A GENERALIZATION OF PRIME IDEALS IN SEMIGROUPS

HYEKYUNG KIM

In [3], Murata and his coauthors defined f-prime ideals in rings and obtained analogous results of Van der Walt [4]. In this paper, f-prime ideals in semigroups are defined and obtained results similar to those in [3]. One found that the f-radical of an ideal A of a semigroup defined by the author is the intersection of all f-prime ideals containing A. Under the left regularity assumption, the radical of an ideal A turns out to be the f-radical of A. Moreover, the properties of primary ideals in semigroups [1] such as the uniqueness of decomposition theorem by Laske-Noether could be extended for f-primary ideals.

1. f-prime ideals and the f-radical of an ideal

Throughout, S will denote a semigroup and F will denote the set of all functions f from S into the set of all ideals in S such that, for each s in S,

- (1) $s \in f(s)$,
- (2) $x \in f(s)$ implies $f(x) \subset f(s)$,
- (3) $x \in f(s) \cup A$ implies $f(x) \subset f(s) \cup A$ for each ideal A of S.

It is clear that the function f defined by f(s) = (s), the principal ideal generated by s, is in F. For a fixed ideal B of S, the function defined by $f(s) = (s) \cup B$ is also in F.

DEFINITION. A subset Q of S is called a p-system iff $(a)(b) \cap Q \neq \phi$ for any a, b in Q. Q is said to be an sp-system iff $(a)^2 \cap Q \neq \phi$ for each a in Q.

It is evident that every subsemigroup of S is a p-system and every p-system is an sp-system. Let $S = \{a, b, c, d\}$ be the semigroup with the

Received April 13, 1987.

following m	ultiplication	table:
-------------	---------------	--------

	а	ь	с	d
a	a	а	a	a
b	a	b	a	а
c	а	a	c	а
d	a	a	a	d

As is easily seen, $\{a, b\}$ is a p-system and $\{b, c, d\}$ is an sp-system which is not a p-system.

DEFINITION. For $f \in F$, a subset Q of S is called an f-system [sf-system] iff it contains a p-system [sp-system] Q^* such that $Q^* \cap f(q) \neq \phi$ for each q in Q. In each case, Q^* will be called a kernel of Q.

A proper ideal P in S is called f-prime [f-semiprime] iff its complement P^c is an f-system [sf-system].

It is clear that every f-prime ideal is f-semiprime.

A proper ideal P of S is completely prime iff $xy \in P$ for some x, y in S implies $x \in P$ or $y \in P$. A proper ideal P of S is prime if $XY \subset P$ where X and Y are ideals of S implies $X \subset P$ or $Y \subset P$.

In a commutative semigroup with identity, every prime ideal is completely prime. Every completely prime ideal in S is f-prime, but the converse is not true.

Example (1) Let N be the semigroup of positive integers with the usual product. Consider a function f from N into the set of all ideals in N which is defined by $f(n) = 3N \cup nN$. It is clear that f is contained in F. Let P = 4N and $Q^* = 3N - 6N$. Then $Q^* \subset P^c$ and for any q_1, q_2 in Q^* , (q_1) $(q_2) \cap Q^* \neq \phi$ which proves that Q^* is a p-system. Since $f(q) \cap Q^* \neq \phi$ for any $q \in P^c$, the ideal P is f-prime. But P is not prime. In this case, every prime ideal is f-prime.

(2) Let $T = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1, x+y \le 1\}$ be a triangle semi-group under (x, y)(x', y') = (xx', xy' + y). Consider a function f from T into the set of all ideals in T defined by $f((x, y)) = ((x, y)) \cup ((\frac{1}{2}, 0))$. Then $f \in F$. Since (1, 0) is a unit and $(x, y) T \subset T(x, y)$, $((x, y)) = ((x, y)) \cap T \subset T(x, y)$.

