BEST APPROXIMATION BY CERTAIN COMPACT OPERATORS ON $L^{p}(\{-1, 1\}^{N})$

Chong-Man Cho

1. Introduction

Let M be a closed subspace of a Banach space X. An element x in X is said to have a best approximation in M if there exists an element y in M such that $||x-y||=\inf\{||x-z||:z\in M\}$. M is called proximinal in X if every element in X has a best approximation in M. Obviously, every finite dimensional subspace of a Banach space is proximinal, and it is known that every subspace of a Banach space X is proximinal exactly when X is reflexive [18]. If a closed subspace M of X is a semi M-ideal [15] or has the 1/2 ball property [22], M is proximinal in X. If M is an M-ideal in X, then for every $x\in X\setminus M$ the set of all best approximations in M of x is so large that it algebraically spans M [13].

Of particular interest is finding Banach spaces X and Y for which K(X,Y), the space of the compact linear operators from X to Y, is proximinal in L(X,Y), the space of the bounded linear operators from X to Y. If X=Y we simply write L(X) (resp. K(X)) for L(X,X) (resp. K(X,X)). There are several examples of Banach spaces X and Y for which K(X,Y) is proximinal (resp. an M-ideal) in L(X,Y) [2, 12, 14, 17, 22] (resp. [4,5,6,14,16,20]). $K(c_0)$, $K(l^1)$ and $K(l^l,l^l)$ for 1 < p, $q < \infty$ are proximinal in corresponding space of operators [16,22]. If $X=l^\infty$, $L^1(0,1)$ or $L^\infty(0,1)$, K(X) is not proximinal in L(X) [7]. It is only recent that Benyamini and Lin [3] proved that K(X) is not proximinal in L(X) for $X=L^l(0,1)$, 1 . However, it was known earlier that certain integral operators in <math>L(X) have best approximations in K(X) which are also integral operators if $X=L^l(Q,\mu)$ where (Q,μ) is a finite measure spece [21].

In this paper, we consider Lebesgue space $X=L^{p}(\{-1, 1\}^{N}, \lambda)$,

Received May 13, 1987.

 $1 \le p \ne 2 < \infty$, where λ is the Haar measure on compact group $\{-1,1\}^N$ which is a countable product of copies of multiplicative group $\{-1,1\}$. In Theorem 3.4, we show that certain convolution operators in L(X) have best approximations in the left ideal F(X) of the compact operators on X which annihilate constant functions.

2. Preliminaries

This section contains some background material which will be needed in the proof of the main theorem in section 3.

Let $(Q_r, \mathcal{A}_r, \mu_r)$ denote a probability space for each r in an infinite index set Γ and let $(Q_A, \mathcal{A}_A, \mu_A)$ denote the product measure space of $\{(Q_r, \mathcal{A}_r, \mu_r); r \in A\}$ for a nonempty subset A of Γ . We simply write (Q, \mathcal{A}, μ) for $(Q_r, \mathcal{A}_r, \mu_r)$. An element t of Q can be written as $t = (t_r)$, where $t_r \in Q_r$ is the value of t at r. For a proper subset A of Γ , we regard (Q, \mathcal{A}, μ) as $(Q_A \times Q_{A'}, \mathcal{A}_A \times \mathcal{A}_{A'}, \mu_A \times \mu_{A'})$, where $A' = \Gamma \setminus A$, and hence an element t in Q can be written as t = (r, s) with $r \in Q_A$ and $s \in Q_A$, The following is proved in [10, p. 437].

THEOREM 2.1. Let A be a nonempty finite subset of an infinite index set Γ . For $1 \le p < \infty$ and $f \in L^p(\Omega, \mu)$, we define $Q_A f$ by

$$(Q_A f)(r, s) = \int_{Q_{A'}} f(r, w) d\mu_A, (w).$$

Then $Q_A f$ is in $L^p(Q, \mu)$, $||Q_A f|| \le ||f||$ and $\lim_A ||Q_A f - f|| = 0$.

