SEMI-INVARIANT SUBMANIFOLDS WITH PARALLEL NORMAL CURVATURE IN A COMPLEX SPACE FORM*

U-HANG KI, EUI-WON LEE AND WON TAE OH

0. Introduction

Recently Nakagawa, Umehara and one of the present authors [6] studied the submanifolds with harmonic curvature in a Riemannian manifold of constant curvature.

On the other hand Blair, Ludden and Yano [1] introduced the semi-invariant immersion. From this point of views, Yano and one of the present authors [10] investigated semi-invariant submanifolds of real codimension 3 in a complex Euclidean space.

The purpose of the present paper is to study semi-invariant submanifolds with parallel normal curvature in a complex space form and to characterize the submanifolds with harmonic curvature.

We use the systems of indices throughout this paper as follows;

$$A, B, C, \dots = 1, \dots, 2n+1, \dots, 2n+4,$$

 $h, i, j, \dots = 1, \dots, 2n+1.$

The summation convention will be used with respect to those systems of indices.

1. Submanifolds admitting almost contact metric structure

Let (\overline{M}, G) be an almost Hermitian manifold of real dimension 2(n+2) equipped with an almost complex structure J and with an almost Hermitian metric tensor G. Let \overline{M} be covered by a system of coordinate neighborhoods $\{\overline{U}: y^A\}$ and denote by G_{BA} the components of G and by J_B^A those of J. Then we have

(1.1)
$$J_A{}^B J_B{}^C = -\delta_A{}^C, \ G_{CD} J_B{}^C J_A{}^D = G_{BA}.$$

Let M be a (2n+1)-dimensional Riemannian manifold covered by a

Received March 28, 1987.

^{*}This research was partially supported by KOSEF.

system of coordinate neighborhoods $\{U; x^h\}$ and immersed isometrically in \overline{M} by the immersion $\phi: M \longrightarrow \overline{M}$. When the argument is local, M need not be distinguished from $\phi(M)$. We represent the immersion ϕ locally by $y^A = y^A(x^h)$ and put $B_j{}^A = \partial_j y^A$, $(\partial_j = \partial/\partial x^j)$. Then $B_j = (B_j{}^A)$ are (2n+1)-linearly independent local tangent vectors of M and denote by C, D and E three mutually orthogonal unit normals to M. Then the induced Riemannian metric g_{ji} on the submanifold M is given by $g_{ji} = B_j{}^A B_i{}^C G_{AC}$ because the immersion ϕ is isometric. By denoting by V_j the operator of van der Waerden-Bortolotti covariant differentiation formed with g_{ji} , equations of Gauss and Weingarten for M are respectively obtained:

$$(1.2) V_j B_i^A = h_{ji} C^A + k_{ji} D^A + l_{ji} E^A,$$

$$(1.3) V_{i}C^{A} = -h_{i}^{h}B_{h}^{A} + l_{i}D^{A} + m_{i}E^{A},$$

(1.4)
$$\nabla_{i}D^{A} = -k_{i}^{h}B_{h}^{A} - l_{i}C^{A} + n_{i}E^{A},$$

(1.5)
$$\nabla_{j}E^{A} = -l_{j}^{h}B_{h}^{A} - m_{j}C^{A} - n_{j}D^{A},$$

where h_{ji} , k_{ji} and l_{ji} are the second fundamental forms in the direction of C, D and E respectively and l_j , m_j and n_j the third fundamental tensors of M.

The transformations of B_i^A , C^A , D^A and E^A by the almost complex structure J are represented in each coordinate neighborhood as follows:

(1.6)
$$J_C^A B_i{}^C = f_i{}^h B_h{}^A + u_i C^A + v_i D^A + w_i E^A,$$

(1.7)
$$J_B{}^A C^B = -u^h B_h{}^A - \nu D^A + \mu E^A,$$

$$J_C^A D^C = -v^h B_h^A + \nu C^A - \lambda E^A,$$

$$(1.9) J_C^A E^C = -w^h B_h^A - \mu C^A + \lambda D^A,$$

where we have put $f_{ji} = G(JB_j, B_i)$, $u_i = G(JB_i, C)$, $v_i = G(JB_i, D)$, $w_i = G(JB_i, E)$ and u^h , v^h and w^h being vector fields associated with u_i , v_i and w_i respectively, λ , μ , ν being functions in M. From these definitions we verify that f_{ji} is skew-symmetric and the functions λ , μ and ν are globally defined on M. By the properties of the almost Hermitian structure, it follows from $(1.6) \sim (1.9)$ that

$$(1.10) \begin{cases} f_i{}^t f_t{}^h = -\delta_i{}^h + u_i u^h + v_i v^h + w_i w^h, \\ f_t{}^h u^t = \nu v^h - \mu w^h, \quad f_t{}^h v^t = -\nu u^h + \lambda w^h, \\ f_t{}^h w^t = \mu u^h - \lambda v^h, \quad u_t u^t = 1 - \mu^2 - \nu^2, \\ v_t v^t = 1 - \nu^2 - \lambda^2, \quad w_t w^t = 1 - \lambda^2 - \mu^2, \\ u_t v^t = \lambda \mu, \quad u_t w^t = \lambda \nu, \quad v_t w^t = \mu \nu. \end{cases}$$

If we define a vector field p^h by

$$(1.11) p^h = \lambda u^h + \mu v^h + \nu w^h,$$

it is easily, using (1.10), seen that

$$(1.12) f_t{}^h p^t = 0.$$

We put $N^A = \lambda C^A + \mu D^A + \nu E^A$. Then it is an intrinsically defined normal to M [10]. Thus $(1.7) \sim (1.9)$ can be written as follows:

$$(1.13) J_C^A N^C = -p^h B_h^A.$$

Suppose that the functions λ , μ and ν satisfy $\lambda^2 + \mu^2 + \nu^2 = 1$. Then, by definition, we easily see that it is a global condition on M. Thus the equation (1.6) reduces to

$$J_{\mathcal{C}}^{A}B_{i}^{C}=f_{i}^{h}B_{h}^{A}+p_{i}N^{A},$$

because C^A , D^A and E^A are mutually orthogonal unit normals to M, where $p_i = p^t g_{ti}$. We also see from (1.11) that p^h defines a unit vector field on M. By the properties of the almost Hermitian structure, it follows from $(1.12) \sim (1.14)$ that (f, g, p) defines an almost contact metric structure.

