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A GENERALIZATION OF PRIME IDEALS IN SEMIGROUPS

Hyexyune Kmm

In [3], Murata and his coauthors defined f-prime ideals in rings and
obtained analogous results of Van der Walt [4]. In this paper, f-prime
ideals in semigroups are defined and obtained results similar to those in
[3]. One found that the f-radical of an ideal A of a semigroup defined
by the author is the intersection of all f~prime ideals containing A. Under
the left regularity assumption, the radical of an ideal A turns out to be
the f-radical of A. Moreover, the properties of primary ideals in
semigroups [1] such as the uniqueness of decomposition thecrem by
Laske-Noether could be extended for f-primary ideals.

1. f-prime ideals and the f-radical of an ideal

Throughout, S will denote a semigroup and F will denote the set of
all functions f from S into the set of all ideals in S such that, for
each s in S,

(1 sef(s),

(2) z<f(s) implies f(z) =f(s),

(3) z€f(s) UA implies f(z) ©f(s) UA for each ideal A of S.

It is clear that the function f defined by f(s) =(s), the principal ideal
generated by s, is in F. For a fixed ideal B of S, the function defined
by f(s)=(s) U B is also in F.

DerinitioN. A subset @ of S is called a p-system iff (a) (B) NQ ¢
for any 4,5 in Q. Q is said to be an sp-system iff (@)2NQ=¢ for each
a in Q.

It is evident that every subsemigroup of S is a p-system and every
p-system is an sp-system. Let S={g,b,¢c,d} be the semigroup with the
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following multiplication table:

a b ¢ d
a a a a a
b a b a a
c a a ¢ a
a a a d

As is easily seen, {a,b} is a p-system and {b,c,d} is an sp-system
which is not a p-system.

DeriniTion. For fE€F, a subset @ of S is called an f-system [sf-
system] iff it contains a p-system [sp—system] Q* such that @Q* N f(g) ¢
for each ¢ in @. In each case, Q* will be called a kernel of Q.

A proper ideal P in S is called f-prime [ f-semiprime] iff its comple-
ment P¢ is an f-system [sf-system].

It is clear that every f-prime ideal is f-semiprime.

A proper ideal P of S is completely prime iff zy< P for some z, y in S
implies zEP or y&P. A proper ideal P of § is prime if XYC P where
X and Y are ideals of S implies X P or YCP.

In a commutative semigroup with identity, every prime ideal is com-
pletely prime. Every completely prime ideal in S is f-prime, but the
converse is not true.

Examere (1) Let N be the semigroup of positive integers with the
usual product. Consider a function f from N into the set of all ideals in
N which is defined by f(#»)=3NU=N. It is clear that f is contained in
F. Let P=4N and Q*=3N—6N. Then Q*cP° and for any q,¢: in
Q@*, (q1) (g2) NQ*x¢ which proves that Q* is a p-system. Since
f@NQ*xé for any g=Pc, the ideal P is f-prime. But P is not
prime. In this case, every prime ideal is f~prime.

(2) Let T={(z,» 0<z<1, 0<y<1, z+y<1} be a triangle semi-
group under (z,y) (z/,y') = (az’, zy’+ ). Consider a function f from T

into the set of all ideals in T defined by £((z, %)) =((z, %)) U ((5,0)).
Then f<F. Since (1,0) is a unit and (z,y) TCT(x,y), ((z,y))=
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T(z, y). Let P:T(-}i—, i) Take Q*={(z, 0)10<<z<1} C P, it is

clearly that Q* is a p-system. Since f(a) NQ*=¢ for any a€Ps, P is
f-prime but not prme. For, (( o %)) T (é %)CZP and (( %))
=7(L, })ep. Since (x,0) T T, 9, T (5, DTy $)err

(3 2)(5 2)=7 (G F)=r

Prorosition 1.1. For any f-—prime [ f—semiprime] ideal P of S,
flay) flas) TP implies a)EP or as€P [ f(a)?C P implies ac P].

Proof. Suppose a,<P¢(i=1,2). Since P¢ is an f-system, there exists
a p-system Q* P¢ such that f(a;) NQ*=¢ (i=1,2). Let x1=f(a;) NQ*
and x,Ef(ay) NQ*. Then(a;) (22) NQ*x¢ and hence f(x))f(x) NQ* %
which is a contradiction. The proof of the other half could be done
similarly.

It is clear that the union of prime ideals in S is prime. However,
the (finite) union of f-prime ideals in S need not he f-prime. In
Example (1), let P,=3N and P,=4NUG6N. Then f(2)f(2)cP,UP,
=3NU4N and 2&P,UP,. Then by Proposition 1.1, P;UP, is not
J-prime.