REMARK. Observe that if $f \in L^p(Q, \mu)$, $Q_A f$ can be defined and $\|Q_A f\| \le \|f\|$ for an infinite subset A of Γ or for $p = \infty$. Since Q_A fixes constant functions, Q_A is a norm one projection on $L^p(Q, \mu)$ for $1 \le p \le \infty$ and $\phi \ne A \subseteq \Gamma$.

Suppose λ is a left Haar measure on a locally compact (topological) group G. If $f \in L^p(G, \lambda)$ $(1 \le p \le \infty)$ and μ is a complex regular Borel measure on G, then the convolution $\mu * f$ of μ and f is defined as the following theorem shows.

Theorem 2.2 [9, p.292] Let λ (resp. μ) be a left Haar (resp. complex regular Borel) measure on a locally compact group G and let $f \in L^p(G, \lambda)$ $(1 \le p \le \infty)$. Then the integral

$$(\mu * f)(x) = \int_{G} f(y^{-1}x) d\mu(y)$$

exists and is finite for all $x \in G \cap N'$, where N is a λ -null set if $1 \le p < \infty$ and N is a locally λ -null set (that is, $N \cap K$ is λ -null set for any compact subset K of G) if $p = \infty$. Defining $(\mu * f)(x) = 0$ where the above integral is not defined, we get a function $\mu * f$ in $L^p(G, \lambda)$ such that

$$\|\mu * f\|_{p} \leq \|\mu\| \|f\|_{p}$$
.

3. Best approximation by certain compact operators

Let multiplicative group $\{-1,1\}$ be endowed with the discrete topology, and for each n in N, the set of all natural numbers, let $\{-1, 1\}$, \mathcal{F}_n, λ_n) be the probability space such that $\lambda_n(\{-1\}) = \lambda_n(\{1\}) = 1/2$, where $\mathcal{F}_n = \{\{-1, 1\}, \phi, \{-1\}, \{1\}\}\}$. If A is a nonempty subset of N, $\{\{-1,1\}_A,\mathcal{F}_A,\lambda_A\}$ will denote the product measure space of $\{(\{-1,1\},$ \mathcal{F}_j, λ_j ; $j \in A$ as in section 2. For notational convenience, if $A = \{1, 2, 1, 2, \dots, k\}$ 3, ..., n we will write $(\{-1, 1\}^n, \mathcal{F}^n, \lambda^n), (\{-1, 1\}^{(n)}, \mathcal{F}^{(n)}, \lambda^{(n)})$ and 1) N, \mathcal{F}_N , λ_N , respectively. In what follows, $L^p(\{-1, 1\}_A)$ will always denote $L^{p}(\{-1,1\}_{A},\lambda_{A})$. We can easily see that each λ_{A} is the (normalized) Haar measure on the compact group $\{-1, 1\}_A$. Of course, the group multiplication in $\{-1, 1\}_A$ is defined coordinatewise and the topology for $\{-1,1\}_A$ is the product topology. If $1 \le p < \infty$, for each $f \in L^p$ $(\{-1,1\}_A)$ the assignment $f(r) \longrightarrow \tilde{f}(r,s) = f(r)$ defines a linear isometry from $L^p(\{-1, 1\}_A)$ into $L^p(\{-1, 1\}^N)$. Thus we can view $L^{p}(\{-1,1\}_{A})$ as a subspace of $L^{p}(\{-1,1\}^{N})$.

For each $i \in \mathbb{N}$, let R_i be the *i*-th coordinate projection on $\{-1, 1\}^N$, that is, $R_i(t) = t_i$ for $t = (t_n)_{n=1}^{\infty} \in \{-1, 1\}^N$. $\{R_i\}_{n=1}^{\infty}$ is a (stochastically) independent family of random variables with

$$\int_{[-1,1]^N} R_i(t) d\lambda(t) = 0$$

for $i \in N$. For a finite subset C of N, we define

$$W_C = \prod_{i \in C} R_i$$
.

