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SASAKIAN SUBMANIFOLDS OF CODIMENSION 2 IN A
SASAKIAN MANIFOLD WITH HARMONIC CURVATURE

YEONG-WU CHOE AND HYUNG-CHE NAM

O. Introduction

Let N be a Sasakian manifold with the structure tensor (F, G, v). 1£
M is a submanifold immersed in N, M is said to be an invariant sub­
manifold provided that the tangent space to M at each point of the
submanifold is invariant under the action F. It is well known that an
invariant submanifold tangent to the structure vector field v of a Sasakian
manifold is also a Sasakian manifold. The study of invariant C-Einstein
submanifolds of codimension 2 in a Sasakian manifold, which is called
a problem of Nomizu-Smyth, were made by Endo [3J, Kon [8J, Pak
and Oh [lOJ, Yano and Ishihara [13J and so on. One of which, done
by Yano and Ishihara [13J, asserts that any invariant Einstein subma­
nifold of codimension 2 immersed in a Sasakian manifold of constant
curvature is totally geodesic. However, Pak and Oh [lOJ obtained the
same result replacing the Sasakian manifold of constant curvature by
that with vanishing C-Bochner curvature tensor.

The main purpose of the present paper is to investigate invariant sub­
manifolds of codimension 2 immersed in an Einstein Sasakian manifold.

1. Invariant submanifolds of codimension 2 in a Sasakian
manifold

Let N be a (2n+ l)-dimensional Sasakian manifold with Sasakian
structure (F, G, v) covered by a system of coordinate neighborhoods {U
; x A}, where here and in the sequel the indices A, B, C... run over the

range {l,2, ..., 2n+1}. We denote by FBA, GBA and vA components of
the (1, 1) -tensor F, of the Riemannian metric tensor G and of the

Received May 19, 1987.
This work is supported by KOSEF research grant.

- 247-



248 Yeong-Wu Choe and Hyung-ehe Nam

structure vector field v respectively. We then have

(1. I) FeBFBA= -oCA+vcvA, FCAvC=O, vAFeA=O,

GBAVBVA= 1, FDBFeAGBA=GDC-vDvC'

where ve=GcEVE• Denoting by l7A the operator of the covariant differe­
ntiation with respect to the fundamental tensor GBA, we have

(1. 2) r'cVB=FcB, l7CFEB= -GCEVB+GCBVE·

From the last equation of (1.2) and the Ricci formula for FeB, we find

(1. 3) RDCBAFEA=-RDCEAFAB-GCBFDE+GDBFcE
+GcEFDB-GDEFcB,

where RDCBA denotes components of the Riemannian curvature tensor of
N. Moreover, we have

(1. 4) R DAvA=2nvD'

(1. 5) RDEFBE+ RBEFDE= 0,

RDA being components of the Ricci tensor of N.

Let M be an invariant submanifold of codimension 2 in N covered by
a system of coordinate neighborhoods {V; yh}, where here and in the
sequel the indices h, i, j, ... run over the range {I, 2, ..., 2n-I}. And
let M be immersed isometrically in N by the immersion i: M~N. We
represent the immersion i locally by xA=xA(yh) and put Bj = (BjA) are
(2n-I)-linearly independent local tangent vector fields of M. We denote
by CA and DA two mutually orthogonal unit normals to M. Then the
induced Riemannian metric gji on M is given by

(1. 6) gj;=GeBB/Bl

because the immersion is isometric.
Denoting by r'j the operator of van der Waerden-Botolotti covariant

differentiation formed with gji, The equations of Gauss and Weingarten
for M are respectively obtained:

lVjBiA=hit.(}A+kjiDA,
(1.7) VjCA= -h/BrA+ljDA,

VjDA=-k/BrA-ljCA,

where h/=hjigir, kjr=kjigir are components of the second fundamental
tensors, lj those of the third fundamental tensor and gji being contrav­
ariant components of gji. As to the transformations of BjA, CA and DA
by FBA we have respectively equations of the form
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(1. 11)

(1. 8) FBABjB=f,J BjA,

(1. 9) FBACB=DA, FBADB= -CA,

where we have put hi=G(FBj> B j). The structure vector field v is also
represented by

(1. 10)

where pj=G(Bj, v),

last three equations,

vA=pjBjA,

pj being contravariant components of Pj. From the
it follows that

{
f/frh= -Ojh+ hph, prfrh=O,

grsf/f/=gjj-PiPj, prpr=l.

