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SASAKIAN SUBMANIFOLDS OF CODIMENSION 2 IN A
SASAKIAN MANIFOLD WITH HARMONIC CURVATURE

r

Yeong-Wu Cuoe ano Hyung-Cue Nam

0. Introduction

Let N be a Sasakian manifold with the structure tensor (F,G,v). If
M is a submanifold immersed in N, M is said to be an fnvariant sub-
manifold provided that the tangent space to M at each point of the
submanifold is invariant under the action F. It is well known that an
invariant submanifold tangent to the structure vector field v of a Sasakian
manifold is also a Sasakian manifold. The study of invariant C-Einstein
submanifolds of codimension 2 in a Sasakian manifold, which is called
a problem of Nomizu-Smyth, were made by Endo [3], Kon [8], Pak
and Oh [10], Yano and Ishihara [13] and so on. One of which, done
by Yano and Ishihara [13], asserts that any invariant Einstein subma-
nifold of codimension 2 immersed in a Sasakian manifold of constant
curvature is totally geodesic. However, Pak and Oh [10] obtained the
same result replacing the Sasakian manifold of constant curvature by
that with vanishing C-Bochner curvature tensor.

The main purpose of the present paper is to investigate invariant sub-
manifolds of codimension 2 immersed in an Einstein Sasakian manifold.

1. Invariant submanifolds of codimension 2 in a Sasakian
manifold

Let N be a (2n+1)-dimensional Sasakian manifold with Sasakian
structure (F, G, v) covered by a system of coordinate neighborhoods {U
; 4}, where here and in the sequel the indices A, B, C... run over the
range {1,2,...,22+1}. We denote by Fz4, Gz, and v4 components of
the (1, 1)—tensor F, of the Riemannian metric tensor G and of the
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structure vector field v respectively. We then have
(1. 1) FCBFBA= —5CA+‘UC‘DA, FCA'UC=0, 'UAFCA=0,
GpavPvi=1, FpBFAGpa=Gpc—uprc,
where vo=G¢zvE. Denoting by V4 the operator of the covariant differe-
ntiation with respect to the fundamental tensor G, we have

(1.2) Vevg=Fep, VeFpp=—Gcpvs+Gepve.
From the last equation of (1.2) and the Ricci formula for Fcp, we find
(1.3) RpcpaFs?=—RpceFap—GcpFpe+GpeFee
+GceFps—GpeFes,
where Rpcp? denotes components of the Riemannian curvature tensor of
N. Moreover, we have

(1. 4) Rp gvA=2nvp,
(L.5) RpeFpE+ RppFpE=0),
Rpa being components of the Ricci tensor of N.

Let M be an invariant submanifold of codimension 2 in N covered by
a system of coordinate neighborhoods {V ; %, where here and in the
sequel the indices A, 4,7, ... run over the range {1,2,...,2z—1}. And
let M be immersed isometrically in N by the immersion i : M—N. We
represent the immersion i locally by z4=x4(y*) and put B;=(B;4) are
(2r-1)-linearly independent local tangent vector fields of M. We denote
by C4 and D4 two mutually orthogonal unit normals to M. Then the
induced Riemannian metric g;; on M is given by

(1.6) 2;i=GcpB;*B;®
because the immersion is isometric.

Denoting by 7; the operator of van der Waerden-Botolotti covariant
differentiation formed with g;;, The equations of Gauss and Weingarten
for M are respectively obtained:

V;iBA=h; CA+k;; DA,
(1.7) V,CA=—h;/B,A+1,DA,
V;DA=—k;BA—1,CA,
where hj"=h;,g’r, ki"=k;;gi" are components of the second fundamental
tensors, /; those of the third fundamental tensor and g/ being contrav-

ariant components of g;;. As to the transformations of B;4, C4and D4
by Fp* we have respectively equations of the form
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(1. 8) FgAB;B=f/B;4,

(1.9 FpaCB=DA, FgADB=—CA,
where we have put f;;=G(FB;, B;). The structure vector field v is also
represented by

(1. 10) vA=pi B4,
where p;=G(B;, v), p' being contravariant components of p. From the
last three equations, it follows that
fjrfrh: _5jh_+.pjph, Prfrh:O’
g fifi=gji—pitin Por=1.
Differentiating (1. 8) covariantly along N and making use of (1.7),
(1. 8) and (1.9), we have

(1.12) Vipi=fiin Vifit=—g;iph+0;*p..
Then it is shown that the set (f, g, p) defines a Sasakian structure
([12, 14]). Similarly differentiating (1. 10) covariantly and using (1.7)
and (1.11), we have

(1.11)

(1.13) hii=ki [, k= —hj fi,
which imply
(1. 14) bjrpr:Oa kerr:‘O,
hlt:ktt:O.

