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ON GENERALIZED KKM-THEOREMS

SEHIE PARK AND WON KYU KIM

Let E be a Hausdorff topological vector space. We shall denote by 2£
the set of all nonempty subsets of E. For AE2E, Lt denotes its closure,
and coCA) denotes the convex hull of A. Let X be a nonempty subset

n

of E. A map T: X~2E is called a KKM-map if co {XI. .•• , Xn} C U T(x;)
;==}

for each finite subset {xr, "', xn} of X. Note that the KKM-condition
tells us only about the union of T(x)' s. We do not need any topologi­
cal restrictions on T. It is dear that a KKM-map T must be a multi­
map. Studying various branches of analysis, particularly convex analysis,
we frequently meet some KKM-maps, which have a number of impor­
tant applications (see [4,6,10,14,18, etc. J).

Recall that the classical KKM-theorem takes the following form:

THEOREM [12J. Let X be the set of vertices of a simplex in E=R",
and let T: X~2E be a compact valued KKM-map. Then n T(x) =tt/>.

xEX

It is well-known that the KKM-theorem is equivalent to the Brouwer
fixed point theorem and the celebrated Sperner lemma [18]. Those three
results underpin many powerful results in broad areas in mathematical
sciences. All are extremely important and, although seemingly different,
are in a deep sense equivalent. For the details, see [18J.

For the first time, the KKM-theorem was only used in fixed point
theory [12]. Later examples of applications of the KKM-theorem were
in dimension theory [13J, mathematical economics [8J, and minimax
problem [16J. Since Fan's generalization of the KKM-theorem was
appeared in 1961, many more applications have been obtained by a
number of authors in studying invariant subspaces of linear operators
[9J, fixed point theory [3J, variational inequalities [2J, quasi-variational
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• inequalities [15J, mathematical economics and game theory [IJ, and so
on. Also many extensions of Fan's generalization have been obtained by
a number of authors for various purposes, e. g., Brezis-Nirenberg-Stam­
pacchia [2J, Dugundji and Granas [4J, Fan [6,7J and Lassonde [14J.

The purpose of this paper is to generalize and unify numerous gene­
ralizations of the KKM-theorem. Before proceeding further, we quote
the infinite dimensional version of the KKM-theorem due to Fan, which
is the first basic theorem of this paper.

THEOREM 0 ([5J). Let X be a subset of a Hausdorff topological vector
space E, and let T: X _2E be a closed valued KKM-map. If T(xo)
is compact for at least one xoEX, then n T(x) =tifJ.

XEX

There are two possibilities to generalize Theorem O. On the one
hand, the closedness assumption on T(x) can be relaxed, e. g., finitely
closedness [4J, relatively closedness [6J and compactly closedness [l4J.
On the other hand, the compactness assumption on T(xo) can also be
relaxed. In fact, the requirement that T(xo) be compact for some xoEX
is not always met in practice [2J. The compactness assumption only
used to assure that any family of closed sets, having the finite intersec­
tion property, admits the whole intersection property. Therefore, we
only need some weaker compactness assumptions to assure the whole in­
tersection property, e. g., c-compactness [14J.

Now we ir{troduce more general closedness conditions, which are
relative versions of Dugundji-Granas [4J and Lassonde [14J.

DEFINITION. Let Y be a nonempty subset of a topological space E. A
set XcY is called a finitely relatively closed subset of Y if the intersec­
tion of X with any finite dimensional subspace F of E is a relatively
closed subset of yn F. A set Xc Y is called a compactly relatively closed
subset of Y if the intersection of X with any compact subset K of E is
a relatively closed subset of Y nK.

Note that every finitely closed subset of E is necessarily finitely rela­
tively closed, and every compactly closed subset of E is also compactly
relatively closed. Moreover, every relatively closed subset is also finitely
relatively closed and compactly relatively closed. Note that if Y is
closed, then the relative versions of Definition are equivalent to the
corresponding ones in [4,14].



