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ON GENERALIZED KKM-THEOREMS

SEHIE PARK AND WON KYU KIM

Let E be a Hausdorff topological vector space. We shall denote by 2£
the set of all nonempty subsets of E. For AE2E, Lt denotes its closure,
and coCA) denotes the convex hull of A. Let X be a nonempty subset

n

of E. A map T: X~2E is called a KKM-map if co {XI. .•• , Xn} C U T(x;)
;==}

for each finite subset {xr, "', xn} of X. Note that the KKM-condition
tells us only about the union of T(x)' s. We do not need any topologi
cal restrictions on T. It is dear that a KKM-map T must be a multi
map. Studying various branches of analysis, particularly convex analysis,
we frequently meet some KKM-maps, which have a number of impor
tant applications (see [4,6,10,14,18, etc. J).

Recall that the classical KKM-theorem takes the following form:

THEOREM [12J. Let X be the set of vertices of a simplex in E=R",
and let T: X~2E be a compact valued KKM-map. Then n T(x) =tt/>.

xEX

It is well-known that the KKM-theorem is equivalent to the Brouwer
fixed point theorem and the celebrated Sperner lemma [18]. Those three
results underpin many powerful results in broad areas in mathematical
sciences. All are extremely important and, although seemingly different,
are in a deep sense equivalent. For the details, see [18J.

For the first time, the KKM-theorem was only used in fixed point
theory [12]. Later examples of applications of the KKM-theorem were
in dimension theory [13J, mathematical economics [8J, and minimax
problem [16J. Since Fan's generalization of the KKM-theorem was
appeared in 1961, many more applications have been obtained by a
number of authors in studying invariant subspaces of linear operators
[9J, fixed point theory [3J, variational inequalities [2J, quasi-variational
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• inequalities [15J, mathematical economics and game theory [IJ, and so
on. Also many extensions of Fan's generalization have been obtained by
a number of authors for various purposes, e. g., Brezis-Nirenberg-Stam
pacchia [2J, Dugundji and Granas [4J, Fan [6,7J and Lassonde [14J.

The purpose of this paper is to generalize and unify numerous gene
ralizations of the KKM-theorem. Before proceeding further, we quote
the infinite dimensional version of the KKM-theorem due to Fan, which
is the first basic theorem of this paper.

THEOREM 0 ([5J). Let X be a subset of a Hausdorff topological vector
space E, and let T: X _2E be a closed valued KKM-map. If T(xo)
is compact for at least one xoEX, then n T(x) =tifJ.

XEX

There are two possibilities to generalize Theorem O. On the one
hand, the closedness assumption on T(x) can be relaxed, e. g., finitely
closedness [4J, relatively closedness [6J and compactly closedness [l4J.
On the other hand, the compactness assumption on T(xo) can also be
relaxed. In fact, the requirement that T(xo) be compact for some xoEX
is not always met in practice [2J. The compactness assumption only
used to assure that any family of closed sets, having the finite intersec
tion property, admits the whole intersection property. Therefore, we
only need some weaker compactness assumptions to assure the whole in
tersection property, e. g., c-compactness [14J.

Now we ir{troduce more general closedness conditions, which are
relative versions of Dugundji-Granas [4J and Lassonde [14J.

DEFINITION. Let Y be a nonempty subset of a topological space E. A
set XcY is called a finitely relatively closed subset of Y if the intersec
tion of X with any finite dimensional subspace F of E is a relatively
closed subset of yn F. A set Xc Y is called a compactly relatively closed
subset of Y if the intersection of X with any compact subset K of E is
a relatively closed subset of Y nK.

Note that every finitely closed subset of E is necessarily finitely rela
tively closed, and every compactly closed subset of E is also compactly
relatively closed. Moreover, every relatively closed subset is also finitely
relatively closed and compactly relatively closed. Note that if Y is
closed, then the relative versions of Definition are equivalent to the
corresponding ones in [4,14].
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Let Y be a nonempty subset of a Hausdorff topological vector space
E. A set Xc Y is called a precompact subset of Y if X is contained
in some compact subset of Y. In other words, the closure of X is a
compact subset of Y. Every compact set is clearly precompact, and
every precompact set is not necessarily compact.

We are now ready to give generalizations of the KKM-theorem. Each
of the following theorems contains Theorem °and the KKM-theorem
as special cases.