T(x, y). Let $P = T\left(\frac{1}{4}, \frac{3}{4}\right)$. Take $Q^* = \{(x, 0) \mid 0 < x \le 1\} \subseteq P^c$, it is clearly that Q^* is a p-system. Since $f(a) \cap Q^* \neq \phi$ for any $a \in P^c$, P is f-prime but not prme. For, $\left(\left(\frac{1}{2}, \frac{1}{2}\right)\right) = T\left(\frac{1}{2}, \frac{1}{2}\right) \not\subset P$ and $\left(\left(\frac{1}{3}, \frac{1}{2}\right)\right) = T\left(\frac{1}{3}, \frac{1}{2}\right) \not\subset P$. Since $(x, y) T \subset T(x, y)$, $T\left(\frac{1}{2}, \frac{1}{2}\right) T\left(\frac{1}{3}, \frac{1}{2}\right) \subset TT\left(\frac{1}{2}, \frac{1}{2}\right) \left(\frac{1}{3}, \frac{1}{2}\right) \subset T\left(\frac{1}{6}, \frac{3}{4}\right) \subset P$.

PROPOSITION 1.1. For any f-prime [f-semiprime] ideal P of S, $f(a_1)$ $f(a_2) \subset P$ implies $a_1 \in P$ or $a_2 \in P$ [$f(a)^2 \subset P$ implies $a \in P$].

Proof. Suppose $a_i \in P^c(i=1,2)$. Since P^c is an f-system, there exists a p-system $Q^* \subset P^c$ such that $f(a_i) \cap Q^* \neq \phi$ (i=1,2). Let $x_1 \in f(a_1) \cap Q^*$ and $x_2 \in f(a_2) \cap Q^*$. Then $(x_1)(x_2) \cap Q^* \neq \phi$ and hence $f(x_1)f(x_2) \cap Q^* \neq \phi$ which is a contradiction. The proof of the other half could be done similarly.

It is clear that the union of prime ideals in S is prime. However, the (finite) union of f-prime ideals in S need not be f-prime. In Example (1), let $P_1 = 3N$ and $P_2 = 4N \cup 6N$. Then $f(2)f(2) \subset P_1 \cup P_2 = 3N \cup 4N$ and $2 \notin P_1 \cup P_2$. Then by Proposition 1.1, $P_1 \cup P_2$ is not f-prime.

Let A be any ideal of S. Then the ideal $\bigcup_{a \in A} f(a)$ is denoted by f(A). Clearly $A \subseteq f(A)$ and $f(A) \subseteq f(B)$ if $A \subseteq B$. Moreover, f(a) = f(a) since $x \in (a) \subseteq f(a)$ implies $\bigcup_{x \in (a)} f(x) \subseteq f(a)$. In general, $f(A) \neq A$. But if f(a) = (a), then f(A) = A.

Proposition 1.2. Let P be an f-prime [f-semiprime] ideal of S. T. A. E.

- (i) $f(a) f(b) \subset P$ implies $a \in P$ or $b \in P$ $[f(a)^2 \subset P$ implies $a \in P$]
- (ii) $f(A) f(B) \subset P$ implies $f(A) \subset P$ or $f(B) \subset P$, for any ideals A, B of $S[f(A)^2 \subset P]$ implies $f(A) \subset P$.

Proof. Obviously (ii) implies (i). Let a, b in P^c , then $f(a) \cap P^c \neq \phi$ and $f(b) \cap P^c \neq \phi$. Since $f(a) = f((a)), f((a)) \cap P^c \neq \phi$ and $f((b)) \cap P^c \neq \phi$. Thus $f((a)) f((b)) \cap P^c \neq \phi$ implies $f(a) f(b) \cap P^c \neq \phi$. The proof of the other half is similar.

Definition. A subset A of S is called semiprime iff for $a \in S$, $a^2 \in A$

implies $a \in A$.

Corollary 1.3. If f(a) = (a) for each a in S, then prime and f-prime are synonyms. Moreover, under the same condition, semiprime and f-semi-prime are synonyms whenever S is commutative.