Here W_{ϕ} is the constant 1 function. Each W_C (in particular, R_i) is a character of the group $\{-1,1\}^N$. A character of a locally compact group G is a continuous homomorphism of G into the multiplicative group of complex numbers of absolute value one.

By a slight abuse of notations, we will still write R_i for the *i*-th

coordinate projection on $\{-1, 1\}^n$ for $i \le n$. Again, $R_1, R_2, ..., R_n$ are independent random variables on the probability space $(\{-1, 1\}^n, \mathcal{F}^n, \lambda^n)$ with mean zero, that is,

$$\int_{\{-1,1\}^n} R_i(t) d\lambda^n(t) = 0 \quad (i=1,2,...,n)$$

and W_C is a character of $\{-1, 1\}^n$ if $C \subseteq \{1, 2, ..., n\}$.

THEOREM 3.1. For $1 \leq {}^{p} < \infty$, the algebraic span of $\{W_C : C \subseteq N \text{ and } C \text{ is finite}\}$ is dense in $L^p(\{-1,1\}^N)$.

Proof. For a fixed $n \in \mathbb{N}$, the group $\{-1, 1\}^n$ and the set $W_C : C \subseteq \{1, 2, ..., n\}$ have the same cardinality 2^n . Since $R_1, R_2, ..., R_n$ are independent and each R_i has mean zero on the probability space $(\{-1, 1\}^n, \mathcal{F}^n, \lambda^n)$ for any two distinct subsets of $\{1, 2, ..., n\}$ we have

$$\int_{\{-1,1\}^n} W_B W_C d\lambda^n = 0.$$

Thus $\{W_C: C\subseteq \{1, 2, ..., n\}\}$ is an orthonormal family with cardinality 2^n in the 2^n -dimensional Hilbert space $L^2(\{-1,1\}^n)$ and forms a basis for $L^2(\{-1,1\}^n)$. It also spans $L^p(\{-1,1\}^n)$, since $L^p(\{-1,1\}^n)=L^2(\{-1,1\}^n)$ as a set for $1\leq p<\infty$. On the other hand, if we let Q_n be Q_A defined in Theorem 2.1, where $A=\{1,2,...,n\}$, then by Theorem 2.1, for any $f\in L^p(\{-1,1\}^n)$, $\lim \|Q_nf-f\|_p=0$ and $Q_nf\in L^p(\{-1,1\}^n)\subseteq L^p(\{-1,1\}^n)$. This completes the proof.

COROLLARY 3.2 The family $\{W_C: C\subseteq N \text{ and } C \text{ is finite}\}$ is a complete orthonormal system in $L^2(\{-1,1\}^N)$.

REMARKS. 1. It is well known in harmonic analysis that a finite abelian group G is isomorphic to its character group [9:p.367]. Since $\mathbb{Q} = \{W_C: C \subseteq \{1, 2, ..., n\}\}$ and $\{-1, 1\}^n$ have the same cardinality, \mathbb{Q} is the character group of $\{-1, 1\}^n$.

2. Observe that the proof of Theorem 3.1 actually shows that, for any subset A of N, the algebraic span of $\{W_C : C \subseteq A \text{ and } C \text{ is finite}\}$ is dense in L^p ($\{-1,1\}_A$) for $1 \le p < \infty$.

