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A GENERALIZATION OF PRIME IDEALS IN SEMIGROUPS

HYEKYUNG KIM

In [3J, Murata and his coauthors defined f-prime ideals in rings and
obtained analogous results of Van der Wait [4J. In this paper, f-prime
ideals in semigroups are defined and obtained results similar to those in
[3]. One found that the f-radical of an ideal A of a semigroup defined
by the author is the intersection of all f-prime ideals containing A. Under
the left regularity assumption, the radical of an ideal A turns out to be
the f-radical of A. Moreover, the properties of primary ideals in
semigroups [lJ such as the uniqueness of decomposition theorem by
Laske-Noether could be extended for f-primary ideals.

1. j-prime ideals and the j-radical of an ideal

Throughout, S will denote a semigroup and F will denote the set of
all functions f from S into the set of all ideals in S such that, for
each s in S,

(1) sEf(s) ,
(2) xEf(s) implies f(x) Cf(s) ,
(3) xEf(s) UA implies f(x) cf(s) UA for each ideal A of S.
It is clear that the function f defined by f(s) = (s), the principal ideal

generated by s, is in F. For a fixed ideal B of S, the function defined
by f(s) = (s) U B is also in F.

DEFINITION. A subset Q of S is called a p-system iff (a) (b) nQ ~tP

for any a,b in Q. Q is said to be an sp-system iff (a)2nQ~q) foreach
a in Q.

It is evident that every subsemigroup of S is a p-system and every
p-system is an sp-system. Let S= {a, b, c, d} be the semigroup with the
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following multiplication table:

I a b c d

a a a a a

b a b a a

c a a c a

d a a a d

As is easily seen, {a, b} is a p-system and tb, c, d} IS an sp-system
which is not a p-system.

DEFINITION. For fEF, a subset Q of S is called an f-system [sf­
system] iff it contains a p-system esp-system] Q* such that Q* nf(q) ~if>

for each q in Q. In each case, Q* will be called a kernel of Q.

A proper ideal P in S is called f-prime [f-semiprime] iff its comple­
ment pc is an f-system [sf-system].

It is clear that every f-prime ideal is f-semiprime.
A proper ideal P of S is completely prime iff xy E P for some x, y in S

implies xEP or yEP. A proper ideal P of S is prime if XYcP where
X and Y are ideals of S implies XcP or YcP.

In a commutative semigroup with identity, every prime ideal is com­
pletely prime. Every completely prime ideal in S is f-prime, but the
converse is not true.

EXAMPLE (1) Let N be the semigroup of pOSItIve integers with the
usual product. Consider a function f from N into the set of all ideals in
N which is defined by fen) =3NU nN. It is clear that f is contained in
F. Let P=4N and Q*=3N-6N. Then Q*cpc and for any qI, q2 in
Q*, (qI) (q2) nQ* ""if> which proves that Q* is a p-system. Since
f(q) nQ*""if> for any qEPC, the ideal P is f-prime. But P is not
prime. In this case, every prime ideal is f-prime.

(2) Let T= {(x, y) IO:S:x:S: 1, 0:S:y:S:1, x+y:S;l} be a triangle semi­
group under (x, y) (x', y) = (xx', xy+ y). Consider a function f from T

into the set of all ideals in T defined by f((x, y» = ((x, y» U (( ~, 0».

Then fEF. Since (l,0) is a unit and (x,y) TcT(x,y), ((x,y»=
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T(x,y). Let P=T({-, }). Take Q*= {(x, 0) 10<x~1} ~ pc, it is

clearly that Q* is a p-system. Since f(a) nQ* -:!s;cif> for any aEPc, P is

f-prime but not prme. For, ((},}))=T(1-, ~)~P and (0, ~))

= T (~-, }) ~ P. Since (x, y) Te T(.T, y), T (-~-, -}) T ({-, -}) c TT

( -~-, ~ )(~, ~) c T ( ~, } ) cP.

PROPOSITION 1. 1. For any f-prime [f-semiprimeJ ideal P of S,
f(al) f(az)cP implies alEP or azEP [f(a)ZCP implies aEP].

Proof. Suppose a;Epc(i=l, 2). Since pc is an f-system, there exists
a p-system Q*cpc such that f(a;) nQ*-:!s;cif> U=l, 2). Let xIEf(al) nQ*
and xzEf(az) IlQ*. Then (.1'I)(XZ) nO*-:!s;cif> and hencef(.TI)f(xz) nQ*""if>
which is a contradiction. The proof of the other half could be done
similarly.

It is clear that the union of prime ideals in S is prime. However,
the (finite) union of f-prime ideals in S need not be f-prime. In
Example Cl), let PI =3N and P z=4NU 6N. Then f(2)f(2) cPI UP2

=3NU 4N and 2 t1. P j UP2. Then by Proposition 1. 1, P j UP 2 is not
f-prime.