Thus, the submanifold of codimension 2 M is minimal.

From (1.13) we can easily see that

(1.15) kj i+ ki him==0,
(1. 16) kjt'z:hjiz’ ko= h,,
(1.17) ky=h3=0,

where we have defined h;#=h; b7, kj*=kjki, hy=h;;}/' and hy=hj,hy
R,

On the other hand, Gauss, Codazzi and Ricci equations for M are
given respectively by

(1.18)  RpcpaBiP BiB2ByA = Ruyjin— (hunhji— haihjn—+ kuik;i—kukjp),

(1.19)  RpcpaBiPB;CB;BCA=Vthj;—V jhs;— (Likji—1iks),

(1. 20) RpcpaBiPB;CBEDA=V 1 1; —V jly+ hp.k;"— hj by,

(1.21)  RpcaBiPB;CCEDA=Vil; =V jli+ hiki"— hj ki,
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where R;j; denote covariant components of the Riemannian curvature
tensor of M.

Putting Az;=Vil;—V;l; and utilizing (1.15), the equation (1.21)
reduces to

1. 22) RDCEABkDBjCCBDA——:-Akj +2hk,.kj".

2. Sasakian submanifolds of codimension 2
Let M be an invariant submanifold of codimension 2 of a Sasakian
manifold N. Transvecting (1.18) by g/¢ and using (1.16), we find
RpaBi®ByA— RpcpaBi? By (CCCE+ DCDE) = Ry, +2hy by,
where R;; denote components of the Ricci tensor of M. Transvecting
fi* we get
(2. 1) Ryfi"—2haki"=Rp aByPf;* B,A— RpcpaF g B;EBP (CCCB+- DCDPF)
On the other hand, from (1.3) we have
RpcpaFp By’ B;E(CCCB+ DCD?)
=RpceaFp*BiPB;fCCCB+ RpcpaFpA By B;EDC DB+ 2F g, BiP B;E.
Thus, using (1.8), (1.9) and (1.22), it follows that
RpcpaFsAByPB;E (CCCB+ DEDB) = Ag;+ 2hi b — 2 ;.
Therefore (2.1) turns out to be
RpaBiPfi"B,A= Ry, f ;" + Arj—2f y;.
Transvecting f7 and taking account of (1.11), we get
RpaBiP(—07+pit") B/A= Ry, (—07+pip") + Apef 7 —2(gui— tapi)
which togther with (1.4) and (1. 10) yields
RpaB;PBA=R;i+2g;i— Aj.f7.

Lemma 1. Let N be a (2n-+1)-dimensional Sasakian manifold with

harmonic curvature.
Proof. Differentiating (1.4) covariantly along N and using (1.1),
we find
(FcRpa) v+ RpaFe?=2nFcp.

Since N has harmonic curvature, namely, VeRpa—V pRca=0, it follows
that

RpaFc—RepFpt=4nFcp,
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which together with (1.5) yields

2.3) RpaFcA=2nFcp.
Transvecting (2.3) by Fz¢ and making use of (1.1) and (1.4), we
see that N is Einstein. This completes the proof.

Since M is also Sasakian manifold, we see that

(2.4) fi"Ri,=f"*Ry;uu+ (2n—3) fj:
Thus, if M is of harmonic curvature, then, by Lemma 1, M is Einst-
ein, i.e. R;;=2(n—1)g;;. Therefore (2.4) turns out to be

fllejik:‘fji-
Transvecting (1. 22) with p/ and using (1. 10) and (1. 14), we find
RpcpaBiPvCCBDA=Ay;pd,

However, we have Rpepav®=vp,Ges—vcGpg, which is a direct conse-

quence of (1.2), we get
RpapcBiPvCCBDA=().

Therefore we have

(2.6) Aj,p7=0.