LEMMA. Let Y be a convex substet of a Hausdorff topological vector
space E, and rjJ *- Xc Y. Let T: X _2E be a KKM-map such that each

T(x) is a relatively closed subset of Y. Furthermore, assume that there
exists a nonempty subset Xoc X, contained in some precompact convex

subset Yo of Y, such that n T(x) is a compact subset of Y. Then
.xCXo

n T(x) "*rjJ.
xC x

Proof. For any finite subset {Xll .•. , XII} of X, let Xl =XoU {Xl, ..• ,
XII}' Since Yo is a precompact convex subset of Y, the convex hull of
YoU {Xll ..• , XII} is also a compact convex subset of Y, and denote it by
K. For each yEX ll let G(y) = T(y) nK. Since T(y) is closed in Y,
and K is a compact subset of Y, each G(y) is also compact. Further
more, since T is a KKM-map, we can easily show that G is also a
KKM-map. Therefore, by Theorem 0, we have n G (y) "* rjJ. Hence

ycX 1

we have

rjJ"* n G(x)= n T(x) nK
XCXl :rEX I

C n T(x) n T(Xl) n... nT(xn ).
XEXo

n

Let C denote the compact set n T(x). Then we have n T(x;) nC"*rjJ
.rEXo i~ 1

for every finite subset {Xl> .•• , Xn} cX. Since each T(x) is a relatively
closed subset of Y and C is a compact subset of Y, each T(x) ne is
also a compact subset of Y. Since the family {T(x) ne IxE X} has the
finite intersection property, we have

n T(x) ne = n T(x)"*rjJ.
:rl:::X ZEX

This completes the proof.

REMARK. In a recent paper [7J, Fan shows the contrapoSltlVe of a
weaker form of the above lemma by using the KKM-theorem with a
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lemma.
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THEOREM 1. Let Y be a convex subset of a Hausdorff topological
vector space E, and ep =1= Xc Y. Let T: X _2E be a KKM-map such
that each T(x) is a finitely relatively closed subset of Y. Furthermore,
assume the following:

(1) There exists a nonempty finite dimensional set XocX, contained

in some precompact convex subset "f Y, such that n T(x) is a compact
XEXo

subset of Y.
(2) For every line segment L of E we have

( n T(x»nL= n T(x)nL.
xEXnL xExnL

Then n T(x) =l=ep.
xEX

Proof. The conclusion holds in :finite dimensional case by Lemma.
Let {E; liE I} be the class of all :finite dimensional subspaces of E, con
taining Xo as subset, ordered by inclusion, i. e., i?:.j if and only if
EjcE;. Then, by the :finite dimensional case, for each iEI there exists
a point

y;E n T(x) nE;.
xExnEi

Let rPi= {Yj Ij?:.i} for each iEI. Then the family {ep;1 iEI} has the
:finite intersection property and ep; c n T(x) for each iEI. Since

xEXo

n T(x) is compact, n ep;=I=ep, so there exists a point yE n rP;. We
xEXo iEI iEJ

show that y is contained in each T(x). For any xEX, we consider the
line segment L, which joins x and y. Then L is contained in some Fj

for sufficiently large i E 1. Hence, we have

yE<p;nLc( n T(z» nL
zEXnE,

C ( n T(z» nL
zExnL

= n T(z) nL.
zExnL

Therefore yE T(x), and consequently yE n T(x). This completes the
xEX

proof.

In case of Y= E in Theorem 1, we obtain the following generalization
of the Brezis-Nirenberg-Stampacchia lemma [2J.

COROLLARY 2. Let X be a nonempty subset of a Hausdorff topological
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vector space E, and let T: X ->2E be a KKM-map such that each T(:r)
is finitely closed. Furthermore, assume the following:

(1) There exists a nonempty finite dimensional set XocX, contained

in some precompact convex subset of E, such that n T(x) is compact.
xE::Xo

(2) For every line segment L of E we have

(rl;l(~) nL= n T(x) nL.
LeX IL xcxnL

Then n T(x) *9,

REMARKS. (i) In Theorem 1 and Corollary 2, the condition (2) can
be replaced by the following without affecting the conclusion.

(2') For every finite dimensional subspace E; of E we have

(n T(x) n E;= n l' (x) nE;.
.1\ XnE, xcX:1E.

(ii) Theorem 1 and Corollary 2 are generalizations of the Bn~zis

Nirenberg-Stampacchia lemma [2J. In fact, the authors used the follo
wing strong conditions instead of (1) and (2) (or (2'»:

(a) 1'(.Yo) is compact for some xoE X.
(b) For every convex subset j) of E,

( n 1'(x) n])= n T(x) fl n.
,cxnD xExnD

(iii) The Brezis-Nirenberg-Stampacchia lemma has often been used
in recent papers [10, 17, etc]. Hence we can generalize the results of
those papers by relaxing the hypotheses.