DEFINITION. Let A be an ideal of S. Then $r_f(A) = \{x \mid Q \cap A \neq \phi \text{ for each } f\text{-system } Q \text{ containing } x\}$, $r_{sf}(A) = \{x \mid Q \cap A \neq \phi \text{ for each } sf\text{-system } Q \text{ containing } x\}$ will be called the f-radical and sf-radical of A respectively.

Theorem 1.4. Let A be an ideal of S. Then $r_f(A)$ $[r_{sf}(A)]$ is the intersection of all f-prime [f-semiprime] ideals of S.

Proof. Let C be the intersection of all f-prime ideals containing A. It is clear that $r_f(A) \subset C$. Conversely, if $x \notin r_f(A)$, then there exists an f-system Q such that $x \in Q$ and $Q \cap A = \phi$. Let P be the union of all ideals B such that $A \subset B$ and $B \cap Q = \phi$ and let Q^* be a kernel of Q. Then $Q^* \subset P^c$. For any element a in P^c , $A \subset f(a) \cup P$ and P is maximal with respect to the properties $A \subset P$ and $P \cap Q = \phi$. Since $P \subseteq f(a) \cup P$, $(f(a) \cup P) \cap Q \neq \phi$. Thus $f(a) \cap Q \neq \phi$ and there exists q in Q such that $q \in f(a)$. By a property of f, $f(q) \subset f(a)$. Since Q is an f-system, $f(q) \cap Q^* \neq \phi$. It follows that $f(a) \cap Q^* \neq \phi$ and P^c is an f-system with the kernel Q^* . Hence P is f-prime and $x \notin P$, i.e., $C \subset r_f(A)$.

For any ideal A of S, we denote

 $\overline{A} = \{x \in S | f(x)^n \subset A \text{ for some positive integer } n\}$ $A' = \{x \in S | x^n \in A \text{ for some positive integer } n\}.$

Let $x \in \overline{A}$. Then $f(x)^n \subset A \subset r_f(A)$ for some n. Hence $x \in r_f(A)$ by Proposition 1.1. Thus $\overline{A} \subset r_f(A)$. Let $x \in S$ and $x^n \notin A$ for all n. Then $\{x, x^2, ..., x^n, ...\}$ is an f-system of S and $\{x, x^2, ...\} \cap A = \phi$. Hence $x \notin r_f(A)$ and $r_f(A) \subset A'$. Therefore, $\overline{A} \subset r_f(A) \subset A'$.

Theorem 1.5. Let A be an ideal of a left regular semigroup S. Then $r_f(A) = A'$ for any $f \in F$.

Proof. Suppose $x \notin r_f(A)$. It is well known that S is left regular iff every left ideal of S is semiprime [5]. Hence A is semiprime. It follows that for each positive integer n, $x^n \in A$ implies $x \in A$. Therefore $x \notin A$ implies $x^n \notin A$ for each n. Hence $x \notin A'$.

Let Q^* be a p-system such that $Q^* \cap A = \phi$. Let C be the collection of all p-systems which contain Q^* and do not meet A. Since $Q^* \subseteq C$, C is nonempty. It is clear that the union of a chain in C is in C, and hence C has a maximal element M^* . Let $M = \{x \in S \mid f(x) \cap M^* \neq \phi\} \cap A^c$. Then M is an f-system with the kernel M^* and $M \cap A = \phi$. As is seen in the proof of Theorem 1.4, there exists an f-prime ideal P such that $A \subseteq P$ and $P \cap M = \phi$. Since P^c is an f-system with the kernel M^* , $P^c = M$.

DEFINITION. An f-prime ideal P is called a minimal f-prime ideal belonging to an ideal A iff P contains A and there exists a kernel Q^* for the f-system P^c such that Q^* is a maximal p-system which does not meet A.

It is clear that any f-prime ideal P containing A contains a minimal f-prime ideal belonging to A and the f-radical of an ideal A coincides with the intersection of all minimal f-prime ideals belonging to A.

