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SOME BANACH ALGEBRAS OF YEH-FEYNMAN
INTEGRABLE FUNCTIONALS·

JAE MOON AHN, KUN Soo CHANG AND IL Y00

1. Introduction

Let I (s, t) be a real valued function on Q= [a, b] X Cc, d] and let
R=[a', b']X[c', d'] be a subrectangle of Q and .JR(J)=/(b',d')
- I(a', d') - I(b', c') + I(a', c'). A function I (s, t) is absolutely contin­
uous on Q (J E AC (Q) ) if the following two conditions are satisfied;
(i) given e>O, there exists 0>0 such that L: I.JR(J) I<e whenever d

REd

is a finite collection of pairwise non-overlapping subrectangles of Q with
L: m(R)<o, where m denotes Lehesgue measure on R2,
REd

(ii) the function 1(, ,d) and I(b, .) are absolutely continuous functions
of a single variable on [a, b] and[c, dJ, respectively.

Let C2==C2 (Q) be the Yeh-Wiener space on Q= [a, b] X Cc, dJ, that is,
the space of real valued continuous functions x(s, t) on Q such that x
(s, c) =x(a, t) =0 for all (s, t) EQ. Let D2==D2 (Q) he the class of

h ha 02X(S t)
elements xEC2 (Q) suc t t xEAC(Q) and os o~ E!.-z(Q), where

Lz==Lz(Q) is a real Hilhert space of Lehesgue measurable, real valued,
square integrable functionals on Q.

Let t4 he the a-algebra of subsets of Lz(Q) generated by the class of
sets of the form

{vEL2 : Lv(s, t)ifJ(s, t)dsdt<A}

where ifJELz and AER. The above a-algebra t4 is actually the Borel
class of Lz, that is, the a-algebra £ (Lz) generated by the norm open
subsets of L 2 [9]. Let M M(L2 (Q» he the class of complex measures
of finite variation defined on £(Lz). If f1.EM, we set 11J.lII=var J.l over
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~. Let BV(Q) be the class of all real valued functions which are of
bounded variation on Q [6J. A property that holds except on a scale­
invariant null set in C2 (Q) is said to hold scale-invariant almost every­
where (s-a. e. ). A function F is said to be scale-invariant measurable
provided F is defined on a scale-invariant measurable set and F(px) is
Yeh-Wiener measurable for every p>O. Two funetionals F and G on
C2 (Q) are said to be equal s-a. e. (F-;:::;G) if for each p>O, the equation
F(px) =G(px) holds for a. e. x in C2(Q). For a discussion of scale­
invariant measurability in C2 (Q) see [5].

The definitions of the Banach algebras S, S, S*, S with which we will
be concerned throughout involves the Paley-Wiener-Zygmund (P. W. Z. )
integral, a simple type of stochastic integral, for functions of two real
variables which we now define.

Let {~j} be a complete orthonormal (C. O. N.) set of real valued func­
tions of bounded variation on Q. Let vEL2 (Q) and

vn(s, t)= j~ (t v(p, q)q;j(p, q)dpdq)q;j(s, t).

Then the P. W. Z. integral is defined by the formula

f v(s, t)h(s, t) =limf vn(s, t)dx(s, t)
Q .~oo Q

for all xEC2 (Q) for which the limit exists, where the integral

50 vn(s, t)dx(s, t) means the Riemann-Stieltjes integral. For a nice

discussion of the n-dimensional Riemann-Stieltjes integrals see [13J.
Now we introduce the binary quadratic approximation, Let m be a

non-negative integer and consider the division of Q= [a, b] X Cc, d] into
subreetangles by means of the partition a(m);

a=sO<sl<...<s2",=b, C=tO<tl<.,.<t2",=d,

where s'=a+ j (b-a) tL=C+ k(d-c) for J' k=O 1 2m; 2"" I< 2'" , " ...,.

For each xEC2 (Q), we define the mth binary quadratic approximation
Xq(m) by formula

( t) x(sj, t,,) -X(Sj-h tfr.) -x(Sj, tfr.-l) +X(Sj-h ti-l) ( )
Xq(m) S, S-Sj 1

(Sj-Sj) (t,,-t"_I) -

(t-t"-I) + X(Sj, t"-I) -X(Sj_h t"-I) (S-Sj-l) +
Sj-Sj-l

X(Sj-h t,,) -X(Sj_h t"_I) (t-t ) + (. t )
"-1 X S;-1o "-1

t,,-ti-l
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for. (s, t) E [Sj-I. SjJ X [tk-h tkJ for j, k=l, 2, ... , 2m.