Let A be any ideal of S. Then the ideal U f(a) is denoted by f(A).
a~ A

Clearly ACf(A) and f(A) cf(B) if AcB. Moreover, f(a) =f( (a»
since .r E (a) Cf(a) implies U f(x) Cf(a). In general, f (A) "';- A. But

.Tr: (a)

if f(a) = (a), then f(A) = A.

PROPOSITION 1. 2. Let P be an f-prime [f-s{'mi/'rillle] ideal of S.

T. A. E.
(i) f(a) f(b) cP implies aEP or br:=P [f(a)2 c P implies aEP]

(ii) f(A) f(B) cP implies f(A) cP or f(B) cP, for allY ideals A, B
of S [f(A)2CP implies f(A) cP].

Proof. Obviously (ii) implies (i). Let a, b in pc, then f(a) npC-:!s;cif>

and f(b) ilpc-:!s;cifJ. Since f(a)=f((a»,f((a» npc-:!s;cifJ and f((b» ilPC
-:!s;cif>. Thus f((a»f((b» ilpc-:!s;cif> implies f(a)f(b) ilpc-:!s;cifJ. The proof
of the other half is similar.

DEFINITION. A subset A of S is called semiprime iff for aES, aZEA
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implies a E A.

COROLLARY 1. 3. If f(a) = (a) for each a in S, then prime and f-prime
are synonyms. Moreover, under the same condition, semiprime and f-semi­
prime are synonyms whenever S is commutative.

DEFINITION. Let A be an ideal of S. Then rj(A) = {xIQnA~<ft for
each f-system Q containing x}, rsj(A) = {x IQ nA~<ft for each sf-system
Q containing x} will be called the f-radical and sf-radical of A respec­
tively.

THEOREM 1. 4. Let A be an ideal of S. Then rf (A) [Tsj (A) J is the
intersection of all f-prime [f-semiprimeJ ideals of S.

Proof. Let C be the intersection of all f-prime ideals containing A.
It is clear that rj(A) cC. Conversely, if x Et: rj(A) , then there exists
an f-system Q such that xEQ and Q nA=<ft. Let P be the union of all
ideals B such that AcB and B nQ=<ft and let Q* be a kernel of Q.
Then Q*cpc. For any element a in pc, ACf(a) UP and P is maximal
with respect to the properties AcP and pnQ=<ft. Since pc;;.f(a) UP,
«(a) UP) nQi=ifJ. Thus f(a) nQi=<ft and there exists q in Q such that
qEf(a). By a property of f, f(q) cf(a). Since Q is an f-system,
f(q) nQ*i=ifJ· It follows that f(a) nQ*i=<ft and pc is an f-system with
the kernel Q*. Hence P is f-prime and xEt:P, i.e., CcrfCA).

For any ideal A of S, we denote
A= {xESlf(x)ncA for some positive integer n}
A' = {x E SI x n E A for some positive integer n}.

Let xEA. Then f(x)ncAcrj(A) for some n. Hence xErj(A) by
Proposition 1.1. Thus A:cTf(A). Let xES and xnEt:A for all n. Then
{x, x 2, ••• , x n, •••} is an f-system of S and {x, x2, •••} nA=<ft. Hence
xEt:rf(A) and rJ(A) cA'. Therefore, ACrJ(A) cA'.

THEOREM 1. 5. Let A be an ideal of a left regular semigroup S. Then
rf(A) =A' for any fEF.

Proof. Suppose xEt:rJ(A). It is well known that S is left regular iff
every left ideal of S is semiprime [5J. Hence A is semiprime. It follows
that for each positive integer n, x n E A implies x E A. Therefore x Et: A
implies x n Et: A for each n. Hence x Et: A'.
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Let Q* be a p-system such that Q* nA=ifJ. Let C be the collection
of all p-systems which contain Q* and do not meet A. Since Q*EC,
C is nonempty. It is clear that the union of a chain in C is in C,
and hence C has a maximal element M*. Let M= {.:z:ES I/(x) nM*
*ifJ} nN. Then M is an I-system with the kernel M* and Mn A=ifJ.
As is seen in the proof of Theorem 1. 4, there exists an I-prime ideal
P such that AcP and P nM-=rjJ. Since pc is an f-system with the
kernel M*, pc=M.

DEFINITION. An I-prime ideal P is called a minimal I-prinK> ide-al
belonging to an ideal A iff P c'mtains A and there exists a kernel Q*
for the I-system pc sllch that Q* is a maximal j)-system which does
not meet A.

It is clear that any I-prime ideal P containing A contains a minimal
I-prime ideal belonging to il and the f-radical of an ideal A coincides
with the intersection of all minimal f -prime ideals belonging to A.

