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ON GENERALIZED KKM-THEOREMS

Senie Park anp Won Kyu Kiv

Let E be a Hausdorff topological vector space. We shall denote by 2
the set of all nonempty subsets of E. For Ac2E, A denotes its closure,
and co(A) denotes the convex hull of A. Let X be a nonempty subset
of E. A map T:X—2E is called a KKM-map if co {zy, ..., z,} < Gl T(z;)
for each finite subset {z, ..., z,} of X. Note that the KKM-condition
tells us only about the union of T'(z)’s. We do not need any topologi-
cal restrictions on 7. It is clear that a KKM-map T must be a multi-
map. Studying various branches of analysis, particularly convex analysis,
we frequently meet some KKM-maps, which have a number of impor-
tant applications (see [4, 6, 10, 14, 18, etc. ]).

Recall that the classical KKM-theorem takes the following form:

Turorem [12]. Let X be the set of vertices of a simplex in E=Rn»,
and let T : X—2F be a compact valued KKM-map. Then N T(z) +o.
zeX

It is well-known that the KKM-theorem is equivalent to the Brouwer
fixed point theorem and the celebrated Sperner lemma [18]. Those three
results underpin many powerful results in broad areas in mathematical
sciences. All are extremely important and, although seemingly different,
are in a deep sense equivalent. For the details, see [18].

For the first time, the KKM-theorem was only used in fixed point
theory [12]. Later examples of applications of the KKM-~theorem were
in dimension theory [13], mathematical economics [8], and minimax
problem [16]. Since Fan’s generalization of the KKM-theorem was
appeared in 1961, many more applications have been obtained by a
number of authors in studying invariant subspaces of linear operators
[9], fixed point theory [3], variational inequalities (2], quasi-variational

Received April 1, 1987.
Supported in part by the Basic Science Research Institute Program, Ministry of Educa-
tion, 1986.



200 Sehie Park and Won Kyu Kim

inequalities [15], mathematical economics and game theory [1], and so
on. Also many extensions of Fan’s generalization have been obtained by
a number of authors for various purposes, e.g., Brézis-Nirenberg-Stam-
pacchia [2], Dugundji and Granas [4], Fan [6,7] and Lassonde [14].

The purpose of this paper is to generalize and unify numerous gene-
ralizations of the KKM-theorem. Before proceeding further, we quote
the infinite dimensional version of the KKM-theorem due to Fan, which
is the first basic theorem of this paper.

Tueorem 0 ([51). Let X be a subset of a Hausdorff topological vector
space E, and let T : X—2E be a closed valued KKM-map. 1f T(x,)
is compact for at least one zy X, then N T(x) #¢.

zeX

There are two possibilities to generalize Theorem 0. On the one
hand, the closedness assumption on 7'(x) can be relaxed, e.g., finitely
closedness [4], relatively closedness [6] and compactly closedness [14].
On the other hand, the compactness assumption on 7T'(z;) can also be
relaxed. In fact, the requirement that T(z;) be compact for some z,€ X
is not always met in practice [2]. The compactness assumption only
used to assure that any family of closed sets, having the finite intersec-
tion property, admits the whole intersection property. Therefore, we
only need some weaker compactness assumptions to assure the whole in-
tersection property, e.g., c—compactness [14].

Now we introduce more general closedness conditions, which are
relative versions of Dugundji-Granas [4] and Lassonde [14].

Dermition. Let Y be a nonempty subset of a topological space E. A
set XCY is called a finitely relatively closed subset of Y if the intersec-
tion of X with any finite dimensional subspace F of E is a relatively
closed subset of YNF. A set XCY is called a compactly relatively closed
subset of Y if the intersection of X with any compact subset K of E is
a relatively closed subset of YN K.

Note that every finitely closed subset of E is necessarily finitely rela-
tively closed, and every compactly closed subset of E is also compactly
relatively closed. Moreover, every relatively closed subset is also finitely
relatively closed and compactly relatively closed. Note that if Y is
closed, then the relative versions of Definition are equivalent to the
corresponding ones in [4, 14].
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Let Y be a nonempty subset of a Hausdorff topological vector space
E. A set XCY is called a precompact subset of Y if X is contained
in some compact subset of Y. In other words, the closure of X is a
compact subset of Y. Every compact set is clearly precompact, and
every precompact set is not necessarily compact.

We are now ready to give generalizations of the KKM-theorem. Each
of the following theorems contains Theorem 0 and the KKM-theorem
as special cases.

LemMa. Let Y be a convex substet of a Hausdorff topological wvector
space E, and ¢p+XCY. Let T : X—2E be a KKM-map such that each
T(x) is a relatively closed subset of Y. Furthermore, assume that there
exists a nonempty subset X, X, contained in some precompact convex
subset Yy of 'Y, such that | T(x) is a compact subset of Y. Then

zC Xo
ﬂXT(x) #o.

Proof. For any finite subset {zy,...,z,} of X, let X;=XyU {z1, ...,
x,}. Since Y, is a precompact convex subset of Y, the convex hull of
YoU {z1, ..., .} is also a compact convex subset of Y, and denote it by
K. For each yeX,, let G(y)=T(y) NK. Since T(y) is closed in Y,
and K is a compact subset of Y, each G(y) is also compact. Further-
more, since T is a KKM-map, we can easily show that G is also a
KKM-map. Therefore, by Theorem 0, we have ﬂx G(y) #¢. Hence

yoa,

we have
o+ Qx G(a)= ﬂx T NK

x€X)

c N T() N Tlx) NN T(xn).

reX,

Let C denote the compact set ) T(z). Then we have ﬂl Tx)NC+¢

reX,
for every finite subset {zy, ..., z,} ©X. Since each T'(z) is a relatively
closed subset of Y and C is a compact subset of Y, each T(2)NC is
also a compact subset of Y. Since the family {T(2) NC|z< X} has the
finite intersection property, we have

QX T(z)NC = ﬂx T(z)+#9¢.
This completes the proof.