Using the binary quadratic approximation, we now make a definition
which parallels Cameron and Storvick's definition [3J of continuity with
respect to binary polygonal approximation.

DEFINITION. A functional F on C2 (Q) is said to be continuous at x

with respect to binary quadratic approximation if tim F(xf/(m)) =F(x),
m~oo

where Xn(m) is the mth binary quadratic approximation of x, and "tim"

means that m approaches 00 so that Ila(m) 11-0.

We note that if F is continuous on C2 (Q) then it is certainly con­
tinuous with respect to binary quadratic approximation at every x in
C2(Q)

The purpose of this paper is to present three Banach algebras S, S*,
and S' of functionals on Yeh-Wiener space which are similar to those
on Wiener space that Cameron and Storvick have treated in [2J and
[3J. Furthermore, we examine the above Banach algebras on Yeh­
Wiener space, and prove how they are related to the Banach algebra S
in [6J. Finally we show that S* is intermediate between S' and S nS,
and it is closely related to S.

2. Preliminaries and Some simple results

In this section, we give definitions for the spaces of Yeh-Wiener
functionals S, S, S*, S', and present some propositions which will be used
in the final section.

DEFINITION 2. 1. Let S=::.S(~) be the space of functionals F expressible
in the form

(2.1) F(x)=f exp {iJ v(s,t)Jx(s,t)}dfl-(v)
L2 Q

for s-a. e. x in C2, where fl- E M.

The following proposition is a well known result. We will state it
without proof [4J.

PROPOSITION 2.1. If FES, there is" a unique measure fl-EM such that

F(x) =f Lexp {if v(s, t)Jx(s, t)} dfl-(v)
L2. Q
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for a. e. X in C2. Further this equation provides a one-to-one correspon­
dence between M and S. Finally if F, GES and F(x) =G(x) for a. e.
x, then F(x) =G(x) for s-a. e. x in C2.

DEFINITION 2.2. The functional F defined on a subset of C2 (Q) that
contains D2 (Q) is said to be an element of S S(~) if there exists a
measure pEM such that for xED2(Q),

(2.2) F(x) =J exp {iJ v(s, t) a2~(~ t) dsdt} df.l(v).
L2 Q s t

NOTATION. If F(x) =G(x) for s-a. e. x in C2(Q) and for every x
in D2 (Q), we shall write F2iG.

From Theorem 4 of [11J, we have that if vE~(Q) and xED2(Q)
then

J - -J a2x(s, t)(2.3) Q v(s, t)dx(s, t) - Q v(s, t) os at dsdt.

Thus if vE~(Q) and {cPlI}' {<P1I} are two C. o. N. sequences of
BV(Q), then

1~.IJ 14>·'SQ v(s, t)dx(s, t) = Q v(s, t)dx(s, t)

for xED2 (Q) and hence

f f~.}J J f 11>n
1J -exp {i v(s,t) x(s,t)}dp(v)~ exp{i v(s, t)dx(s, t)}

L2 Q L2 Q
dp(v).

We now introduce the class of functionals S*.

DEFINITION 2. 3. Let s*= S* (~) be the space of functionals F
expressible in the form

(2.4) F(x) =f exp {iJ v(s, t)dx(s, t)dp(v)
L2 Q

for s-a. e. xEC2 (Q) and for every xED2 (Q), where pEM.

Let BV'===BV'(Q) be the class of real valued, right-upper continuous
functions (in the sense that Hm v(s, t) =v(s', t') for s>/, t>t') of

I-S'.t-t'

bounded variation on Q that vanish at(., d) and (b,.). Note that the
Borel class t€(BV') of BV' is just t€(~) nBV'. Let M'=M'(BV') be
the class of complex measures of finite variation defined on t€(BV').
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If f1.EM', we setllf1.lI=var f1. over BV'.

DEFINITION 2.4. Let 8'=8' (BV') be the space of funetionals of the
form

(2.5) F(x)=J exp {iJ v(s,t)dx(s,t)}dp.(v)
BV' Q

for xEC2(Q), where p.EM'

The following proposition is a well known result. We will state it
without proof [10J.