Let A be any ideal of S. Then the ideal U f(a) is denoted by f(A).
Clearly ACf(A) and f(A)cf(B) if ACB Moreover, f{(a)=f((a))
since G {(a) Cf(a) 1mphesﬂt%d)f(vz)<:f(a) In general, f(A)xA. But

if fla)="(a), then f{(A)=A

ProrosiTion 1.2, Let P be an f-prime [ f-semiprime] ideal of 8.
T. A.E.

(1) fa) F(B)P implies a€P or b= P [ f(a)?CP implies ac P

(it) f(A) f(B)CP implies f(A)CP or f(BYCP, for any ideals A, B
of S [f(A)2CP implies f(A)CP].

Proof. Obviously (it) implies (i). Let ,% in P¢, then f(a) N Pexé
and f(®) NPex¢. Since f(a)=f((a)), f((a)) NPx¢ and f((b))N P

x¢. Thus f((a)) f((B)) NP x¢ implies f(a) f(5) NP<x¢d. The proof
of the other half is similar.

Dermvtion. A subset A of § is called semiprime iff for a8, a?2cA
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implies a< A.

Cororrary 1.3. If f(a)=(a) for each a in S, then prime and f-prime
are synonyms. Moreover, under the same condition, semiprime and f-semi-
prime are synonyms whenever S is commutative.

Dermvition. Let A be an ideal of S. Then 7;(A)={z|QNAx¢ for
each f-system @ containing z}, r,s(A) = {z|Q N Ax¢ for each sf-system
@ containing x} will be called the f-radical and sf-radical of A respec-
tively.

Tueorem 1.4. Let A be an ideal of S. Then rp(A) [r;(A)] is the
intersection of all f—prime [ f-semiprime) ideals of S.

Proof. Let C be the intersection of all f-prime ideals containing A.
It is clear that r;(A4)<C. Conversely, if 2&r,(4), then there exists
an f-system @ such that r@ and QN A=¢. Let P be the union of all
ideals B such that AcB and BNQ=¢ and let Q* be a kernel of Q.
Then Q*C P¢. For any element 2 in P¢, Acf(a) UP and P is maximal
with respect to the properties ACP and PNQ=¢. Since P& f(a) UP,
(F(@)UP) NQ+#¢. Thus f(a) NQ+¢ and there exists ¢ in @ such that
gef(a). By a property of f, f(g)cf(a). Since @ is an f-system,
fl@NE*+d. It follows that f(a) NQ*+¢ and P¢ is an f-system with
the kernel Q*. Hence P is f~prime and z&P, i.e., Ccrs(4).

For any ideal A of S, we denote
A= {z€8|f(z)"C A for some positive integer n}
A= {zeS|z"= A for some positive integer #}.

Let z€A. Then f(z)*TAcCr (A) for some n. Hence z&r,(A) by
Proposition 1.1. Thus Acrs(A). Let z€8S and 2"¢ A for all n. Then
{r, 2% ...,2"% ...} is an f-system of S and {z, 2% ...} NA=¢. Hence
z&rp(A) and r,(A)cA’. Therefore, Acr (A)cCA’.

Tueorem 1.5. Let A be an ideal of a left regular semigroup S. Then
rs(A)=A" for any fEPF.

Proof. Suppose z&rs(A). It is well known that S is left regular iff
every left ideal of S is semiprime [5]. Hence A is semiprime. It follows
that for each positive integer #, z"< A implies € A. Therefore z£ A
implies z7¢ A for each n. Hence z¢ A’.
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Let Q* be a p-system such that Q*NA=¢. Let C be the collection
of all p-systems which contain Q* and do not meet A. Since Q*<C,
C is nonempty. It is clear that the union of a chain in C is in C,
and hence C has a maximal element M*. Let M= {z&§|f(z) N M*
#¢} NA°. Then M is an f-system with the kernel M* and M N A=¢.
As is seen in the proof of Theorem 1.4, there exists an f-prime ideal
P such that ACP and PN M=¢. Since P¢is an f-system with the
kernel M*, Pc=}M1,

DeriniTioN. An f-prime ideal P is called a minimal f-prime ideal
belonging to an ideal A iff P contains A and there exists a kernel Q*
for the f-system P¢ such that Q* is a maximal p-system which does
not meet A.

It is clear that any f-prime ideal P containing A contains a minimal
f-prime ideal belonging to A and the f-radical of an ideal A coincides
with the intersection of all minimal f-prime ideals belonging to A.