In general, an aribitrary intersection of f-prime ideals of S may not be f-prime. However, an arbitrary intersection of f-semiprime ideals of S is f-semiprime. It follows that an arbitrary intersection of f-prime ideals of S is f-semiprime, and an ideal A in S is f-semiprime iff $r_f(A) = A$.

2. f-primary ideals

DEFINITION. An element a is (right) f-related to an ideal A of S iff for each $b \in f(a)$, there exists an element $c \notin A$ such that $cb \in A$. An ideal B is (right) f-related to an ideal A of S iff every element of B is f-related to A.

Lemma 2.1. Let A be an ideal of S and let K be the set of all elements of S which are not f-related to A. Then K is an f-system.

Proof. Let q be an element of K. Then there exists b in f(q) such that $cb \notin A$ for every element $c \notin A$. Let K^* be the set of all such b. Then K^* is a p-system and $f(q) \cap K^* \neq \phi$. Hence K is an f-system with the kernel K^*

In Example (1), let A=4N and $f(a)=aN \cup 3N$ for any $a \in S$. Then $3 \in f(a)$ and $3(4n+i) \notin A$ for i=1,2,3. It follows that for any $c \notin A$, $3c \notin A$. Hence A is not f-related to A. However, each element of a proper ideal A is f-related to A if f is defined to be f(a)=(a) for each

a in S.

For the rest of this section, we assume that (α) Every ideal A of S is f-related to A

Proposition 2.2. The f-radical $r_f(A)$ of an ideal of S is f-related to A.

Proof. Let K be the set of all elements of S which are not f-related to A. Suppose $x \in r_f(A)$ and x is not f-related to A. Then by Lemma 2.1, K is an f-system containing x. It follows that $K \cap A \neq \phi$, which contradicts the assumption (α) .

Let K be the set of all elements of S which are not f-related to A. Then K is an f-system and $K \cap A = \phi$ by Lemma 2.1 and the assumption (α) . Let P be the union of all ideals which are f-related to A and do not meet K. As the proof of Theorem 1.4, P becomes f-prime. This unique maximal ideal P will be called the maximal f-prime ideal belonging to A. By the assumption (α) , P contains A. Since an element x is f-related to an ideal A iff f(x) is f-related to A, every element f-related to A is contained in P.

For ideals A and B of S and $x \in S$, we adopt the notation $A : x = \{y \in S | f(y)f(x) \subset A\}$ and $A : B = \bigcap \{A : x | x \in B\}$

PROPOSITION 2.3. Let A be an ideal of S and $b \in S$. If $A : b \neq \phi$, then A : b is an ideal containing A.

Proof. Let $x \in A : b$ and $s \in S$. Then $x \in f(x)$ and $xs \in f(x)$. It follows that $f(xs) \subset f(x)$ and $f(xs)f(b) \subset f(x)f(b) \subset A$. Thus $xs \in A : b$. Similarly, $sx \in A : b$. Let $a \in A$ and $x \in A : b$. Then $xa \in A : b \cap A$, and $f(xa)f(b) \subset A$. For any $a' \in A$, $f(a') \subset f(xa) \cup A$ since $a' \in f(xa) \cup A$. Then f(a') $f(a) \subset (f(xa) \cup A) f(b) = f(xa) f(b) \cup A f(b) \subset A$, and hence $a' \in A : b$.

Let P be the maximal f-prime ideal belonging to an ideal A of S and let

$$A_{p} = \begin{cases} \bigcup_{s \neq P} (A:s) & \text{if } P \neq S \\ A & \text{if } P = S. \end{cases}$$

If f(a) = (a), for any a of S, then $A_p \neq \phi$ since $A \subseteq A$: s for any

 $s \notin A$. In Example (1), let A=4N and P=2N. Then for any $s \in S$, $9N \subset f(x)f(s)$. It follows that $A: s=\{x \in S \mid f(x)f(s) \subset 4N\} = \phi$, and hence $A_p = \phi$ whenever $P \neq S$.