Remark. In a recent paper [7], Fan shows the contrapositive of a
weaker form of the above lemma by using the KKM-theorem with a
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lemma.

TueoreMm 1. Let Y be a convex subset of a Hausdorff topological
vector space E, and ¢+XCY. Let T : X—2F be a KKM-map such
that each T(x) is a finitely relatively closed subset of Y. Furthermore,
assume the following:

(1) There exists a nonempty finite dimensional set X, X, contained
in some precompact convex subset of Y, such that N T(z) is a compact

z=Xe
subset of Y.
(2) For every line segment L of E we have

(N T@))NL= N T(x)NL.
zeXnl z€XnL
T hen ﬂX T(z) #¢.

Proof. The conclusion holds in finite dimensional case by Lemma.
Let {E;|i=1I} be the class of all finite dimensional subspaces of E, con-
taining X, as subset, ordered by inclusion, i.e., i>j if and only if
E;CE,;. Then, by the finite dimensional case, for each i€ there exists
a point

%€ N T()NE.

z=XnE:

Let ¢;={y;]j=4} for each i€l. Then the family {¢;|icl} has the
finite intersection property and ¢; C ﬂX T(z) for each i€l Since

N T(z) is compact, (1 ¢;#¢, so there exists a point y& N ¢;. We
[=4 el

zeXo

show that y is contained in each T(z). For any z& X, we consider the
line segment L, which joins z and y. Then L is contained in some F;
for sufficiently large i€1. Hence, we have

yEHNLS( N TGRHNL
(N T)HNL

z&XNL
=  T(z)NL.

z=XnNL
Therefore y= T (z), and consequently y& ﬂXT(x). This completes the

proof.

In case of Y=E in Theorem 1, we obtain the following generalization
of the Brézis-Nirenberg-Stampacchia lemma [2].

CoroLLary 2. Let X be a nonempty subset of a Hausdorff topological
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vector space E, and let T @ X—2F be a KKM-map such that each T(z)
is finitely closed. Furthermore, assume the following:

(1) There exists a nonempty finite dimensional set X, X, contained
in some precompact convexr subset of E, such that 1\ T(x) is compact.

reXo

(2) For every line segment L of E we have

(O T@)HNL=1N T)NL.
2€X L zCXNL
Then O\' T(z)+#¢.

Remarks. (1) In Theorem 1 and Corollary 2, the condition (2) can
be replaced by the following without affecting the conclusion.
(2") For every finite dimensional subspace E; of E we have

(N T@)) N E= 0 T NE,.
2. XNE: zC XNE:

(ii) Theorem 1 and Corollary 2 are gencralizations of the Brézis-
Nirenberg-Stampacchia lemma [2]. In fact, the authors used the follo-
wing strong conditions instead of (1) and (2) (or (2)):

(a) T(x,) is compact for some r,&X.
(b) For every convex subset 1D of E,

(N T@nb= N T@)ND.
2ZXND zeXnD

(iit) The Brézis-Nirenberg-Stampacchia lemma has often been used

in recent papers [10, 17, etc]. Hence we can generalize the results of
those papers by relaxing the hypotheses.

Now we prove the following intersection property by using the com-
pactly relatively closedness concept:

Tueorem 3. Let Y be a convex subset of a Hausdorff topological vector
space E, and ¢+XY. Let T : X—2F be a KKM-map such that each
T(x) is a compactly relatively closed subset of Y. Furthermore, assume
that there exists a nonempty set Xo= X, contained in some precompact

convex subset Yo of Y such that Q T(z) is a compact subset of Y.
Then ﬂX T(z) .

Proof. Let {zi1,...,z,} be a finite subset of X. Since Y is a pre-
compact convex subset of Y, the convex hull K of Y, U {z1, ..., 2, is
a compact convex subset of Y. Now we define a multimap G: XN K—
2E by G(y»)=T(y) NK for each y&XNK. Since T(y) is compactly
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closed in Y, G(y) is a compact subset of Y. Moreover, the multimap
G is clearly a KKM-map. Therefore, by Theorem 0, Q KG(x) #¢.
zeXN

Since
o N Glx)= N T NK
zeXnkK ze€XnkK
< ( QXO T(x)) N T(x) NN T ()
for every finite subset {zi,...,z,} of X, we have
NT() 0 N T@)+#¢.

Since each 7T(z) is a compactly relatively closed subset of Y and

N T(z) is a compact subset of Y, we have
z=Xo

0,760 CLTE)= 1,7 %4,
This completes the proof.

Remarks. (i) Theorem 3 is clearly a generalization of the previous
lemma, so Theorem 3 includes generalizations of the KKM-theorem
due to Fan [5,6, 7].

(i) In Theorem 3, the compactness of | T'(z) does not exclude the

z€Xo

possibility that it is empty. However, the conclusion ﬂXT(x) #¢ of
1=

the theorem implies that N 7'(z) is necessarily nonempty.
z=EXo

CoroLrarY 4. Let X be a nonempty subset of a Hausdorff topological
vector space E, and let T : X—2E be a KKM-map such that each T(z)
is compactly closed. Assume that there exists a nonempty subset X, X,
contained in some precompact convex subset of E, such that [} T(z) is

z=Xo
compact. Then ﬂx T(x) #¢.

CoroLLARY 5. Let X be a nonempty subset of a Hausdorff topological
vector space E, and let T : X—2E be a KKM-map such that each T(x)
is compactly closed. If T(zy) is compact for some <X, then ﬂX T(z)

zE

+.
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