In general, an aribitrary intersection of f-prime ideals of § may not
be f-prime. However, an arbitrary intersection of f—semiprime ideals of
S is f—semiprime. It follows that an arbitrary intersection of f-prime ideals
of § is f~semiprime, and an ideal A in S is f-semiprime iff r,(A)=A.

2. f-primary ideals

DeriniTioN. An element a is (right) f-related to an ideal A of S iff
for each b=f(a), there exists an clement ¢ A such that b€ A, An
ideal B 15 (right) f-related to an ideal A of S iff every element of B
is f-related to A.

LemMa 2.1, Let A be an ideal of S and let K be the set of all
elements of S which are not f-related to A. Then K is an f-systcm.

Proof. Let ¢ be an element of K. Then there exists b in f(g) such
that cb£ A for every element ¢& A. Let K* be the set of all such b.
Then K* is a p-system and f(g) N K*#¢. Hence K is an f-system with
the kernel K*

In Example (1), let A=4N and f(2) =aNU3N for any a=S. Then
3ef(a) and 3(4n+i) & A for i=1,2,3. It follows that for any c¢ A,
3c A. Hence A is not f-related to A. However, cach element of a
proper ideal A is f-related to A if f is defined to be f(a)= (a) for each
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a in S.

For the rest of this section, we assume that
(@) Every ideal A of S is f-related to A

Prorosition 2.2. The f-radical ry(A) of an ideal of S is f-related
to A.

Proof. Let K be the set of all elements of S which are not f-related
to A. Suppose z€r,(A) and z is not f-related to A. Then by Lemma
2.1, K is an f-system containing z. It follows that KN A+¢, which
contradicts the assumption (a).

Let K be the set of all elements of S which are not f-related to A.
Then K is an f-system and KN A=¢ by Lemma 2.1 and the assump-
tion (a). Let P be the union of all ideals which are f-related to A and
do not meet K. As the proof of Theorem 1.4, P becomes f-prime.
This unique maximal ideal P will be called the maximal f-prime ideal
belonging to A. By the assumption (a), P contains A. Since an element
z is f-related to an ideal A iff f(z) is f-related to A, every element
f-related to A is contained in P.

For ideals A and B of § and z&8, we adopt the notation A : z=
{yeS|f(y)f(z) <A} and A: B=N{A: z|z€B}

ProrositioN 2.3. Let A be anideal of S and bES. If A: b+, then
A : b is an ideal containing A.

Proof. Let z€A: b and s€8. Then z€f(z) and zsf(z). It follows
that f(zs) =f(z) and f(zs)f (&) =f (x) f(b) cA. Thus zs€ A:b. Similary,
st€A:b LetacA and z€A : 6. Then zacA: 5N A, and f(za)f(b)
cA. For any od'€A, f@)cf(xa) UA since o/ €f(xa) UA. Then
F@) flayc(f(za) UA)YF() = fFlxza) fFB)UA fF(B)cA, and hence
dEA: b

Let P be the maximal f-prime ideal belonging to an ideal A of S and
let
{ gp (A:s) if P£S
A if P=8S.
If f(a)=1(a), for any a of S, then A,#¢ since ACA:s for any
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s¢¢ A. In Example (1), let A=4N and P=2N. Then for any s€S, 9N
cf(x)f(s). It follows that A : s= {z&S|f(2)f(s) T4N} =¢, and hence
A,=¢ whenever P#S.

For the rest of this section, we will also assume that
(8) For any ideals A and B with BZrs(A), A: B#¢.

ProrosiTioN 2.4. Let P be the maximal f-prime ideal belonging to an
ideal A of §. Then A=A,.

Proof. By the assumption (8), A,#¢. For any clement z in A,
there exists s€ P¢ such that f(2)f(s) ©A. Since s is not f-related to A,
there exists s’€f(s) such that ¢s’& A implies ceA. Then v’ A, and
hence weA. Therefore A=,

DermviTion. Let K be an f-system in S. A kernel K* of K is said
to be dense in K iff K¥N A+#¢ for any ideal A in S with KN A#¢.

If f(a)=1(a) for any a in S, then every kernel K* of an f-system K
is dense in K. However, in Example (1), since P—4N is f-prime, P¢
is an f-system with the kernel K*=3N—6N. Then K*N6N=¢ while
P<(N6N+¢, and hence K* is not dense in Pe,

DeriniTion. An ideal 4 of S is (right) f-primary iff f(a)f(b) <A
implies a€ A or b&r,(A).

Every f-prime ideal must be f—primary by Proposition 1. 1.

