_Y$ and $\Gamma \setminus j^*K^u = K_Y$. R. Bott teaches us that $\Theta^u = E^u(Ad_K)$ and $K^u = E^u(\delta_K^{-1})$, where $Ad_K: K \longrightarrow GL(\mathfrak{n}^+)$ is the adjoint representation of K on \mathfrak{n}^+ and $\delta_K \in Hom\ (K^c, \mathbb{C}^*)$ is the character whose differential is the sum of all positive complementary roots. By Lemma 2, $\Theta_Y = E(Ad_K \circ J)$ and $K_Y = E(\delta_K^{-1} \circ J)$.

D. Let (,) be the Cartan-Killing form of \mathfrak{g}^c . Since the restriction of (,) to $\mathfrak{h}^c \times \mathfrak{h}^c$ is nondegenrate, there is a natural isomorphism of $(\mathfrak{h}^c)^* = \text{Hom } (\mathfrak{h}^c, \mathbb{C})$ onto \mathfrak{h}^c . For any $\lambda \in (\mathfrak{h}^c)^*$ its image will be denoted by H_{λ} . Thus

$$\lambda(H) = (H, H_2), \ \lambda \in (\mathfrak{h}^c)^*, \ H \in \mathfrak{h}^c$$

can define a symmetric nondegenerate bilinear form \langle , \rangle on $(\mathfrak{h}^c)^* \times (\mathfrak{h}^c)^*$ by $(\lambda, \tau) = (H_{\lambda}, H_{\tau}), \lambda, \tau \in (\mathfrak{h}^c)^*$. We note that $H_{\alpha} \neq 0$ for any root $\alpha \in \Delta$ and $[X_{\alpha}, X_{-\alpha}] = [X_{\alpha}, X_{\bar{\alpha}}] = H_{\alpha}$ for $\alpha \in \Delta$. We set, for any root

 $\alpha \in \mathcal{A}$

$$\bar{H}_{\alpha} = \frac{2H_{\alpha}}{(\alpha, \alpha)}.$$

Then $[X_{\alpha}, X_{\dot{\alpha}}] = (\alpha, \alpha)/2 \cdot \overline{H}_{\alpha}$ for any root $\alpha \in \Delta$. For a simple root $\alpha_i (1 \le i \le 1)$, we set $\overline{H}_{\alpha_i} = \overline{H}_i$ $(1 = \dim_{\mathbb{C}} \mathfrak{h}^c)$. A weight λ on \mathfrak{h}^c is a linear form on \mathfrak{h}^c such that $\lambda(\overline{H}_i) (1 \le i \le 1)$ are all integers. The weight Λ_i $(1 \le i \le 1)$ such that $\Lambda_i(\overline{H}_j) = \delta_{ij}$ are called the fundamental dominant weights. We put $\delta = \sum_{\alpha \ge 0} \alpha$. Then $\delta = 2\sum_{i=1}^l \Lambda_i$. We denote by δ_K the sum of all complementary positive roots. Let Ξ be the set of all simple roots $\alpha \in \Delta$ such that $X_{\alpha} \in [\mathfrak{h}^c, \mathfrak{h}^c]$. We put $\delta_M = 2\sum_{\alpha \in \Sigma} \Lambda_i$.

3. The complexes $A(\Gamma, X, \rho)$ and $A(\Gamma, X, J_{\tau})$

Let X be a symmetric bounded domain in \mathbb{C}^N . As in the previous section, we may write X=G/K where G is a connected semisimple Lie group and K a maximal compact subgroup of G. Let Γ be a discrete subgroup of G acting on X freely such that the quotient space $Y=\Gamma\setminus X$ is compact. Let ρ be a representation of G in a complex vector space F. We denote by $A^P(\Gamma, X, \rho)$ the vector space of all F-valued smooth ρ -forms η on X such that

$$\eta \circ L_{\tau} = \rho(\gamma) \eta$$

for all $\gamma \in \Gamma$, where L_{γ} is the translation of X by γ . The graded module $A(\Gamma, X, \rho) = \sum_{\rho} A^{\rho}(\Gamma, X, \rho)$ is a complex with the coboundary operator defined by the exterior differentiation d. We denote by $H^{\rho}(\Gamma, X, \rho)$ the cohomology groups of the complex $A(\Gamma, X, \rho)$. Let $\mathfrak{m}: G \longrightarrow \Gamma \backslash G$ be a projection. Then \mathfrak{w} defines an injection of \mathfrak{g} into the Lie algebra of all vector fields on $\Gamma \backslash G$ because Γ is a discrete subgroup of G. From now on we shall identify the Lie algebra \mathfrak{g} with its image by this injection so that $A \in \mathfrak{g}$ will be identified with the vector field $\mathfrak{w}(A)$ on $\Gamma \backslash G$.