Lemma 2. Let M be an invariant submanifold of codimension 2 in a
Sasakian manifold. Then we have

2.7 VW ihiy= WV k) f*+ (Cn—3) k;;

Proof. From (1.14), we have respectively
ki) o+ kinfir =0, Tihj)p -+ fir=0

because of (1.12). By using (1.13), it follows that

(2.8 Vikjr) pr=—hy;s (Vihj.)p"=k;;
Differentating (1. 13) covariantly along M and taking account of (1.12),
we find respectively

2.9 Vihji= ki ) f +Hhinps, Vikji=— Tihj) i —hjps
Differentiating (2.9) covariantly and using (1. 12) we obtain

ViWkji= W Wiki ) fi+ Tikjn) (—guip™+ giop:) + Vikje) pi+kai fris
or, making use of (2.8),
Vi ihji= Vil ki) fi+ guias + Vi) pi+ (V ikn) pitluj fre

If we transvect g/ and use (2.8), then we obtain the equation (2.7)
which completes the proof.
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3. Invariant submanifolds of an Einstein manifold
Suppose that N is a (22+1)-dimensional Einstein manifold. Then we
have Rp,=2nGp,. It means that
RpaB;?BA=2ng .
Thus (2.2) reduces to
3.1) R;;=2(n—1) gjit+ Ajf{.
Substituting (3.1) into (2.4) and using (2.6), we find
fUR =S ji+Ajir
By the properties of the Sasakian structure, it follows that
SRyji=—2(fji+4;0)-
On the other hand, from the Ricci identity for %;;, we obtain
ViV ikii—V W kji= — Rirjrki — Rygick;'
Transvecting the above equation with f% and taking account of (1.13)
and (3.2), it reduces to

(3.3 STk i=2h+ Aj k4 Ak
Thus, it follows that
3.4) hif 7 7 gk ;i= 2Ry + Aj kR

ProrosiTioN 3. Let N be a Sasakian with harmonic curvature. If M is
an invariant submanifold of codimension 2 in N, then the following asse-
rtions are true:

(1) M is an Einstein manifold if and only if the normal connection of
M is flat.

(2) M is C~Einstein manifold if and only if Aj;;=—bf; for some
constant b.

Proof. (1) From Lemma 1 we have (3.1). Thus it is easily seen that
R;;=2(n—1)gj; is equivalent to A;;=0 by taking account of (2.6).

(2) “If part” is evidently true because of (3.1).

Suppose that M is of C-Einstein, ie. Rj=ag;;+bp;p;. Then from
(3.1) we have

—b(gji—pipi) = Ajf1.
Differentiating the above equation covariantly and (2.6), we get
b(frjtSriti) = WiA;) fi -+ Ajsp.
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Transvecting with p, we find bfs;=Aj;. Thus we complete the proof.

TueoreM 4. Let N be a (2n+1)-dimensional Sasakian manifold with
harmonic curvature and M be a compact C-Einstein submanifold of codi-
mension 2 in N. If the second fundamental form is of Codazzi type and
the stalar curvature of M is non—negative, then M is totally geodesic.
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Proof. Since hj; is of Codazzi type, Lemma 2 tells us that

(3 5) Ahj,': (Vijkji)fjk'i‘ (271—3)hj,',
where 4=V ; denotes the operator of Laplacian, which and (3.4) imply
(3 6) hji/jlljiz (2ﬂ—l)h2+Aj,k,"hji.

Since M is C-Einstein manifold, by Proposition 3, we sce that A;,=
—bf;. Thus (3.6) reduces to
3.7 hiidh;;= 2n—1—b)h,
because of (1.13). From (3.1) we have
R=2(n—1)(2n—1-8)=0

because the scalar curvature of M is non-negative is assumed. Therefore
(3.7) means

R

h-“dhj,‘ - mhz
Therefore we have the following identity:
1 2>

Since M is compact, we see, accordlng to the Green’s Theorem, that
hy=ky=0 because of (3.5). Thus M is totally geodesic because of (1.
16).

Now, we prove the following theorem:

Tueorem 5. Let M be a compact invariant submanifold of codimension
2 with harmonic curvature in a Sasakian manifold. If the second fundam-
ental form is of Codazzi type, then M is totally geodesic.

Proof. Since M is of also a Sasakian manifold with harmonic curva-
ture, by Lemma 1, it follows that M is Einstein, that is,

Rji=2(n_1)gji-
Thus (2.5) is valid. Hence (3.3) becomes
ST ikji=2h;i
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Therefore (3.5) reduces to
(3. 9) Ahj,'= (211."“1) hji

because h;; is of Codazzi type. M being compact, combining (3. 8) and
(3.9), it is clear that k;;=k;;=0. Thus M is totally geodesic.

Remarg 1. If we replace the compactness condition in Theorem 4 and
Theorem 5 by hy=constant. Then we obtain the same result that M is
totally geodesic.

Remark 2. Let N be a Sasakian space form, then it is clear that
hy=constant and k;; is of Codazzi type. Thus it follows that if M is an
invariant submanifold of codimension 2 in a Sasakian space form N(c),
then M is totally geodesic (cf. [10]).
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