On generalized KKM-theorems 201

Let Y be a nonempty subset of a Hausdorff topological vector space
E. A set Xc Y is called a precompact subset of Y if X is contained
in some compact subset of Y. In other words, the closure of X is a
compact subset of Y. Every compact set is clearly precompact, and
every precompact set is not necessarily compact.

We are now ready to give generalizations of the KKM-theorem. Each
of the following theorems contains Theorem °and the KKM-theorem
as special cases.

LEMMA. Let Y be a convex substet of a Hausdorff topological vector
space E, and rjJ *- Xc Y. Let T: X _2E be a KKM-map such that each

T(x) is a relatively closed subset of Y. Furthermore, assume that there
exists a nonempty subset Xoc X, contained in some precompact convex

subset Yo of Y, such that n T(x) is a compact subset of Y. Then
.xCXo

n T(x) "*rjJ.
xC x

Proof. For any finite subset {Xll .•. , XII} of X, let Xl =XoU {Xl, ..• ,
XII}' Since Yo is a precompact convex subset of Y, the convex hull of
YoU {Xll ..• , XII} is also a compact convex subset of Y, and denote it by
K. For each yEX ll let G(y) = T(y) nK. Since T(y) is closed in Y,
and K is a compact subset of Y, each G(y) is also compact. Further­
more, since T is a KKM-map, we can easily show that G is also a
KKM-map. Therefore, by Theorem 0, we have n G (y) "* rjJ. Hence

ycX 1

we have

rjJ"* n G(x)= n T(x) nK
XCXl :rEX I

C n T(x) n T(Xl) n... nT(xn ).
XEXo

n

Let C denote the compact set n T(x). Then we have n T(x;) nC"*rjJ
.rEXo i~ 1

for every finite subset {Xl> .•• , Xn} cX. Since each T(x) is a relatively
closed subset of Y and C is a compact subset of Y, each T(x) ne is
also a compact subset of Y. Since the family {T(x) ne IxE X} has the
finite intersection property, we have

n T(x) ne = n T(x)"*rjJ.
:rl:::X ZEX

This completes the proof.

REMARK. In a recent paper [7J, Fan shows the contrapoSltlVe of a
weaker form of the above lemma by using the KKM-theorem with a
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lemma.
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THEOREM 1. Let Y be a convex subset of a Hausdorff topological
vector space E, and ep =1= Xc Y. Let T: X _2E be a KKM-map such
that each T(x) is a finitely relatively closed subset of Y. Furthermore,
assume the following:

(1) There exists a nonempty finite dimensional set XocX, contained

in some precompact convex subset "f Y, such that n T(x) is a compact
XEXo

subset of Y.
(2) For every line segment L of E we have

( n T(x»nL= n T(x)nL.
xEXnL xExnL

Then n T(x) =l=ep.
xEX

Proof. The conclusion holds in :finite dimensional case by Lemma.
Let {E; liE I} be the class of all :finite dimensional subspaces of E, con­
taining Xo as subset, ordered by inclusion, i. e., i?:.j if and only if
EjcE;. Then, by the :finite dimensional case, for each iEI there exists
a point

y;E n T(x) nE;.
xExnEi

Let rPi= {Yj Ij?:.i} for each iEI. Then the family {ep;1 iEI} has the
:finite intersection property and ep; c n T(x) for each iEI. Since

xEXo

n T(x) is compact, n ep;=I=ep, so there exists a point yE n rP;. We
xEXo iEI iEJ

show that y is contained in each T(x). For any xEX, we consider the
line segment L, which joins x and y. Then L is contained in some Fj

for sufficiently large i E 1. Hence, we have

yE<p;nLc( n T(z» nL
zEXnE,

C ( n T(z» nL
zExnL

= n T(z) nL.
zExnL

Therefore yE T(x), and consequently yE n T(x). This completes the
xEX

proof.

In case of Y= E in Theorem 1, we obtain the following generalization
of the Brezis-Nirenberg-Stampacchia lemma [2J.