PROPOSITION 2.2. Let VE~(Q). If

(2.6) F(x) = Lv(s, t)Jx(s, t)

then for s-a. e. xEC2 (Q) and everywhere xED2 (Q), F(x) is continuous
with respect to binary quadratic approximation.

PROPOSITION 2.3. If FE8*, then F(x) is continuous with respect to
binary quadratic approximation for s-a. e. xEC2 (Q) and everywhere
xED2 (Q).

Proof. Since FES*, there exists p.EM such that (2.4) holds. Then
substituting Xq(m) for x, we have

F(xq(m)) =J exp {iJ v(s, t)~q(m)(S, t)}-dp.(v).
L2 Q

By Proposition 2. 2, the above exponential approaches the exponential in
(2.4) as m---+ oo , so by the bounded convergence theorem and because
the exponential is measurable in (v, x) on ~XC2' we have F(xq(m))---+
F(x) for s-a. e. xEC2 (Q) and all xED2(Q).

COROLLARY 2.1. If F, GES* and F(x) =G(x) for all binary quadratic
functions in C2 (Q), then Ff:1G.

COROLLARY 2.2. If FES and F is defined only on D2 (Q), then there
exists an extension F*ES* such that F*(x)=F(x) on D 2(Q). Moreover
F* is essentially unique in the sense that if F*, F**ES* and F*(x)=F**
(x) =F(x) on D2 (Q), then F*f:1F**. Finally if p. is associated with F
by (2.2), it follows that p. is associated with F* by (2.4).

REMARK 1. Let v E BV (Q) and let x E D2 (Q). Then the following
Riemann-Stieltjes integral and Lebesgue integral are equal [8J.
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IQ v(s, t)dx(s, t) = IQ v(s, t) ()2:s(~/) dsdt.

3. The Spaces of Funetionals S, S*, and S'

The purpose of this section is to show that the spaces of functionals
S, S*, and S' are Banach algegras with the proper norm and to establish
their relationships. The proofs of PropOsitions 3.2, 3.6 and 3.8 are
identical with those of Theorems 3. 2 and 3. 3 of [4J. We will skip
those proofs.

PROPOSITION 3.1. If FES* and F is given by (2.4) with pEM, it
follows that p. is uniquely determined by F.

Proof. Since FeS*cS, f..tEM is uniquely determined by (2.1). But
since FES*, (2.4) holds for pEM with the stronger relation §g and
thus p is uniquely determined.

We have known that S is a Banach algebra with the norm 11 FII = 11 p.1I
[4J. And so for FES*, we define IIFII=IIp.II.

PROPOSITION 3. 2, The space S* is a Banach algebra.

PROPOSITION 3.3. S' cS.

Proof. Let FES'. Then there exists p' EM' such that (2.5) holds.
Since v E B V', v E B V, so B V' C L2• Let E E J?,(~) and E' = E nB V'.
Then E' EtS(BV'). Let us define a measure on ~(Q) by

(3.1) p(E)=p'(EnBV') for all EEJ?,(~).

Now F(x)=S exp {if v(s,t)dx(s,t)}dp.'(v)
BV' Q

=f exp {if v(s, t)dx(s, t)} dp.' (v)
BV' Q

=5 exp {if v(s, t)dx(s, t)} dp.(v)
L2 Q

for s-a. e. xEC2 (Q).

PROPOSITION 3.4. If FeS' and F is given by (2.5) with p.' E M', it
follows that p.' is uniquely determined by F.

Proof. This follows from the Proposition 2.1.

PROPOSITION 3.5. If FES' and p' is a measure in M' related to F
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by (2.5), then IIFII=llp'lI.

Proof. By definition, IlFII = IIpll where p is the unique element of M
related to F by (2.1). Then it follows that /l(E)=p.'(EnBV') for EE
tI3(~). Now

var p=var p.',
L, BY'

so 1lp.1I=1Ip.'II.

PROPOSITION 3.6. The space S' is a Banach algebra.

PROPOSITION 3.7. If FE$ and F is given by (2.2) with p.EM. it
follows that p. is uniquely determined by F on Dz•

Proof. Let Fl be the restriction of F to Dz. Then Fl E$. By
Corollary 2.2, there exists an essentially unique F*ES* such that
F l (x) =F* (x) on Dz. Since the measure defining F* is unique, the
measure p.EM satisfying (2.2) is unique.