Let η be a form in $A^p(\Gamma, X, \rho)$. If $\pi: G \longrightarrow X$ is a projection of G onto X, we define a form η° on G by putting $\eta_s^\circ = \rho(s^{-1})(\eta \circ \pi)_s$ for each $s \in G$. The form η° is invariant under Γ and therefore η° may be considered as a form on $\Gamma \backslash G$. The image $A_0^p(\Gamma, X, \rho)$ of $A^p(\Gamma, X, \rho)$ by the mapping $\eta \longrightarrow \eta^\circ$ consists of all F-valued p-forms on $\Gamma \backslash G$ satisfying the following conditions

(3. 1)
$$\begin{cases} \theta(Z)\eta^{\circ} + \rho(Z)\eta^{\circ} = 0, \\ i(Z)\eta^{\circ} = 0 \end{cases}$$

for all $Z \in \mathcal{I}$, where $\theta(Z)$ and i(Z) denote the operators of Lie derivation and interior product by the vector field Z respectively. The graded module $A(\Gamma, X, \rho)$ is bigraded; $A(\Gamma, X, \rho) = \sum_{r} A^{r}(\Gamma, X, \rho) = \sum_{p,q} A^{p,q}$ (Γ, X, ρ) . Here $A^{p,q}(\Gamma, X, \rho)$ consists of the (p, q)-forms on X. We know that $H^r(\Gamma, X, \rho)$ decomposes into the direct sum $\sum_{p+q} H^{p,q}$ (Γ, X, ρ) , where $H^{p,q}(\Gamma, X, \rho)$ is the subgroup of $H^r(\Gamma, X, \rho)$ consisting of the elements represented by closed (p, q)-forms ([16]). $A_0^{p,q}(\Gamma, X, \rho)$ be the submodule of $A_0^{p+q}(\Gamma, X, \rho)$ corresponding to $A^{p,q}(\Gamma, X, \rho)$ by the isomorphism $\eta \to \eta^{\circ}$. A form $\eta^{\circ} \in A_0^{p+q}(\Gamma, X, \rho)$ belongs to $A_0^{p,q}(\Gamma, X, \rho)$ if and only if the following condition is satisfied; if $\eta^{\circ}(X_1, ..., X_{p+q}) \neq 0$ with $X_i \in \mathfrak{n}^{\pm}$, then the number of X_i belonging to \mathfrak{n}^+ (resp. \mathfrak{n}^-) equals p(resp. q) (see [16], p. 400).

For a holomorphic representation τ of K' in a complex vector space S, i.e., $\tau \in \text{Hom }(K', GL(S))$, we define the canonical automorphic factor of type τ by

$$J_{\tau}(g,x) = \tau(J(g,x)), g \in G, x \in X,$$

where J_{τ} is the canonical automorphic factor on X=G/K (see § 2. B). Let $A^r(\Gamma, X, J_r)$ (resp. $A^{p,q}(\Gamma, X, J_r)$) be the vector space of all Svalued r-forms (resp. (p,q)-forms) on X such that

$$(\eta \circ L_r)_x = J_x(\gamma, x) \eta_x$$

 $(\eta \circ L_{\tau})_x = J_{\tau}(\gamma, x) \eta_x$ for all $x \in X$ and $\gamma \in \Gamma$. We have $A^r(\Gamma, X, J_{\tau}) = \sum_{p+q=r} A^{p,q}(\Gamma, X, J_{\tau})$. We set $A(\Gamma, X, J_{\tau}) = \sum_{p,q} A^{p,q}(\Gamma, X, J_{\tau})$. Then the operator d'' defines a coboundary operator of type (0,1) in $A(\Gamma, X, J_{\tau})$. We now denote by $H_{d}^{p,q}(\Gamma, X, J_{\varepsilon})$ the cohomology groups of this complex $(A(\Gamma, X, J_{\varepsilon}))$ J_{τ}), d'').

For a form $\eta \in A^{p,q}(\Gamma, X, J_{\tau})$, we define a (p+q)-form η° on G by setting $\eta^{\circ} = J_{\tau}(s, x_0)^{-1}(\eta \circ \pi)_s$, where $s \in G$, $x_0 = \pi(e)$, e the identity of G. Then η° is induced by the projection $w: G \rightarrow \Gamma \backslash G$ from an S-valued (p+q)-form on $\Gamma \backslash G$, which we also denote by η° . The mapping $\eta \rightarrow \eta^{\circ}$ maps the module $A^{p,q}(\Gamma, X, J_z)$ bijectively onto the module $A_0^{p,q}(\Gamma, X, J_z)$ J_{τ}) consisting of all S-valued (p,q)-forms on $\Gamma \backslash G$ such that

(3.2)
$$\begin{cases} \theta(Z)\eta^{\circ} + \tau(Z)\eta^{\circ} = 0, \\ i(Z)\eta^{\circ} = 0 \end{cases}$$

for all $Z \in \mathfrak{k}^c$, and that if $\eta^{\circ}(X_1, ..., X_{p+q}) \neq 0$ with $X_i \in \mathfrak{n}^{\pm}$, then the number of X_i belonging to \mathfrak{n}^+ (resp. \mathfrak{n}^-) equals p (resp. q).

Proposition 3.1 ([16], p. 408). Every cohomology class of $H_{d''}^{p,q}(\Gamma, X, \Gamma, X)$

 J_{τ}) is represented by a unique harmonic (p,q)-form on X.

4. The complex of a Lie algebra

Let \mathfrak{g}^c be a complex Lie algebra and \mathfrak{t}^c a subalgebra of \mathfrak{g}^c . If F is a \mathfrak{g}^c -module, the action of \mathfrak{g}^c on F is denoted by $X \cdot f(X \in \mathfrak{g}^c, f \in F)$. Let $C(\mathfrak{g}^c; F) = \sum C^c(\mathfrak{g}^c; F), \quad n = 0, 1, 2, ...,$ be the standard complex of (\mathfrak{g}^c, F) . That is, $C^0(\mathfrak{g}^c; F) = F$ and $C^p(\mathfrak{g}^c; F)$ is the vector space of all p-linear alternating forms on \mathfrak{g}^c with values in F. On $C(\mathfrak{g}^c; F)$, we can define the operators $\theta(X)$ and i(X) of Lie derivation and interior product by $X \in \mathfrak{g}^c$ as follows:

$$\begin{array}{c} \theta(Z)f\!=\!Z\!\cdot\!f,\\ (4.1) \qquad (\theta(Z)\eta)\,(X_1,\,...,\,X_p)\!=\!Z\!\cdot\!\eta(X_1,\,...,\,X_p)\\ \qquad \qquad -\sum_{u=1}^p\eta(X_1,\,...,\,[Z,\,\,X_u],\,...,\,X_p),\\ \text{where } Z\!\!\in\!\!\mathfrak{g}^c,\,\,f\!\in\!\!C^\circ\,(\mathfrak{g}^c\,;\,F),\,\,\,\eta\!\in\!\!C^b(\mathfrak{g}^c\,;\,F)\,\,(p\!\geq\!1),\,\,\text{while}\\ \qquad \qquad i(Z)\eta\!=\!0\,\,\,\text{for}\,\,\,\eta\!\in\!\!C^0(\mathfrak{g}^c\,;\,F)\!=\!F,\\ \qquad \qquad (i(Z)\eta)\,(X_1,\,...,\,X_{p-1})\!=\!\eta(Z,\,\,X_1,\,...,\,\,X_{p-1}) \end{array}$$

for $Z \in \mathfrak{g}^c$, $\eta \in C^p(\mathfrak{g}^c; F)$ $(p \ge 1)$. Then there exists a unique operator d of degree 1 such that $i(Z)d+di(Z)=\theta(Z)$ for all $Z \in \mathfrak{g}^c$ and d is given by

$$\begin{array}{l} (d\eta) \, (X_1, \, ..., \, X_{p+1}) = \sum_{u=1}^{p+1} \, (-1)^{u+1} X_u \eta (X_1, \, \, ..., \hat{X}_u, \, \, ..., \, X_{p+1}) \\ + \sum_{u < v} \, (-1)^{u+v} \eta ([X_u, \, X_v], \, X_1, \, ..., \, \hat{X}_u, \, ..., \hat{X}_v, \, ..., \, X_{p+1}). \end{array}$$

Since $d^2=0$, the module $C(\mathfrak{g}^c;F)$ is a complex with coboundary operator d. We call this complex the cochain complex of \mathfrak{g}^c with coefficients in the \mathfrak{g}^c -module F. We denote by $H^p(\mathfrak{g}^c;F)$ the cohomology groups of this complex. Let $C^p(\mathfrak{g}^c,\mathfrak{f}^c;F)$ be the subspace of $C^p(\mathfrak{g}^c;F)$ consisting of all elements $\eta \in C^p(\mathfrak{g}^c;F)$ such that $\theta(X)\eta=i(X)\eta=0$ for all $X\in \mathfrak{f}^c$. The submodule $C(\mathfrak{g}^c,\mathfrak{f}^c;F)=\sum_p C^p(\mathfrak{g}^c,\mathfrak{f}^c;F)$ is stable under d and thus a subcomplex of $C(\mathfrak{g}^c;F)$. We shall this complex $C(\mathfrak{g}^c,\mathfrak{f}^c;F)$ the cochain complex of \mathfrak{g}^c relative to \mathfrak{f}^c with coefficients in F and the cohomology groups of this complex will be denoted by $H^p(\mathfrak{g}^c,\mathfrak{f}^c;F)$

From now on we assume that X=G/K is a symmetric bounded domain in \mathbb{C}^N . We will resume the notation in § 2. Let \mathcal{D} be the vector space of all complex valued C^{∞} -functions on $\Gamma \backslash G$ and let $\mathcal{F}=\mathcal{D} \otimes_{\mathbb{C}} F$, where F is a finite dimensional complex vector space. Then the \mathfrak{g}^c -module structure is given on \mathcal{F} by defining

$$m(Z)(f \otimes u) = Zf \otimes u + f \otimes \rho(Z)u$$

for all $Z \in \mathfrak{g}^c$, $f \in \mathcal{D}$ and $u \in F$. Here ρ is a representation of G^c in a complex vector space F. Let $C(\mathfrak{g}^c; F) = \sum_p C^p(\mathfrak{g}^c; \mathcal{F})$, and $\theta(Z)$ (resp. i(Z)) be the derivation (resp. the interior product) by Z in $C(\mathfrak{g}^c; \mathcal{F})$. Let $C(\mathfrak{g}^c, \mathfrak{f}^c; \mathcal{F})$ be the cochain complex of \mathfrak{g}^c relative to \mathfrak{f}^c with coefficients in \mathcal{F} . We can easily see that the complex $A_0(\Gamma, X, \rho)$ may be identified with the complex $C(\mathfrak{g}^c, \mathfrak{f}^c; \mathcal{F})$. Therefore the complex $A(\Gamma, X, \rho)$ will be identified with the complex $C(\mathfrak{g}^c, \mathfrak{f}^c; \mathcal{F})$ and so the cohomology groups $H^p(\Gamma, X, \rho)$ with the relative cohomology groups $H^p(\mathfrak{g}^c, \mathfrak{f}^c; \mathcal{F})$. Since $\mathfrak{m}^c = \mathfrak{n}^+ \oplus \mathfrak{n}^-$ (cf. § 2. B), the complex $C(\mathfrak{g}^c, \mathfrak{f}^c; \mathcal{F})$ is then bigraded; $C^{p,q}(\mathfrak{g}^c, \mathfrak{f}^c; \mathcal{F})$ consists of all $C^r(\mathfrak{g}^c, \mathfrak{f}^c; \mathcal{F})$ (r=p+q) such that if $(Y_1, ..., Y_r) \neq 0$ and $Y_i \in \mathfrak{n}^+$ for i=1,2,...,r, then the number of Y_i belonging to \mathfrak{n}^+ (resp. \mathfrak{n}^-) equals p (resp. q). We easily see that $C^{p,q}(\mathfrak{g}^c, \mathfrak{f}^c; \mathcal{F})$ may be identified with $A^{p,q}(\Gamma, X, \rho)$. Hence $H^{p,q}(\Gamma, X, \rho)$ can be identified with $H^{p,q}(\mathfrak{g}^c, \mathfrak{f}^c; \mathcal{F})$.