Let $(\{-1,1\}^N, \mathcal{F}, \mu)$ be the product space of a sequence $\{(\{-1,1\}, \mathcal{F}_n, \mu_n)\}_{n=1}^{\infty}$ of probability spaces, where $\mathcal{F}_n = \{\{-1,1\}, \phi, \{-1\}, \{1\}\}\}$. In what follows, measure μ always represents this measure. Clearly μ is a regular Borel probability measure on the compact group $\{-1,1\}^N$. Hence, by Theorem 2.2 μ induces a bounded linear operator T_{μ} on L^{p} $(\{-1,1\}^N)$

by $T_{\mu}f = \mu * f$ for $f \in L^p$ ($\{-1, 1\}^N$), where

$$(\mu*f)(x) = \int_{\{-1,1\}^N} f(y^{-1}x) d\mu(y).$$

THEOREM 3.3. For each nonempty subset A of N, T_{μ} restricted to $L^{p}(\{-1, 1\}_{A})$ is an $L^{p}(\{-1, 1\}_{A})$ -operator, more precisely, $T_{\mu}|_{L^{p}(\{-1, 1\}_{A})}$ = $T_{\mu_{A}}: L^{p}(\{-1, 1\}_{A}) \longrightarrow L^{p}(\{-1, 1\}_{A})$ and $T_{\mu_{A}}$ has norm one.

Proof. For each $i \in N$ and $x \in \{-1, 1\}^N$,

$$(T_{\mu}R_{i})(x) = (\mu * R_{i})(x)$$

$$= \int_{[-1,1]^{N}} R_{i}(y^{-1}x) d\mu(y)$$

$$= \int_{[-1,1]^{N}} R_{i}(x) R_{i}(y) d\mu(y)$$

$$= R_{i}(x) \int_{[-1,1]^{N}} R_{i}(y) d\mu(y)$$

$$= (1 - 2a_{i}) R_{i}(x), \text{ where } \mu_{i}(\{-1\}) = a_{i}, 0 \leq a_{i} \leq 1.$$

Since $R_1, R_2, ..., R_n$, ... are independent, a straight forward computation shows that for each nonempty finite subset C of A,

$$T_{\mu}W_{C} = (\prod_{i \in C} (1-2a_{i})) W_{C}.$$

Similarly if we view W_C as a character of $\{-1, 1\}_A$, the same computation gives

$$T_{\mu_A}W_C = (\prod_{i \in C} (1 - 2a_i)) W_C.$$

This proves the first part of the theorem, since algebraic span of $\{W_C : C \subseteq A\}$ is dense in $L^p(\{-,1\}_A)$.

By Theorem 2.3, $\|T_{\mu_A}\| \le 1$. However, if f is the constant 1 function, $T_{\mu_A}f = \mu_A(\{-1,1\}_A) = 1 = \|f\|_p$. Hence $\|T_{\mu_A}\| = 1$ for all nonempty subset of N.

Theorem 3.4. Operator T_{μ} on $X=L^{p}(\{-1,1\}^{N})$, $1 \leq p < \infty$ has a best approximation in the closed left ideal F(X) of all compact operators on X which annihilate constant functions.

Proof. It is clear that F(X) is a closed left ideal in L(X). Let Q_n be the projection on X defined in Theorem 3.1. Using Fubini's theorem and Riesz Representation Theorem on $L^p(\{-1,1\}^N)$, we can easily see that Q_A is self-adjoint as an operator on $L^p(\{-1,1\}^N)$.

Fix $K \in F(X)$. Since for each $f \in X$, $||f - Q_n f|| \to 0$ as $n \to \infty$ by

Theorem 2.1 and K is compact, we have

$$||K-Q_nK|| = ||(I-Q_n)K|| \to 0$$
 as $n\to\infty$.

Since the adjoint K^* of K is also compact and Q_n is self-adjoint,

$$||K-KQ_n|| = ||K^*-Q_nK^*|| \longrightarrow 0 \text{ as } n \to \infty.$$

On the other hand KQ_n restricted to $L^p(\{-1,1\}^{(n)})$ is zero operator, since $Q_nW_C=0$ for $\phi \neq C \subseteq \{n+1,n+2,...\}$, $KQ_n(W_\phi)=K(W_\phi)=0$ and algebraic span of $\{W_C: C\subseteq \{n+1,n+2,...\}\}$ is dense in $L^p(\{-1,1\}^{(n)})$. Hence,