REMARK 2. If FE$, we define IIFII=lIpll, where p is associated with
F by (2.2) for xEDz(Q). If follows from Proposition 3.7 that for
FE$ the measure p is uniquely determined by F and it is clear that
IIFII is a norm for S if we identify elements of $ which are equal on
D2 (Q).

PROPOSITION 3. 8. The space $ is a Banach algebra, where elements of
$ that are equal on Dz are considered equivalent.

Now we present our main theorem.

THEOREM. S';;.s*;;.sn$.

Proo f. For FE S' , there exists p.' E M' such that

F(x)=J exp {if v(s,t)dx(s,t)}dp.'(v)
BV' Q

for x E Cz(Q) . Just as in the proof of Proposition 3. 3. we define a
measure Jl on ~(Q) as follows: Let p(E)=p'(EnBV') for EEtI3(~).

Let xEDz(Q). Then by (2.3) and Remark 1, we have for vEBV(Q).

Lv(s,t)d'x(s,t)=fQ v(s,t) OZ~s(~/) dsdt=Lv(s,t)dx(s,t).

Then for xEDz(Q),
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F(x) =f exp {if Ve"~ t)dx(s, t)} df.l' (v)
BV' Q=5 exp {if Ve"~ t) a2;~, t) dsdt} dJ.l'(v)
B~ Q s t

=f eXP{iJ v(s,t) a2;(~,t) dsdt}df.l(v)
£2 Q s t

=5 exp {iJ V(s, t)dx(s, t)}df.l(v).
£2 Q

By Proposition 3. 3, the first and last members ab::>ve are equal for s-a. e.
xEC2 (Q), so that S'eS* and s*csng by definition.

We now present an example which shows S* =1= S nS Let

() [
0 if xED2

(3.2) F x =
1 if xEC2-D2•

Then since D2 is a scale-invariant null set, we have F';:::, 1, and hence
FES. Clearly F is also an element of g. By Proposition 2.3, if F
were an element of S*, it would be continuous with respect to binary
quadratic approximation s-a. e. on C2 (Q), and it would be therefore zero
s-a. e. on C2(Q) , since it is zero for all elements of D2 (Q). This
contradicts the fact that it is unity s-a. e. and so Fr$ S* and hence
s*=I=sns.

Now finally, we shall show that S' *S*. First of all, given f.l' in
M', we define If.l'=f.l as follows; f.l(E) =f.l'(En BV') where EER,(~).

Then it is easy to check that I imbeds M' in M and that the question
as to whether S' is a proper subset of S is equivalent to the question as
to IM' is a proper subset of M [9J. Thus we have that M' =1= M, and
if f.l is the measure generated by the unit mass concentrated in an
element voE~-BV', then f.lEM-M'. Let

F(x) =5 exp {iJ Ve"~ t)dx(s, t)df.l(v)
£2 Q

=exp {iJQvo(s, t)dx(s, t)} .

Then we have FES*, but FfiS'.

PROPOSITION 3.9. If F, GES* and F(x) =G(x) a. e. on C2 (Q) , then
Fr;gG.

Proof. By definition of S*, there exist f.lb f.l2EM such that

(3.3) F(x) §;f exp {if Ve"~ t)dx(s, t)df.ll(V)
L2 Q



Some Banach algebras of Yeh-Feynman integrable functionals 265

and

(3.4) G(x) ~ f L2 exp {iJv(s, t)Jx(s, t)} dpz(v).

Thus F(x) is almost everywhere equal to both the right hand sides of
(3.3) and (3.4). Since FES*CS, if follows from Proposition 2.1 that
Pi and pz are identical. Thus F~G follows from (3.3) and (3.4).

REMARK 3. If FES*, then the values of F on Dz(Q) determine the
values of F s-a. e. on Cz(Q); and conversely, the values of F s-a. e.
on Cz(Q) determine the values of F everywhere on Dz(Q).

PROPOSITION 3. 10. If FES, then there exists F*ES* such that F*::::;F
on Cz(Q).

Proof. By definition of S, there exists a unique pEM such that

F(x):::::f exp {iJ v(s,t)Jx(s,t)}dp(v)
L2 Q

Let

F*(x)=f exp {is v(s,t)Jx(s,t)}dp(v) .
. £2 Q

Then F* is defined whenever the integral exists, and so F* exists
s-a. e. on Cz(Q) anq. ever:;where on Dz(Q). Thus F* E S*and F*::::: F.
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