We now identify the module $C^{p, q}(\mathfrak{g}^c, \mathfrak{k}^e; \mathcal{F})$ with a subspace of $\mathcal{F} \otimes \mathfrak{n}^+ \otimes \mathfrak{n}^-$ in the following way. Let $\mathcal{V} = \{\alpha_1, ..., \alpha_N\}$ be the set of the positive complementary roots and let $\{X_{\alpha} : \alpha \in \mathcal{V}\}$ and $\{X_{\overline{\alpha}} : \alpha \in \mathcal{V}\}$ be the eigenvectors of roots as introduced in § 2. We put $X_i = X_{\alpha_i}$ and $X_i = X_{\overline{\alpha_i}}$ for $\alpha_i \in \mathcal{V}$. Since $\{X_i\}$ and $\{X_{\overline{i}}\}$ are bases of \mathfrak{n}^+ and \mathfrak{n}^- respectively and $(X_i, X_j) = \delta_{ij}$, \mathfrak{n}^+ (resp. \mathfrak{n}^-) may be identified with the dual of \mathfrak{n}^+ (resp. \mathfrak{n}^-). We define $l: C^{p, q}(\mathfrak{g}^c, \mathfrak{k}^c; \mathcal{F}) \longrightarrow \mathcal{F} \otimes \mathfrak{n}^+ \otimes \mathfrak{n}^-$ by setting

$$l(\eta) = \sum_{i_1 < \dots < i_p} \sum_{\bar{j}_1 < \dots < \bar{j}_q} \eta(X_{i_1}, \dots, X_{i_p}, X_{\bar{j}_1}, \dots, X_{\bar{j}_q})$$

$$\bigotimes \bigwedge_{i=1}^p X_{i_t} \bigotimes \bigwedge_{s=1}^q X_{\bar{j}_s}.$$

We simply write $\eta(X_{i_1}, ..., X_{i_p}, X_{\bar{j}_1}, ..., X_{\bar{j}_q}) = \eta_{i_1...i_p\bar{j}_1...\bar{j}_q}$

If we restrict the representation ρ of \mathfrak{g}^c onto the abelian subalgebra \mathfrak{n}^- , we may regard F as an \mathfrak{n}^- -module. Let $C(\mathfrak{n}^-, F) = \sum_q C^q(\mathfrak{n}^-, F)$ be the cochain complex of \mathfrak{n}^- with coefficients in F, and denote by d^- its coboundary operator. We identify $C(\mathfrak{n}^-, F) = \sum_q C^q(\mathfrak{n}^-, F)$ with $F \otimes \wedge \mathfrak{n}^+ = \sum_q F \otimes \wedge^q \mathfrak{n}^+$. Then we have

$$d^- = \sum_{k=1}^N \rho(X_k) \otimes \varepsilon(X_k),$$

where $\varepsilon(X)$ denotes the exterior multiplication by X. We define a positive definite hermitian inner product in $C(\mathfrak{n}^-, F)$ by

$$(c,c') = \sum_{q} \sum_{i_1 < \dots < i_q} (c_{\bar{i}_1} \dots_{\bar{i}_q}, c'_{\bar{i}_1} \dots_{\bar{i}_q})_F,$$
where $c = \sum_{q} \sum_{i_1 < \dots < i_q} c_{\bar{i}_1} \dots_{\bar{i}_q} \otimes (X_{i_1} \wedge \dots \wedge X_{i_q})$ and $c' = \sum_{q} \sum_{i_1 < \dots < i_q} c_{\bar{i}_1} \dots_{\bar{i}_q} \otimes (X_{i_1} \wedge \dots \wedge X_{i_q})$

 $c'_{i_1...i_q} \otimes (X_{i_1} \wedge ... \wedge X_{i_q})$ and $(,)_F$ is an admissible inner product on F (cf. [16], p. 375). Let δ^- be the adjoint operator of d^- with respect to this inner product and we define a Laplacian Δ^- by

$$\Delta^- = d^- \delta^- + \delta^- d^-.$$

We call a cocycle c of $C(n^-, F)$ harmonic if $\Delta^-c=0$. Every cohomology class in $H^q(n^-, F)$ is represented by a unique harmonic cocycle (cf. [17]).

5. Vanishing theorems for the cohomology groups $H^q(Y, E(J_r))$

First we recall Bott's results concerning the induced representations with respect to homogeneous vector bundles (cf. [3]). Suppose that $\rho \in \text{Hom }(K^c, GL(r; C))$ is an irreducible representation. The action of $g \in G^c$ on $E^u(\rho)$ as bundle isomorphism induces the linear automorphism on the C-module $H^q(X^u, E^u(\rho))$, which we will write $\rho^{(q)}(g)$. The representation $(\rho^{(q)}, H^q(X^u, E^u(\rho)))$ of G^c thus obtained is by definition the q-th induced representation of ρ . Let Λ be the highest weight of ρ . Let Λ be the highest weight of ρ . Let Λ be the highest weight of ρ . Then the induced representations $\rho^{(q)}(0 \le q \le N)$ are determined only by Λ :

Theorem 5.1 (Bott, [3]). If there exists a root $\alpha \in \Delta$ such that $(\Lambda + \frac{1}{2}\delta, \alpha) = 0$, then all $\rho^{(q)}$ $(0 \le q \le N)$ are the the 0-representations. Otherwise, there is one and only one induced representation $\rho^{(q)}$ which is irreducible and its highest weight Λ' is given by

$$\Lambda' + \frac{1}{2} \delta = \varepsilon (\Lambda + \frac{1}{2} \delta),$$

where ε is the element of the Weyl group which is the product of q reflections with respect to the simple root planes $\alpha_i=0$ and it is uniquely determined by the condition $(\Lambda'+\frac{1}{2}\delta,\alpha_i)>0$ $(1\leq i\leq l)$.