Now we prove the following intersection property by using the com
pactly relatively closedness concept:

THEOREM 3. Let Y be a convex suhset of a HausdorjJ topological vector
space E, and ifJ*XcY. Let T: X->2E be a KKM-map such that each
T(x) is a compactly relatively closed subset of Y. Furthermore, assume
that there exists a nonempty set Xoc X, contained in some precompact

convex subset Yo of Y such that n T(x) is a compact subset of Y.
xEXo

Then n T(x) *ifJ.
xE-X

Proof. Let {Xl, ... , x n } be a finite subset of X. Since Yo is a pre

compact convex subset of Y, the convex hull K of ~U {.T}, .•• , x n } is
a compact convex subset of Y. Now we define a multimap G : X nK->
2E by G(y)=T(y) nK for each yEXnK. Since T(y) is compactly
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closed in Y, G(y) is a compact subset of Y. Moreover, the multimap
G is clearly a KKM-map. Therefore, by Theorem 0, n G(x) =f:.l/J.

xEXnK

Since
l/J=I= n G(x) = n T(x) nK

xExnK xExnK

C ("'--'-n---=T-;-(x"""»' nT(Xl) n... nT(xn )
.xEXo

for every finite subset {Xl> .•• , x n} of X, we have
It

nT(Xi) n ( n T(x» =l=l/J.
;=1 xEXo

Since each T(x) is a compactly relatively closed subset of Y and
n T(x) is a compact subset of Y, we have

xEXo

n T(x) n( n T(x» = n T(x) =l=l/J.
XEX xEX. xEX

This completes the proof.

REMARKS. (i) Theorem 3 is clearly a generalization of the previous
lemma, so Theorem 3 includes generalizations of the KKM-theorem
due to Fan [5,6, 7J.

(ii) In Theorem 3, the compactness of n T(x) does not exclude the
xEXO

possibility that it is empty. However, the conclusion n T(x) =f:.l/J of
xEX

the theorem implies that n T(x) is necessarily nonempty.
xEXo

COROLLARY 4. Let X be a nonempty subset of a Hausdorff topological
vector space E, and let T: X _2lJ: be a KKM-map such that each T(x)
is compactly closed. Assume that there exists a nonempty subset XocX,
contained in some precompact convex subset of E, such that n T(x) is

xEX.

compact. Then n T(x) =f:.l/J.
xEX

COROLLARY 5. Let X be a nonempty subset of a Hausdorff topological
vector space E, and let T: X_2E be a KKM-map such that each T(x)

is compactly closed. If T(xo) is compact for some xEX, then n T(x)
xEX



On generalized KKM-theorems

References

205

1. ]. P. Aubin, Applied Abstract Analysis, \\'iley-Interscience, New York,

1977-
2. I I. Brezis, L. ;\'irenberg, and G. Stampacchia, A remark on Ky Fan's mi

nima.r principle, BoIl. Un. Mat. Ital. 6 (1972), 293-300.
3. F. E. Browder, The jixed point theory 0/ multi-'1.'alued mappings in topolo

gical vector spaces, Math. Ann. 177 (1968), 283-301-
4. ]. Dugundji and A. Granas, KKM-maps and variational inequalities, Ann.

Scuola Norm. Sup. Pisa 5 (1978), 679-682.
5. K. Fan, A generalization 0/ Tychono./J's ft.red point theorem, 1\1ath. Ann.

142 (1961), 305-310.
6. --, Fixed point and related theorems for 1I0ncompact convex sets, "Game theory

and related topics," (Eds. O. l\loeschlin, D. Pallaschke), North-Holland,
(1979), 151-156.

7. --, Some properties 0/ convex sets related to fixed point theorems, Math.
1\nn. 266 (1984), 519-537.

8. D. Gale, The law of supply and demand, 1\lath. Scand. 3 (1955), 155-169.
9. 1. S. Iohvidov, On a lemma 0/ Ky Fan generalizing the fixed point principle

0/ A. N. Tihonov, Soviet 1\lath. Dokl. 5 (1964), 1523-1526.
10. ]. L. ]oly and U. ~lGSco, A propos de l' existence et de la regularite des

solutions de certaines inequations quasi-varialionnel, ]. Functional Analysis
34 (1979), 107-137.

11. W. K. Kim, Som.:: applications of Brezis-Nirenberg-Stampacchia's lemma, Res.
Review Chungbuk Nat. Univ. 28 (1984), 123-126.

12. B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beu'ei s des Fix
punktsatzes fur n-dimensionale simplexe, Fund. 1\lalh. 14 (1929), 132-137.

n. K. Kuratowski, Topology I, Academic Press, New York, 1968.
14. 1\1. Lassonde, Oil the use of KKM-multi/unctions in fixed point theory and

related topics, ]. Math. Anal. Appl. 97 (198~), 131-201.
15. U. Mosco, Implicit variational problems and quasi-variational inequalities,

Lecture Notes in Math. 543, Springer (1976), 83-156.
16. M. Sion, On general minimax theorems, Pac. ]. Math. 8 (1958), 171-176.
17. E.Tarafdar and H.B. Thompson, On Ky Fan's minimax principle, ].

Austral. Math. Soc. (Series A) 26 (1978), 220-226.
18. W. 1. Zangwill and C. B. Garcia, Pathways to solutions, fixed points, and

equilibria, Prentice-Hall, Inc., Englewood Cliffs, 1981.

Seoul National University
Seoul 151, Korea



Sehie Park and Won Kyu Qm 

and 
Chuagbuk Natiaxld University 
Cheongju 310, h 