For the rest of this section, we will also assume that

(β) For any ideals A and B with $B \not\subset r_f(A)$, $A : B \neq \phi$.

Proposition 2.4. Let P be the maximal f-prime ideal belonging to an ideal A of S. Then $A = A_p$.

Proof. By the assumption (β) , $A_p \neq \phi$. For any element x in A_p , there exists $s \in P^c$ such that $f(x)f(s) \subseteq A$. Since s is not f-related to A, there exists $s' \in f(s)$ such that $cs' \in A$ implies $c \in A$. Then $xs' \in A$, and hence $x \in A$. Therefore $A = A_p$.

Definition. Let K be an f-system in S. A kernel K^* of K is said to be dense in K iff $K^* \cap A \neq \phi$ for any ideal A in S with $K \cap A \neq \phi$.

If f(a) = (a) for any a in S, then every kernel K^* of an f-system K is dense in K. However, in Example (1), since P=4N is f-prime, P^c is an f-system with the kernel $K^*=3N-6N$. Then $K^*\cap 6N=\phi$ while $P^c\cap 6N\neq \phi$, and hence K^* is not dense in P^c .

Definition. An ideal A of S is (right) f-primary iff $f(a)f(b) \subset A$ implies $a \in A$ or $b \in r_f(A)$.

Every f-prime ideal must be f-primary by Proposition 1.1.

PROPOSITION 2.5. Let A and B be ideals of S. Then

- (1) $A \subseteq B$ implies $r_f(A) \subseteq r_f(B)$
- (2) $r_f(r_f(A)) = r_f(A)$
- (3) $r_f(AB) = r_f(A \cap B) = r_f(A) \cap r_f(B)$ if every f-system in S has a dense kernel.

Proof. Clearly (1) and (2) hold. Now $r_f(AB) \subset r_f(A \cap B) \subset r_f(A)$ $\cap r_f(B)$ by (1). Let $x \in r_f(A) \cap r_f(B)$ and let K be any f-system containing x. Then $K \cap A \neq \phi$ and $K \cap B \neq \phi$. Since K has the dense kernel K^* , $K^* \cap A \neq \phi$ and $K^* \cap B \neq \phi$. Let $a \in K^* \cap A$, $b \in K^* \cap B$. Then $(a)(b) \cap K^* \neq \phi$. Since $(a)(b) \subset AB$, $AB \cap K^* \neq \phi$ and hence $AB \cap K \neq \phi$, which means $x \in r_f(AB)$.

COROLLARY 2.6. Assume that every f-system in S has a dense kernel.

Let Q and T be f-primary ideals such that $r_f(Q) = r_f(T)$. Then $Q \cap T$ is an f-primary ideal and $r_f(Q \cap T) = r_f(Q) = r_f(T)$.

Proposition 2.7. An ideal A is f-primary iff A: B=A for every ideal $B \not\subset r_f(A)$.

Proof. Suppose A is f-primary and B is an ideal such that $B \not\subset r_f(A)$. By the assumption (β) , $A: B \neq \phi$ implies $A \subset A: B$. Let $b \in B$ and $b \notin r_f(A)$. For each element $x \in A: B$, $x \in A$ since A is f-primary. Hence $A: B \subset A$ implies A: B = A. Conversely, suppose $f(a)f(b) \subset A$ and $b \notin r_f(A)$. Then $f(b) \not\subset r_f(A)$. Hence A: f(b) = A implies $f(a)f(b') \subset f(a)f(b) \subset A$, for every $b' \in f(b)$. Therefore $a \in \bigcap \{A: b' | b' \in f(a)\} = A: f(b) = A$.

DEFINITION. If an ideal A can be written as $A = A_1 \cap A_2 \cap ... \cap A_n$, where A_i is an f-primary ideal for each i, it is called an f-primary decomposition of A. Every A_i is called an f-primary component of A.