We define λ and μ in $\text{Hom}(\mathfrak{h}^c, \mathbb{C})$ as follows (cf. §2. D).

$$\Lambda = \lambda + \mu$$
, $\lambda = \sum_{\alpha_i \in S} m_i \Lambda_i$, $\mu = \sum_{\alpha_i \in S} m_j \Lambda_j$.

Ise (cf. [10]) obtained the following results using Bott's results ([3]).

THEOREM 5.2. i) Suppose that

$$(\Lambda - \mu - \delta_M, \alpha) > 0$$

for all complementary positive roots α . Then

$$H^{q}(Y, E(J_{\rho})) = 0$$
 for all $q < N$.

ii) Suppose that

$$(\Lambda + \delta, \alpha) < 0$$

for all complementary positive roots α . Then

$$H^{q}(Y, E(J_{o})) = 0$$
 for all $q > 0$.

Theorem 5.3. If there exists at least one complementary positive root α such that $(\Lambda, \alpha) > 0$, then

$$H^0(Y, E(J_a)) = 0.$$

Matsushima and Murakami(cf. [17]) showed the following:

Theorem 5.4. Let q_{ρ} be the number of roots $\alpha \in \mathbb{F}$ such that $(\Lambda, \alpha) > 0$. Then

$$H_{d^{\prime\prime}}^{0,q}(\Gamma,X,J_{\rho})=(0)$$
 for $q_{\rho} < q$.

If $(\Lambda, \alpha_i) > 0$, for i=1, ..., s, where $\alpha_1, ..., \alpha_s$ are the simple roots belonging to Ψ , then

$$H_{d^{p,q}}^{p,q}(\Gamma, X, J_{\rho}) = (0)$$
 for $q < N$.

Here I denotes the set of all positive complimentary roots.

THEOREM 5.5. Suppose that $(\Lambda, \alpha) > 0$ for all positive roots α of \mathfrak{g}^c . Then for all p+q=N,

$$H^{p,q}(\Gamma, X, \rho) = (0).$$

THEOREM 5.6. Let $\tilde{\Lambda}$ be the lowest weight of ρ . Let p_{ρ} be the number of roots α in Ψ such that $(\tilde{\Lambda}, \alpha) < 0$. Then the cohomology group $H^{p, 0}(\Gamma, X, \rho)$ vanishes for $p < p_{\rho}$.

REMARK 1. By a theorem of Hirzebruch [8], we have

$$\chi(Y) = p_a(Y)\chi(X^u),$$

where $p_a(Y)$ denotes the arithmetic genus of Y and $\chi(Y)$ (resp. $\chi(X_u)$) is the Euler characteristic of the complex manifold Y (resp. the compact form X^u of X). Moreover, Hirzebruch [7] gave the following formula

$$\chi(Y) = (-\pi)^{-N} d_N v(Y),$$

where X is irreducible, v(Y) denotes the total volume of Y with respect to the Bergman metric on X and

$$d_N = \frac{\prod_{\alpha \in \mathscr{F}} (\frac{1}{2}\delta, \alpha)}{(2(\delta_K, \gamma))^N} \chi(X^*).$$

Here γ denotes the unique simple root belonging to Ψ . It is known that $2(\delta_K, \gamma) = 1$. Thus we get

$$d_N = \prod_{\alpha \in F} \left(\frac{1}{2}\delta, \alpha\right) \chi(X^u).$$

Hence we obtain

$$p_a(Y) = (-\pi)^{-N} \prod_{\alpha \in \mathcal{F}} \left(\frac{1}{2}\delta, \alpha\right) v(Y).$$

By Weyl's formula,

$$r = \prod_{\alpha \geq 0} \frac{\left(\Lambda + \frac{1}{2}\delta, \alpha\right)}{\left(\frac{1}{2}\delta, \alpha\right)}.$$

By the way, we have(cf. [19])

$$\sum_{n=0}^{2N} (-1)^p \dim_C H^p(\Gamma, X, \rho) = r \chi(Y).$$

Theorem 5.5 yields the following

$$H^p(\Gamma, X, \rho) = (0)$$
 if $p \neq N$.

$$\dim_{\mathbf{C}} H^{N}(\Gamma, X, \rho) = (-\pi)^{-N} \frac{\prod_{\alpha \geq 0} \left(\Lambda + \frac{1}{2} \delta, \alpha \right)}{\prod_{\alpha \in \mathcal{Z}} \left(\frac{1}{2} \delta, \alpha \right)} \chi(X^{\mathbf{z}}) v(Y).$$

REMARK 2. If ρ is irreducible, we let $\rho = \rho_1 \oplus \cdots \oplus \rho_k$ denote the decomposition of ρ into irreducible components. We have $E(J_{\rho}) = E(J_{\rho_1}) \oplus \ldots \oplus E(J_{\rho_k})$ (\oplus denotes the Whitney sum). Hence we have

$$H^{q}(Y, E(J_{\rho})) = \sum_{i=1}^{k} H^{q}(Y, E(J_{\rho_{i}})), \quad 0 \leq q \leq N.$$