In general, an aribitrary intersection of I-prime ideals of S may not
be f -prime. I-bwever, an arbitrary intersection of f-semiprime ideals of
S is f-semiprime. It follows thnt an arbitrary intersection of f-prime ideals
of S is f-semiprime, and an ideal A in S is f-semiprime iff TJ(A) =A.

2. f -primary ideals

DEFINITION. An clement a is (right) f-related to an ideal A of S iff
for each brcf(a), there exists an clement cEt:A such that cbEA. An
ideal B is (right) f -re!atI'd to an ideal A of S iff every element of B
is f -rdated to J1.

LEMMA 2.1. Let A be an ideal of S and let K be the set of all
elements of S which are not f-related to J1. Then K is an f-system.

Proof. Let q be an element of K. Then there exists b in f(q) such
that cb Et: A for e\'ery clement c Et: A. Let K* be the set of all such b.

Then K* is a p-system and f(q) nK**</J. Hence K is an I-system with
the kernel K*

In Example (1), let A=4N and f(a)=aNU3N for any aES. Then
3Ef(a) and 3(4n+i) Et: A for i=l, 2, 3. It follows that fur any cEiA,
3c Et: A. Hence A is not I-related to A. However, each element of a
proper ideal A is f-related to A if f is defined to be I(a) = (a) for each
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For the rest of this section, we assume that
(a) Every ideal A of S is f-related to A

PROPOSITION 2.2. The f-radical rf(A) of an ideal of S is f-related
to A.

Proof. Let K be the set of all elements of S which are not f-related
to A. Suppose xErf(A) and x is not f-related to A. Then by Lemma
2.1, K is an f-system containing x. It follows that K nA *4>, which
<'ontradicts the assumption (a).

Let K be the set of all elements of S which are not f-related to A.
Then K. is an f-system and K nA=4> by Lemma 2.1 and the assump­
tion (a). Let P be the union of all ideals which are f-related to A and
do not meet K. As the proof of Theorem 1. 4, P becomes f-prime.
This unique maximal ideal P will be called the maximal f-prime ideal
belonging to A. By the assumption (a), P contains A. Since an element
x is f-related to an ideal A iff f(x) is f-related to A, every element
f-related to A is contained in P.

For ideals A and B of Sand xES, we adopt the notation A ; x=
{yESlf(y)f(x) eA} and A: B= n {A: xIXEB}

PROPOSITION 2.3. Let A be an ideal of Sand bES. If A : b*4>, then
A : b is an ideal containing A.

Proof. Let xEA : band sES. Then xEf(x) and xsEf(x). It follows
that f(xs) ef(x) and f(xs)f(b) ef(x)f(b) eA. Thus xsEA:b. Similary,
sxEA: b. Let aEA and xEA : b. Then xaEA: bn A, and f(xa)f(b)
eA. For any a' E A, f (a') ef(xa) UA since a' Ef(xa) UA. Then
f(a') f(a) e (f(xa) UA)f(b) = f(xa) f(b) UA f(b) eA, and hence
a'EA: b.

Let P he the maximal f-prime ideal belonging to an ideal A of Sand
let

{
U (A: s) if P=t=S

A - .<iP

p- A if P=S.

If f(a) = (a), for any a of S, then A p =t=4> since AeA: s for any
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sEtA. In Example (1), let A=4N and P=2N. Then for any sES, 9N
cf(x)f(s). It follows that A : s= {.:rES If(x)f(s) e4N} =1>, and hence

Ap=cjJ whenever P*S.

For the rest of this section, we will also assume that
(f3) For any ideals A and B with Betrf(A), A: B*9.

PROPOSITION 2.4. Let P be the maximal f-prime ideal belonging to an
ideal A of S. Then A=Ap.

Proof. By the assumption «(3), A p 7= </l. For any clement ,2' in A p,

there exists sEPC such thatf(.T)f(s) cA. Since s is not f-related to ,1,
there exists s' Ef(s) such that cs' EO A implies c EO L1. Then xs' c: A, and
hence ,r ElL Therefore ,1 == il p.

DEFINITION. Let K be an f-system in S. A kernel K* of K is said
to be dense in K iff K* nA*-9 for any ideal A in S with K nL1 ~ 9.

If f(a) = (a) for any a in S, then every kernel K* of an f-system K
is dense in K. However, in Example Cl), since P~4N is f-prime, pc
is an f-system with the kernel K*=3N-6N. Then K* n6N=tjY while
pc n6N -* 9, and hence K* is not dense in pc,

DEFIt';ITION. An ideal A of S is (right) f-primary iff f(a)I(b) cA
implies aEA or bErf(A).

Every I-prime ideal must be f-primary by Proposition 1. 1.