$$||T_{\mu}-K|| = \lim_{n \to \infty} ||T_{\mu}-KQ_{n}||$$

$$\geqslant \lim_{n} \inf ||(T_{\mu}-KQ_{n})||_{L^{p}([-1,1]^{(n)})}||$$

$$= \lim_{n} \inf ||T_{\mu}||_{L^{p}([-1,1]^{(n)})}||$$

$$= 1 \text{ by Theorem 3.3.}$$

Theorefore, $||T_{\mu}-0||=1=\inf\{||T_{\mu}-K||:K\in F(X)\}$ and T_{μ} has zero operator as a best approximation in F(X).

Here, it is natural to ask whether the space of all compact operators on L^{p} ($\{-1,1\}^{N}$) is a proximinal subspace or an M-ideal in the space of the bounded linear operators on $L^{p}(\{-1,1\}^{N})$.

References

- 1. E.M. Alfsen and E.G. Effros, Structure in real Banach spaces, Ann. of Math. 96(1972), 98-173.
- 2. S. Axler, I.D. Berg, N. Jewell and A. Shields, Approximation by compact operators and the space $H^{\infty}+C$, Ann. of Math. (2)109(1979), 601-612.
- 3. Y. Benyamini and P.K. Lin, An operator in L^p Without Best Compact Approximation, Israel J. of Math. Vol. 51, No.4, (1985).
- C.-M. Cho and W.B. Johnson, A Characterization of Subspaces X of l^p for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. Vol. 93, No. 3, (1985) 466-470.
- 5. C.-M. Cho and W.B. Johnson, M-ideals and Ideals in L(X), J. Operator theory 16(1986), 254-260.
- 6. J. Dixmier, Les fonctionelles linéaires sur l'ensemble des opératurs bornés d'un espace de Hilbert, Ann. of Math. 51(1950), 387-408.
- 7. M. Feder, On a certain subset of $L_1(0,1)$ and non-existence of best approximation in some subspaces of operators, J. of Approximation Theory 29 (1980), 170-177.

- 8. J. Hennefeld, A decomposition for $B(X)^*$ and Unique Hahn-Banach Extensions, Pacific J. of Math. 46(1973), 197-199.
- Hewitt and K.A. Ross, Abstract Harmonic Analysis I, 2nd Edition, Springer-Verlag, 1979.
- 10, E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, (1969).
- R.B. Holmes, M-ideals in approximation theory, Approximation Theory 1, Academic Press, (1976), 391-396.
- 12. R.B. Holmes and B. Kripke, Best approximation by compact operators, Indiana Univ. Math. J. 21(1971), 255-263.
- 13. R.B. Holmes, B. Scranton and J. Ward, Approximation from the space of compact operators and other M-ideals, Duke Mah. J. 42(1975), 259-269.
- 14. Ka-Shing Lau, On a sufficient condition for proximity, Trans. Amer. Math.
- 15. A. Lima, Intersection properties of balls and subspaces of Banach spaces, Trans. Amer. Math. Soc. 227(1977), 1-62.
- 16. A. Lima, M-ideals of compact operators in classical Banach spaces, Math. Scand. 44(1979), 207-217.
- 17. J. Mach and J. Ward, Approximation by compact operators on certain Banach spaces, J. Approximation Theory 23(1978), 274-286.
- 18. R. Phelps, Uniqueness of Huhn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95(1960), 238-255.
- 19. K. Saatkamp, Best Approximation in the Space of Bounded Operators and its Applications, Math. Ann. 250(1980), 35-54.
- R. Smith and J. Ward, M-ideal structure in Banach algebras, J. Func. Anal., 27(1978), 337-349.
- L. Weis, Integral Operators and Change of Densiy, Indiana Univ. Math. J. 31(1982) 83-96.
- 22. D. T. Yost, Best Approximation and Intersections of balls in Banach spaces, Bull. Austral. Math. Sec. Vol. 20(1979), 285-300

Hayang University Seoul 133, Korea