A decomposition is called irredundant iff $\bigcap_{i \neq i} A_j \not\subset A_i$ for each *i*.

An irredundant f-primary decomposition is said to be reduced iff $r_f(A_i) \neq r_f(A_i)$ $(i \neq j)$.

If an ideal A of S has an f-primary decomposition and if every f-system in S has a dense kernel, then A has a reduced f-primary decomposition by Corollary 2. 6.

In the rest of this section, we assume the following:

 (γ) A: A=S for any f-primary ideal A.

In Example (1), let A=4N. Since $9N \subset f(x) f(a) \not\subset A$ for $a \in A$ and $x \in S$, $A : A = \phi$. Thus the assumption (γ) is essential. However, (γ) holds if f(a) = (a) for every a in S.

THEOREM 2.8. Let $A = A_1 \cap A_2 \cap ... \cap A_n = A'_1 \cap A'_2 \cap ... \cap A'_m$ be two reduced f-primary decompositions of A. Then n = m and it is possible to renumber the f-primary components in such a way that $r_f(A_i) = r_f(A'_i)$ for $1 \le i \le n = m$.

Proof. Using Proposition 2.5, Proposition 2.7 and Corollary 2.6, the proof follows as in Theorem 3.7 of [3].

3. f-primary semigroups

PROPOSITION 3.1. Let A be an ideal of a semigroup S with identity 1.

If $r_f(A) = S - H(1)$, then A is f-primary. Where H(1) is the maximal subgroup containing 1.

Proof. Let $f(x)f(y) \subset A$ and $x \notin A$. Suppose $y \notin r_f(A)$. Then $f(y) \not\subset r_f(A) = S - H(1)$, and hence f(y) = S. Then $f(x)f(y) = f(x)S = f(x) \subset A$. and $x \in A$ which is a contradiction. Thus A is f-primary.

PROPOSITION 3.2. Let S be a semigroup with identity 1 and let every f-system in S has a dense kernel. Then for any $n \in \mathbb{N}$, M^n is f-primary, where M = S - H(1).

Proof. By Proposition 2.5 (3), $r_f(M^n) = r_f(M) \cap ... \cap r_f(M) = M \cap ... \cap M$. Hence M^n is f-primary by Proposition 3.1.

Definition. A semigroup S is called f-primary iff every ideal of S is f-primary.

Theorem 3.3. Let S be a semigroup with identity 1. If S has no f-prime ideal except S-H(1), then S is an f-primary semigroup. The converse is not true as in shown in [2].

Proof. Let A be a proper (nonzero) ideal. Then $r_f(A) = S-II(1)$. By Proposition 3.1, A is f-primary.

Theorem 3.4. Let S be a left regular semigroup. If the set of all f-prime ideals of S is linearly ordered, then S is f-primary.

Proof. Let A be an ideal of S and let $f(x)f(y) \subset A$. If $x \notin A$, $x^n \notin A$ for each positive integer n by the left regularity of S. Then $x \notin r_f(A)$ by Theorem 1.5. Since f-prime ideals are linearly ordered, $r_f(A)$ is f-prime. Now, since $f(x)f(y) \subset r_f(A)$, $y \in r_f(A)$ by Proposition 1.1.

References

- A. Anjaneyulu, primary ideals in semigroups, Semigroup Forum Vol. 20 (1980) 129-144.
- 2. M. Satyanarayaha, Commutative primary semigroups, Czechosbvak Math. Vol. 22 (1972) 509-516.
- 3. Murata K., Kurata Y., and Marubayashi H., A generalization of prime ideals in rings, Osaka J. Math. 6(1969) 291-301.
- 4. A.P.J. Van der Walt, Contributions to ideal theory in general rings, Proc.

Kon. Ned. Akad. Wetensch. A67(1964) 68-77.

5. Clifford and Preston, Algebraic theory of semigroups I. II, American Mathematical Society.

Kyungpook National University Daegu 635, Korea