PROPOSITION 2.5. Let A and B be ideals of S. Then
(1) AeB implies rf(A) erj(B)
(2) rf(rj(A» =rj(A)
(3) rj(AB) =rj(A nB) =rj(A) nrj(B) if every f-system III S has a

dense kernel.

Proof. Clearly (1) and (2) hold. Now rj(AB) erj(A nB) erj(A)
nrj(B) by (1). Let .:rErf(A) nrf(B) and let K be any f-system

containing .T. Then K nA *ifJ and K nB -=1= ifJ. Since K has the dense
kernel K*, K* nA-=I=9 and K* nB*ifJ. Let aEK* nA, bEK* nB.
Then (a)(b)nK*-=I=ifJ. Since (a) (b) cAB, ABnK**9 and hence
ABnK*ifJ, which means xErj(AB).

COROLLARY 2.6. Assume that every f-system tn S has a dense kernel.
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Let Q and Tbe f-primary ideals such that rf(Q)=rf(T). Then Qn T
is an f-primary ideal and rf(Qn T) =rf(Q) =rf(T).

PROPOSITION 2.7. An ideal A is f-primary iff A: B=A for every
ideal Betrf(A).

Proof. Suppose A is f-primary and B is an ideal such that Betrf(A).
By the assumption (f3), A: Bi=r/J implies AeA: B. Let bEB and
b$.rf(A). For each element xEA : B, xEA since A is f-primary.
Hence A: BeA implies A: B=A. Conversely, suppose f(a)f(b) cA
and b$.rf(A). Thenf(b) etrf(A). Hence A: f(b) =A implies f(a)f(b')
cf(a)f(b) cA, for every b'Ef(b). Therefore aE n {A: b'lb'Ej(a)}
=A: f(b)=A.

DEFINITION. If an ideal A can be written as A=A1 nA 2n... nAn>
where Ai is an j-primary ideal for each i, it is called an f-primary
decomposition of A. Every Ai is called an f-primary component of A.

A decomposition is called irredundant iff nA j et Ai for each i.
j*j

An irredundant f-primary decomposition is said to be reduced iff
rf(A i ) =f-rf(Aj ) Ui=j).

If an ideal A of S has an f-primary decomposition and if every f-sys­
tem in S has a dense kernel, then A has a reduced j-primary decom­
position by Corollary 2. 6.

In the rest of this section, we assume the following:
(r) A: A=S for any f-primary ideal A.

In Example (1), let A=4N. Since 9Ncf(x)f(a) etA for aEA and
xES, A: A=r/J. Thus the assumption (r) is essential. However, (r)
holds if f(a) = (a) for every a in S.

THEOREM 2.8. Let A=A1 nA2n ... nA,,=A'lnA'2n ... nA'm be two
reduced f-primary decompositions of A. Then n=m and it is possible to
renumber the f-primary components in such a way that rf(Ai) =rf(A'i)
jor l::;;i::;;n=m.

Proof. Using Proposition 2. 5, Proposition 2. 7 and Corollary 2. 6,
the proof follows as in Theorem 3.7 of [3J.

3. f-primary semigroups
PROPOSITION 3.1. Let A be an ideal of a semigroup S with identity 1.
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If rj(A) =8-li(l), then A is f-primary. Where H(l) is the maximal

subgroup containing 1.

Proof. Let f(x)f(y)eA and xEi!'A. Suppose yEhj(A). Then fey) et
rj(A) =8-H(1), and hence fey) =8. Then f(x)f(y) = f(.1:) 8= f(x) cA.
and x c= A which is a contradiction. Thus A is f-primary.

PROPOSITION 3.2. Let S be a semigroup with identity 1 and let every
f-system in S has a dense kernel. Then for any nc=N, Mn is f-primary,

where M=8-IJ(l).

Proof. By Proposition 2.5 (3), rj(Mn) -=r/(M) n ... n rj(M) =M n
... nM. Hence Mn is f-primary by Proposition 3. 1.

DEFINITION. A semigroup S is called f-primary iff every ideal of 8 IS

f-primary.

THEOREM 3.3. Let S be a semigroup with identity 1. If S has no
f-prime ideal except S-I-l(l) , then 8 is an f-primary semigroup. The
converse is not true as in shown in [2J.

Proof. Let A be a proper (nonzero) ideal. Then rj(A) =S-IJ(l).
By Proposition 3. 1, A is f-primary.

THEOREM 3. 4. Let 8 be a left regular semigroup. If the set of all f­
prime ideals of 8 is linearly ordered, then 8 is f-primary.

Proof. Let A be an ideal of S and let f(x)f(y) cA. If xEi!'A, xnEi!'A
for each positive integer n by the left regularity of 8. Then xEt=rj(A)
by The~)rem 1. 5. Since f-prime ideals are linearly ordered, rj(A) is
f-prime. Now, since f(.r)f(y) erj(A), yErj(A) by Proposition 1. 1.
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