Differentiating (1. 8) covariantly along N and making use of (1. 7),
(1. 8) and (1. 9), we have

O. 12) VjPi= fji, f1 j fi h= - gjiph+o/Pj·

Then it is shown that the set (f, g, p) defines a Sasakian structure
([12, 14J). Similarly differentiating 0.10) covariantlyand using (1. 7)
and (1. 11), we have

(1. 13)

which imply

O. 14) hjrP' = 0, kjrp' = 0,
h/=k/=O.

Thus, the suhmanifold of codimension 2 M is minimal.

From (1. 13)

(1. 15)

O. 16)

O. 17)

we can easily see that

kjrh{+kjrh/=O,

kj/=hjjZ
, kz=h2,

k:l=h:I=O,

where we have defined hjj2=hjrh{, kjj2=kjrk{, h2=hjjhji and h3=hj ,h/
hsj.

On the other hand, Gauss, Codazzi and Ricci equations for M are
given respectively by

(1. 18) RDCBABkDB/BjBBhA=Rkjih- (hkhhjj-hkjhjh+kgkji-kk,kjh) ,

(1. 19) RDCBABkDB/BiBCA=Vkhjj-Vjhkj- (lkkjj-ljkki) ,

(1. 20) RDcBABkDBjCBlDA=Vklj-V)k+hkrk/-hjrkkr,

(1. 21) RDcBABkDB/CBDA=Vklj-Vjlk+hkrk/-hj){,
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where Rkjik denote covariant components of the Riemannian curvature
tensor of M.

Putting Akj=f7Jj-f7j1k and utilizing (1.15), the equation (1.21)
reduces to

(1. 22)

2. Sasakian snbmanifolds of codimension 2

Let M be an invariant submanifold of codimension 2 of a Sasakian
manifold N. Transvecting (1.18) by gji and using (1. 16), we find

RDAB,PB"A_RDCBABkDB"A(CCCB+DCDB) = Rkk+2hk,.k"r,
where Rji denote components of the Ricci tensor of M. Transvecting
fjk, we get

(2. 1) Rkrlir-2hk,.k/=RDABkDfjrBrA- RDCBAFEABjEBkD (CCCB+ DCDB)

On the other hand, from (1. 3) we have

RDCBAFEABkDBjE(CCCB+DCDB)
=RDCEAFBABkDBlccCB+RDCEAFBABkDBjEDCDB+2FEDBkDBjE.

Thus, using Cl. 8), (1. 9) and (1. 22), it follows that

RDCBAFEABkDBjE (CCCB+ DCDB) =Akj+2h",.k/-2/kj.

Therefore (2. 1) turns out to be

RDABkDf/BrA=R"rf/+Akj-2/kj.

Transvecting f,J and taking account of (1. 11), we get

RDABkD( -O{+Pipr) BrA = Rkr ( -O{+Pipr) +Akrf{-2(gkj-PkPi),

which togther with Cl.4) and (1. 10) yields

RDABjDB jA=Rjj+2gji- Ajrf{.

LEMMA 1. Let N be a (2n+ I)-dimensional Sasakian manifold with
harmonic curvature.

Proof. Differentiating (1.4) covariantly along N and using (1. 1),
we find

(V'CRDA) vA+RDAFCA = 2nFCD.

Since N has harmonic curvature, namely, f7CRDA -f7DRcA =0, it follows
that
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which together with (1. 5) yields

(2.3) RDAFcA=2nFcD'

Transvecting (2. 3) by FBC and making use of (1. 1) and (1. 4), we
see that N is Einstein. This completes the proof.

Since M is also Sasakian manifold, we see that

(2.4) f/Rir=f1kRljik+ (2n-3)fji'

Thus, if M is of harmonic curvature, then, by Lemma 1, M is Einst­
ein, i. e. Rji=2(n-l)gji. Therefore (2.4) turns out to be

f1kRljik=fji.

Transvecting (1.22) with pj and using (1. 10) and (1. 14), we find

RDCBABkDvCCBDA = AkjPj,

However, we have RDCBAVA=VDGCB-vCGDB, which is a direct conse­
quence of 0.2), we get

RBADCBkDVCCBDA = 0.

Therefore we havc

(2.6)

LEMMA 2. Let M be an invariant submanifold of codimension 2 in a
Sasakian manifold. Then we have

(2.7)

Proof. From (1. 14), we have respectively

CVkkjr )pr+kjr!{= 0, (f1khjr)pr+hjJ{=O

because of (1. 12). By using (1. 13), it follows that

(2.8) CVkkjr) pr = -hkj, (f1khjr)pr=kjk.