COROLLARY 2. Let X be a nonempty subset of a Hausdorff topological
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vector space E, and let T: X ->2E be a KKM-map such that each T(:r)
is finitely closed. Furthermore, assume the following:

(1) There exists a nonempty finite dimensional set XocX, contained

in some precompact convex subset of E, such that n T(x) is compact.
xE::Xo

(2) For every line segment L of E we have

(rl;l(~) nL= n T(x) nL.
LeX IL xcxnL

Then n T(x) *9,

REMARKS. (i) In Theorem 1 and Corollary 2, the condition (2) can
be replaced by the following without affecting the conclusion.

(2') For every finite dimensional subspace E; of E we have

(n T(x) n E;= n l' (x) nE;.
.1\ XnE, xcX:1E.

(ii) Theorem 1 and Corollary 2 are generalizations of the Bn~zis­

Nirenberg-Stampacchia lemma [2J. In fact, the authors used the follo­
wing strong conditions instead of (1) and (2) (or (2'»:

(a) 1'(.Yo) is compact for some xoE X.
(b) For every convex subset j) of E,

( n 1'(x) n])= n T(x) fl n.
,cxnD xExnD

(iii) The Brezis-Nirenberg-Stampacchia lemma has often been used
in recent papers [10, 17, etc]. Hence we can generalize the results of
those papers by relaxing the hypotheses.

Now we prove the following intersection property by using the com­
pactly relatively closedness concept:

THEOREM 3. Let Y be a convex suhset of a HausdorjJ topological vector
space E, and ifJ*XcY. Let T: X->2E be a KKM-map such that each
T(x) is a compactly relatively closed subset of Y. Furthermore, assume
that there exists a nonempty set Xoc X, contained in some precompact

convex subset Yo of Y such that n T(x) is a compact subset of Y.
xEXo

Then n T(x) *ifJ.
xE-X

Proof. Let {Xl, ... , x n } be a finite subset of X. Since Yo is a pre­

compact convex subset of Y, the convex hull K of ~U {.T}, .•• , x n } is
a compact convex subset of Y. Now we define a multimap G : X nK->
2E by G(y)=T(y) nK for each yEXnK. Since T(y) is compactly
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closed in Y, G(y) is a compact subset of Y. Moreover, the multimap
G is clearly a KKM-map. Therefore, by Theorem 0, n G(x) =f:.l/J.

xEXnK

Since
l/J=I= n G(x) = n T(x) nK

xExnK xExnK

C ("'--'-n---=T-;-(x"""»' nT(Xl) n... nT(xn )
.xEXo

for every finite subset {Xl> .•• , x n} of X, we have
It

nT(Xi) n ( n T(x» =l=l/J.
;=1 xEXo

Since each T(x) is a compactly relatively closed subset of Y and
n T(x) is a compact subset of Y, we have

xEXo

n T(x) n( n T(x» = n T(x) =l=l/J.
XEX xEX. xEX

This completes the proof.

REMARKS. (i) Theorem 3 is clearly a generalization of the previous
lemma, so Theorem 3 includes generalizations of the KKM-theorem
due to Fan [5,6, 7J.

(ii) In Theorem 3, the compactness of n T(x) does not exclude the
xEXO

possibility that it is empty. However, the conclusion n T(x) =f:.l/J of
xEX

the theorem implies that n T(x) is necessarily nonempty.
xEXo

COROLLARY 4. Let X be a nonempty subset of a Hausdorff topological
vector space E, and let T: X _2lJ: be a KKM-map such that each T(x)
is compactly closed. Assume that there exists a nonempty subset XocX,
contained in some precompact convex subset of E, such that n T(x) is

xEX.

compact. Then n T(x) =f:.l/J.
xEX

COROLLARY 5. Let X be a nonempty subset of a Hausdorff topological
vector space E, and let T: X_2E be a KKM-map such that each T(x)

is compactly closed. If T(xo) is compact for some xEX, then n T(x)
xEX
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