REMARK 3. It is known (cf. [10]) that

$$\chi(Y, E(J_{\rho})) = \chi(Y)\chi(X^{u}, E^{u}(\rho)).$$

If X is irreducible, $\chi(Y) = (-\pi)^{-N} d_N v(Y)$ (cf. Remark 1). $\chi(X^u, E^u(\rho))$ can be computed by Theorem 5.1. Finally we can compute $\chi(Y, E(J_\rho))$

Theorem A. Let q_{ρ} the number of roots $\alpha \in V$ such that $(\Lambda, \alpha) > 0$. Then

$$H^{q}(Y, E(J_{\rho})) = (0) \text{ for } q_{\rho} < q.$$

Moreover, if $(\Lambda, \alpha) > 0$ for every simple root α belonging to Ψ , then $H^{p,q}(Y, E(J_o)) = (0)$ for q > N.

Here $N=dim_C X$ and Ψ is the set of all positive complementary roots.

Proof. Let $\pi: X \to \Gamma \setminus X = Y$ be the projection of X onto Y and let $\varphi: X \times \mathbb{C}^r \longrightarrow (X \times \mathbb{C}^r) / \Gamma = E(J_{\varrho})$ be the canonical projection of $X \times \mathbb{C}^r$ onto $E(J_{\varrho})$. For each $x \in X$, let φ_x be the linear isomorphism of the typical fibre \mathbb{C}^r onto the fibre $E(J_{\varrho})_x$ of $E(J_{\varrho})$ over the point $z = \pi(x) \in Y$ defined by

$$\varphi_x(x) = \varphi(x,\xi), \ \xi \in C^r.$$

For each $\alpha \in A^{p,q}(\Gamma, X, J_{\rho})$, we define the (p,q)-form θ on Y with coefficients in $E(J_{\rho})$ as follows:

$$\theta_{z}(\pi Z_{1},...,\ \pi Z_{p},\ \pi W_{1},\ ...,\ \pi W_{q}) = \varphi_{x}\alpha_{x}(Z_{1},...,\ Z_{p},\ W_{1},\ ...,\ W_{q}),$$

where $x \in X$, $z = \pi(x)$, $Z_1, ..., Z_p \in T_x^+(X)$ and $W_1, ..., W_q \in T_x^-(X)$. The mapping $\alpha \to \theta$ yields an isomorphism of the bigraded module $A(\Gamma, X, J_\rho)$ onto the bigraded module $A(Y, (J_\rho)) = A(E(J_\rho)) = \sum_{p,q} A^{p,q}(E(J_\rho))$. Thus the cohomology $H_d^{p,q}(\Gamma, X, J_\rho)$ is isomorphic to the cohomology $H_d^{p,q}(Y, E(J_\rho))$. But the following exact sequence

$$0^0 \longrightarrow \mathcal{Q}^p(E(J_{\varrho})) \longrightarrow A^{p,\,0}(E(J_{\varrho})) \xrightarrow{d''} A^{p,\,1}(E(J_{\varrho})) \xrightarrow{d''} \cdots$$

is a fine resolution of the sheaf $Q^p(E(J_\rho))$ of thegerms of holomorphic p-forms with coefficients in $E(J_\rho)$. Thus we have (cf. [9], p36)

$$H^{q}(Y, \Omega^{p}(E(J_{\varrho}))) \cong H_{d^{p,q}}^{p,q}(Y, E(J_{\varrho}))$$
 (Dolbeault).

Hence by Theorem 5.4, we have for p=0

$$H^{q}(Y, E(J_{\rho})) = H^{0,q}_{d''}(Y, E(J_{\rho})) = H^{0,q}_{d''}(\Gamma, X, J_{\rho}) = (0)$$

for $q_{\rho} < q$. The second assertion follows immediately from Theorem 5.4 and the above argument. Q. E. D.

REMARK4. Let \mathfrak{g}^c be a simple Lie algebra over C and let γ be the unique simple root of \mathfrak{g}^c belonging to V. Let ad be the adjoint representation of \mathfrak{g}^c and $\rho = ad_+$ the representation of K^c in \mathfrak{n}^- . Then $H_d^{p,q}$ (Γ, X, J_ρ) is isomorphic to $H^q(Y, \Theta)$, where Θ is the tangent bundle of Y. It is known that $q_\rho < \frac{1}{(\gamma, \gamma)} - 1$. Hence the cohomology group H^q

$$(Y, \Theta)$$
 vanishes for $q < \frac{1}{(\gamma, \gamma)} - 1$ (cf. [4]).

6. Stability and Einstein condition of $E(J_{\rho})$ and $E^{*}(\rho)$

Before we study the stability of the vector bundle $E(J_{\rho})$ and $E^{*}(\rho)$, we first review the concept of stability and Hermitian-Einstein structure on vector bundles.

Let E be a holomorphic vector bundle of rank r over a compact Kähler manifold X. For a Hermitian metric h along the fibre of E, the Hermitian connection, $D: A^0(E) \longrightarrow A^1(E)$ is characterized by the properties

- (a) $d(h(s, t)) = h(Ds, t) + h(s, Dt), s, t \in A^0(E),$
- (b) D''s=d''s, where D'' denotes the (0,1)-component of D.