Differentating (1. 13) covariantly along M and taking account of (1. 12),
we find respectively

(2.9) f1 khji= (f1kkjr)f/+kjkPi, f1kkji= - (f1khjr)f/-hjkPi'

Differentiating (2. 9) covariantly and using (1. 12) we obtain

f11f1 khji= (f1zf1kkjr)f/+ (f1kkjr) (-glipr+glrPi) + CVlkjk)Pi+kkjfli,

or, making use of (2. 8),

f1zf1 khji= (f11Pkkjr)f/+g/ihkj + (P~jl)Pi+ (Ptkjk) Pi+kkjfli'

If we transvect gli and use (2. 8), then we obtain the equation (2. 7)
which completes the proof.
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3. Invariant submanifolds of an Einstein manifold

Suppose that N is a (2n +1) -dimensional Einstein manifold. Then we
have R DA =2nGDA . It means that

R DAB jDBjA=2ngjj.

reduces to

Rjj=2(n-1) gjj+ Ajrf{.

(3. 1) into (2. 4) and using (2. 6), we find

jlkRljik=fji+ A jj.

By the properties of the Sasakian structure, it follows that

jlkRlkji= -2(fjj+A jj).

On the other hand, from the Ricci identity for kji, we obtain

VlVkkjj-VkVlkjj= - Rlkjrk{ - Rlkirk/.

Transvecting the above equation with jlk and taking account of (1. 13)
and (3. 2), it reduces to

(3.3) jlkVlVkkjj=2hjj+Ajrk{+Ajrk/.

Thus, it follows that

Thus (2.2)

(3.1)

Substituting

(3.4)

PROPOSITION 3. Let N be a Sasakian with harmonic curvature. If M is
an invariant submanifold of codimension 2 in H, then the following asse­
rtions are true:

(1) M is an Einstein manifold if and only if the normal connection of
M is flat.

(2) M is C-Einstein manifold if and only if A ji= -bfji for some
constant b.

Proof. (1) From Lemma 1 we have (3. 1). Thus it is easily seen that
R jj=2(n-l)gji is equivalent to Ajj=O by taking account of (2.6).

(2) "If part" is evidently true because of (3. 1).
Suppose that M is of C-Einstein, i. e. Rjj=agji+bPiPi' Then from

(3.1) we have

-b(gjj-PjPj) = Ajr!{.

Differentiating the above equation covariantly and (2.6), we get

b(hj+fkiP) = (VkAjr)f{+AjkPi'
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Transvecting with pi, we find bhj=Ajk. Thus we complete the proof.

THEOREM 4. Let N be a (2n+ I)-dimensional Sasakian manifold with
harmonic curvature and M be a compact C-Einstein submanifold of codi­
mension 2 in N. If the second fundamental form is of Codazzi type and
the s~alar curvature of M is non-negative, then M is totally geodesic.

Proof. Since hji is of Codazzi type, Lemma 2 tells us that

(3.5) Llhji = (Pl'kkji)jik+ (2n-3)hji,

where Ll=17i/7i denotes the operator of Laplacian, which and (3.4) imply
(3.6) hiiLlhji = (2n-l)h2+Ajrk{hi i.

Since M is C-Einstein manifold, by Proposition 3, we see that A jr =

-bfjr' Thus (3.6) reduces to

(3.7) hiiLlhji =(2n-l-b)h2

because of (1. 13). From (3. 1) we have

R=2 (n-l) (2n-l-b) ;:;:0
because the scalar curvature of M is non-negative is a~sumed. Therefore
(3.7) means

.. Ah R
hJI£.j ji= 2(n-l) h:!..

Therefore we have the following identity:

(3. 8) -~-Llh2= 2 (n~ 1) h2+11/7khjil1 2~ O.

Since M is compact, we see, according to the Green's Theorem, that
h2=k2 =O because of (3.5). Thus M is totally geodesic because of (1.
16).

Now, we prove the following theorem:

THEOREM 5. Let M be a compact invariant submanifold of codimension
2 with harmonic curvature in a Sasakian manifold. If the second fundam­

ental form is of Codazzi type, then M is totally geodesic.

Proof. Since M is of also a Sasakian manifold with harmonic curva­
ture, by Lemma 1, it follows that M is Einstein, that is,

R ji=2 (n-l)gji'

Thus (2. 5) is valid. Hence (3. 3) becomes

jlk/7k17ikji= 2hji.
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Therefore (3. 5) reduces to

(3.9) L1hj,= (2n-l) hj ,

because hj ; is of Codazzi type. M being compact, combining (3.8) and
(3.9), it is clear that hji=kji=O. Thus M is totally geodesic.

REMARK 1. If we replace the compactness condition in Theorem 4 and
Theorem 5 by h2 = constant. Then we obtain the same result that M is
totally geodesic.

REMARK 2. Let N be a Sasakian space form, then it is clear that
h2 =constant and hj ; is of Codazzi type. Thus it follows that if M is an
invariant subm.anifold of codimension 2 in a Sasakian space form N(c) ,
then M is totally geodesic (cf. [1OJ).
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