ProrosiTioN 2.5. Let A and B be ideals of S. Then

(1) ACB implies ry(A) Crs(B)

(2) re(re(A))=rs(A)

(3) rp(AB)=r(ANB)=r;(A) Nrs(B) if every f-system in S has a

dense kernel.

Proof. Clearly (1) and (2) hold. Now r,(AB)cCr,(ANB)cCrs(A)
Nry(B) by (1). Let z&€ry(A)Nry(B) and let K be any f-system
containing x. Then KNA+#¢ and KNB+#¢. Since K has the dense
kernel K*, K*NA#¢ and K*NB+¢. Let acK*¥*NA, b€K*NB.
Then (a)(®) NK*#¢. Since (a)(®))cAB, ABNK*+#¢ and hence
ABN K+#¢, which means z=r;(AB).

CoRroLLARY 2.6. Assume that every f-system in S has a dense kernel.
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Let Q and T be f-primary ideals such that rs(Q)=r;(T). Then QNT
is an f—primary ideal and r(QN T)=r(Q)=rs(T).

Prorosition 2.7. An ideal A is f-primary iff A: B=A for every
ideal BZrs(A).

Proof. Suppose A is f—primary and B is an ideal such that BZrs(4).
By the assumption (8), A: B+#¢ implies ACA: B. Let b€B and
b&Ers(A). For each element 2&A: B, z€A since A is f-primary.
Hence A: BCA implies A: B=A. Conversely, suppose f(a)f(b)cA
and b&rs(A). Then f(b) Zrs(A). Hence A : f(b) =A implies f(a)f (')
cf(a)fB) cA, for every ¥ <f(b). Therefore ac N {A: ¥ | =f(a)}
=A: f(b)=A.

Derinition. If an ideal A can be written as A=A, NA;N...N4,,
where A; is an f-primary ideal for each i, it is called an jf—primary
decomposition of A. Every A; is called an f-primary component of A.

A decomposition is called irredundant iff NA; ¢4 for each i.

An irredundant f-primary decomposition iJs said to be reduced iff
re(Ay) #re(4;) G#7).

If an ideal A of S has an f-primary decomposition and if every f-sys-
tem in S has a dense kernel, then A has a reduced f-primary decom-
position by Corollary 2. 6.

In the rest of this section, we assume the following:
(y) A: A=S for any f-primary ideal A.

In Example (1), let A=4N. Since INCf(z) f(a) €A for ac A and
ze8, A: A=¢. Thus the assumption (7) is essential. However, (7)
holds if f(a)=1(a) for every a in S.

Turorem 2.8. Let A=A;NA:N...NA,=4"1NAN...NA", be two
reduced f-primary decompositions of A. Then n=m and it is possible to
renumber the f-primary components in such a way that ry(A;)=rs(A’))
for 1<i<n=m.

Proof. Using Proposition 2.5, Proposition 2.7 and Corollary 2.6,
the proof follows as in Theorem 3.7 of [3].

3. f-primary semigroups
ProrosiTioN 3.1. Let A be an ideal of a semigroup S with identity 1.
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If rp(A)=S8S-H(@1), then A is f-primary. Where H(1) is the maximal

subgroup containing 1.

Proof. Let f(z)f(y)—A and z& A. Suppose y&rs(A). Then f(y) &
rs(A)=8-H(1), and hence f(y) =S. Then f(2)f () =f(2)§=f(z) CA.
and x€ A which is a contradiction. Thus A is f—primary.

ProrosiTioN 3.2. Let S be a semigroup with identity 1 and let every
f-system in S has a dense kernel. Then for any n&N, M" is J-primary,
where M=S8-I1(1).

Proof. By Proposition 2.5 (3), rp(M»)=r;(M)N...Nr,(M)=MnN
...N'M. Hence M is f-primary by Proposition 3. 1.

DeriniTION. A semigroup S is called f-primary iff every ideal of S is
f-primary.

THeorem 3.3. Let S be a semigroup with identity 1. If S has no
f-prime ideal except S-H(1), then S is an f-primary semigroup. The
converse is not true as in shown in [2].

Proof. Let A be a proper (nonzero) ideal. Then r,(A)=S-11(1).
By Proposition 3.1, A is f-primary.

Tueorem 3. 4. Let S be a left regular semigroup. 1f the set of all f-
prime ideals of 8 is linearly ordered, then S is f-primary.

Proof. Let A be an ideal of § and let f()f(y)CA. If z& 4, 2»& A
for each positive integer » by the left regularity of S. Then zér,(A4)
by Theorem 1.5. Since f-prime ideals are linearly ordered, r,(A) is
S-prime. Now, since f(x)f(y)Crs(4), yers(A) by Proposition 1.1.
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