With respect to a local frame $\{e_{\alpha}\}$, the connection matrix $A = (A_{\alpha}^{\beta})$ $(1 \le \alpha, \beta \le n)$ is given by

$$A_{\alpha}^{\beta} = (d'h_{\alpha\bar{\tau}})h^{\gamma\bar{\beta}},$$

where $h_{\alpha\bar{\beta}} = h(e_{\alpha}, e_{\beta})$ and $(h^{\alpha\bar{\beta}}) = (h_{\alpha\bar{\beta}})^{-1}$.

The curvature $F = dA - A \wedge A$ of the Hermitian connection for a holomorphic vector bundle reduces to the (1, 1)-form with coefficients in $\operatorname{End}(E)$

$$F = d'' A = h^{-1}d'' d'h + h^{-1}d'h \wedge h^{-1}d''h$$

Conversely, the integrability theorem of Newlander-Nirenberg implies that a complex vector bundle admits a holomorphic structure if there exists a U(r) connection whose curvature is of type (1, 1).

Given a Kähler metric g on X, we define an operation tr_g : $A^{1,1}(\operatorname{End}(E)) \longrightarrow A^0(\operatorname{End}(E))$ as follows. For a section $F = (F_a^b) \in A^{1,1}(\operatorname{End}(E))$,

$$tr_{\sigma}F = (\sum_{\alpha} g^{j\bar{k}} F_{\alpha i\bar{k}}^{\beta})_{1 \leq \alpha, \beta \leq n} = \sum_{i,k} g^{j\bar{k}} F_{i\bar{k}},$$

where $F_{\alpha}^{\beta} = F_{\alpha j \, \bar{k}}^{\beta} dz^{j} \wedge d\bar{z}^{k}$ and $F_{j \, \bar{k}} = (F_{\alpha j \, \bar{k}}^{\beta})_{1 \leq \alpha, \beta \leq r}$.

DEFINITION 1. A holomorphic vector bundle of rank r over a compact Kähler manifold (X, g) is said to be *Hermitian-Einstein* if there exists a Hermitric h for which the Hermitian curvature F satisfies:

$$tr_g F = \mu I$$
,

where I is the identity endomorphism of E and μ is a constant.

Let \mathcal{F} be a torsion-free coherent sheaf over a compact Kähler manifold (X, g) of dimension n. Let ω be the Kähler form; it is a real positive closed (1, 1)-form on X. Let $c_1(\mathcal{F})$ be the first Chern class of \mathcal{F} , that is, the first Chern class of the determinant bundle $\det(\mathcal{F})$ over X. It is represented by a real closed (1, 1)-form on X. The degree of \mathcal{F} is defined to be

$$\deg(\mathcal{F}) = \int_{M} c_{1}(\mathcal{F}) \wedge \omega^{n-1}.$$

The degree/rank ratio or slope $\mu(\mathcal{F})$ is defined to be

$$\mu(\mathcal{F}) = \deg(\mathcal{F})/\operatorname{rank}(\mathcal{F}).$$

DEFINITION 2. A coherent sheaf \mathcal{F} over a compact Kähler manifold (X, g) is said to be *stable* (resp. *semi-stable*) if for every coherent sheaf \mathcal{F}' of lower rank, $\mu(\mathcal{F}') < \mu(\mathcal{F})$ (resp. \leq).

REMARKS. (i) \mathcal{F} is reflexive if and only if $\mathcal{F}^{**} = (\mathcal{F}^*)^* = \mathcal{F}$. A reflexive sheaf of rank one is a holomorphic line bundle.

(ii) A reflexive sheaf is locally free outside a subvariety of codimension greater than or equal to 2.

(iii) The dual \mathcal{F}^* of any coherent sheaf \mathcal{F} is reflexive.

(iv) I is (semi-) stable if and only if its dual I* is (semi-) stable.

Kobayashi (cf. [12]) obtained the following differential geometical criterion for stability.

THEOREM (Kobayashi). Let E be a holomorphic vector bundle over a compact Kähler manifold (X, g) with a Kähler form ω . If E admits an irreducible Hermitian-Einstein connection, then E is stable.

The converse of the above theorem was known as Kobayashi's conjecture. Donaldson proved Kobayashi's conjecture in the case X is an algebraic surface. Quite recently Uhlenbeck and Yau (cf. [24]) proved Kobayashi's conjecture in the case X is of higher dimension.

THEOREM (Uhlenbeck and Yau). A stable holomorphic vector bundle over a compact Kähler manifold admits a unique Hermitian-Einstein connection.

We are now in a position to prove the stability of the vector bundles

 $E''(\rho)$ and $E(J_{\rho})$. Ramanan ([22]), Umemura ([23]), and Kobayashi ([13]) indepently showed the following:

Theorem (Ramanan, Umemura and Kobayashi). Let G^c be a simply connected, semisimple complex Lie group and U a parabolic subgroup without simple factor. Let ρ be a finite dimensional irreducible holomorphic representation of U. Then the homogeneous vector bundle over $M=G^c/U$ defined by a representation ρ is H-stable for any ample line bundle H.

In § 2. C, we mentioned the homogeneous vector bundle $E^{u}(\rho)$ over X^{u} , the compact hermitian symmetric manifold which is dual to a bounded symmetric domain X=G/K in the sense of E. Cartan. X^{u} can be expressed as $X^{u}=G^{c}/U$ (see § 2. A). It is well-known that X^{u} is an algebraic manifold. Thus U is a parabolic subgroup of the simply connected semisimple complex Lie group G^{c} . Hence by the above theorem, $E^{u}(\rho)$ is stable. By Uhlenbeck and Yau, $E^{u}(\rho)$ admits a unique Hermitian-Einstein connection.

Let $(\ ,\)$ be the standard inner product in C^r . Since K^c is the complexification of a compact Lie group K, there exists a hermitian inner product $\langle\ ,\ \rangle$ in C^r which is invariant under $\rho(K^c)$. This defines canonically a hermitian metric in the fibres of $E(J_\rho)$ as follows. On the fibre $E(J_\rho)_z$ over $z \in Y$, we define

$$\langle [x,\xi], [x,\eta] \rangle_z = \langle \xi, \eta \rangle, x \in X, z = \pi(x), \xi, \eta \in C',$$

where $\pi: X \longrightarrow Y = \Gamma \setminus X$ is a projection and $[x, \xi]$ is the equivalence class of (x, ξ) in $X \times \mathbb{C}^r$, i.e., $[x, \xi] \in E(J_\rho)_z$. It is well defined. Indeed, for each $\gamma \in \Gamma$, $x \in X$, ξ , $\eta \in \mathbb{C}^r$,

$$\begin{split} & \langle [\gamma x, J_{\rho}(\gamma, x)\xi], \quad [\gamma x, J_{\rho}(\gamma, x)\eta] \rangle_{z} \\ = & \langle J_{\rho}(\gamma, x)\xi, J_{\rho}(\gamma, x)\eta \rangle \\ = & \langle \rho(J(\gamma, x))\xi, \rho(J(\gamma, x))\eta \rangle \\ = & \langle \xi, \eta \rangle \quad (\text{since } J(\gamma, x) \in K^{c}) \\ = & \langle [x, \xi], [x, \eta] \rangle_{z}. \end{split}$$

Thus this hermitian metric gives rise to a flat structure on $E(J_{\rho})$. Hence it admits an irreducible Hermitian-Einstein connection and so $E(J_{\rho})$ is stable.

Summarizing what we have proved, we state

THEOREM B. Let ρ be an irreducible holomorphic representation of K^c into GL(r; C). Then $E^u(\rho)$ is H-stable for any ample line bundle H

over X^* and $E(J_\rho)$ admits an irreducible flat Hermitian–Einstein connection.

Remark. Let X be a bounded symmetric domain in \mathbb{C}^N and let Γ be a neat arithmetic group on X. Then $Y = \Gamma \setminus X$ is a smooth quasi-projective algebraic variety. Consider the case $Y = \Gamma \setminus X$ is not compact. Given a representation ρ of K, we have then a holomorphic vector bundle $E(J_{\rho})$ over Y. We obtain a smooth projective compactification \overline{Y} by the toroidal compactification and thus get the corresponding vector bundle $\overline{E}(J_{\rho})$ over \overline{Y} . We refer to D. Mumford [20] for details. The following problem is still open.

PROBLEM. Is $\bar{E}(J_{\rho})$ stable? In other words, does $\bar{E}(J_{\rho})$ admit a Hermitian-Einstein connection?

Bibliography

- 1. A. Borel, On the curvature tensor of the hermitian symmetric manifolds, Ann. of Math. 71(1960), 508-521.
- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, Part I, Amer. J. Math. 80(1958), 459-538.
- R. Bott, Homogeneous vector bundles, Ann. of Math. vol. 66(1957), 203– 248.
- Calabi and E. Vesentini, On compact, locally symmetric Kähler manifolds, Ann. of Math. 71(1960), 427-507.
- Harish-Chandra, Representations of semisimple Lie groups on a Banach space VI, Amer. J. Math., 78(1956), 564-628.
- Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1978.
- F. Hirzebruch, Characteristic numbers of homogeneous domains, Seminars on Analytic Functions, vol. 2, Princeton, 1957, 92-104.
- 8. F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, Symposium internacional de Topologia Algebraica, Mexico, 1958, 129-144.
- 9. F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, 1978.
- 10. M. Ise, Generalized automorphic forms and certain holomorphic vector bundles, Amer. J. Math. 86(1964), 70-108.
- 11. S. Kobayashi and K. Nomizu, Foundation of Differential Geometry, John-Wiley & Sons, New York, 1969.
- 12. S. Kobayashi, Curvature and stability of vector bundles, Proc. Japan Acad. 58(1982), 158-162.

- S. Kobayashi, Homogeneous vector bundles and stability, Nagoya Math. J. 101(1986), 37-54.
- K. Kodaira, On Kähler varieties of restricted type, Ann. of Math. 60 (1954), 28-46.
- B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74(1961), 329-387.
- Y. Matsushima and S. Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. 78(1963), 365-416.
- Y. Matsushima and S. Murakami, On certain cohomology groups attached to hermitian symmetric spaces, Osaka J. Math. 2(1965), 1-35.
- 18. Y. Matsushima and S. Murakami, On certain cohomology groups attached to hermitian symmetric spaces (1), Osaka J. Math. 5 (1968), 223-241.
- 19. Y. Matsushima and G. Shimura, On the cohomology groups attached to certain vector valued differential formson the product of the upper half planes, Ann. of Math. 78(1963), 417-449.
- 20. D. Mumford, Hirzebruch's proportionality theorem in the noncompact case, Inven. Math. 42 (1977), 239-272.
- 21. C. Okonek, M. Schneider and H. Spindler, Vector bundles over complex projective spaces, Progress in Math. 3(1980), Birkhäuser.
- 22 S. Ramanan, Holomorphic vector bundles on homogeneous spaces, Topology 5 (1966), 159-177.
- Umemura, On a theorem of Ramanan, Nagoya Math. J. 69 (1978), 131-138.
- 24 K. Uhlenbeck and S.T. Yau, On the existence of Hermitian Yang-Mills connections in stable vector bundles, Comm. on Pure and Applied Math., vol. XXXIX S257-S293(1986).

Inha University
Incheon 160, Korea