Conversely, if the set (f, g, p) of the tensor field f of type (1, 1), the Riemannian metric tensor g and the vector field p given by (1.11) defines an almost contact metric structure. We can show, taking account of $(1.10) \sim (1.11)$, that $\lambda^2 + \mu^2 + \nu^2 = 1$.

On the other hand, a submanifold M of an almost Hermitian manifold is called a CR-submanifold [11] if there is a differentiable distribution $T:p\longrightarrow T_p\subseteq M_p$ on M satisfying the following conditions, where M_p denotes the tangent space at each point p in M: (1) T is invariant, i.e., $JT_p=T_p$ for each p in M, (2) The complementary orthogonal distribution $T^{\perp}:p\longrightarrow T_p^{\perp}\subseteq M_p$ is totally real, i.e. $JT_p^{\perp}\subseteq M_p^{\perp}$ for each p in M, where M_p^{\perp} denotes the normal space to M at $p\in M$. In particular, M is said to be semi-invariant provided that dim $T^{\perp}=1$. In this case a unit normal in JT^{\perp} is called the distinguished normal to the semi-invariant submanifold.

Thus, if M is a semi-invariant submanifold of codimension 3 in \overline{M} with respect to the distinguished normal $N^A = \lambda C^A + \mu D^A + \nu E^A$, then the set (f, g, p) defines an almost contact metric structure [4], [10] and hence $\lambda^2 + \mu^2 + \nu^2 = 1$.

2. Semi-invariant submanifolds of a complex space from

In the sequel, the ambient Hermitian manifold \overline{M} is assumed to be of constant holomorphic sectional curvature 4c and of real dimension 2(n+2), which is called a *complex space form* and denoted $\overline{M}(c)$.

Let M be a (2n+1)-dimensional semi-invariant submanifold of codimension 3 in $\overline{M}(c)$ and denote by N^A the distinguished normal to M. Then we have (1.13) and (1.14) because $\lambda^2 + \mu^2 + \nu^2 = 1$ is satisfied. We take $N^A = \lambda C^A + \mu D^A + \nu E^A$ as C^A . Then it follows that $\lambda = 1$, $\mu = \nu = 0$ and consequently $u^h = p^h$, $v_i = 0$, $w_i = 0$ because of (1.10) and (1.11).

Thus $(1.6)\sim(1.9)$ reduces respectively to

(2.1)
$$J_{C}^{A}B_{i}^{C} = f_{i}^{h}B_{h}^{A} + p_{i}C^{A},$$

(2.2)
$$J_B{}^AC^B = -p^hB_h{}^A, \ J_C{}^AD^C = -E^A, \ J_C{}^AE^C = D^A.$$

If we apply the operator V_j of the covariant differentiation to (2.1) and (2.2) and make use of the equations from (1.1) to (1.5), then we get respectively (cf. [4], [10])

(2.3)
$$\nabla_{j} f_{i}^{k} = -h_{ji} p^{k} + h_{j}^{k} p_{i}, \quad \nabla_{j} p_{i} = -h_{jt} f_{i}^{t},$$

(2.4)
$$k_{ji} = -l_{ji} f_i^t - m_j p_i, l_{ji} = k_{ji} f_i^t + l_j p_i.$$

Therefore, it is immediately from (2.4) that

$$(2.5) k_{jt}p^{t} = -m_{j}, l_{jt}p^{t} = l_{j}, k = -m_{t}p^{t}, l = l_{t}p^{t},$$

where we have put $k = \sum_{i} k_{ii}$, $l = \sum_{i} l_{ii}$. Since (f, g, p) defines an almost contact metric structure, it is easily seen from $(2.3) \sim (2.5)$ that

(2.6)
$$f_i t_l = k p_i + m_i, k l + m_t l^t = 0,$$

(2.7)
$$k_{ji}l_{i}^{t} + k_{ii}l_{j}^{t} = -(l_{j}m_{i} + l_{i}m_{j}),$$

(2.8)
$$l_{jt}l_{i}^{t}-k_{jt}k_{i}^{t}=l_{j}l_{i}-m_{j}m_{i}.$$

Since the ambient manifold is a complex space form $\overline{M}(c)$, its curvature tensor is given by

$$R_{DCBA} = c(G_{DA}G_{CB} - G_{CA}G_{DB} + J_{DA}J_{CB} - J_{CA}J_{CB} - 2J_{DC}J_{BA}).$$

Thus it follows from $(1.2)\sim(1.5)$, (2.1) and (2.2) that the equations of Gauss, Codazzi, and Ricci for M are respectively obtained:

$$(2.9) R_{kjih} = c(g_{kh}g_{ji} - g_{jh}g_{ki} + f_{kh}f_{ji} - f_{jh}f_{ki} - 2f_{kj}f_{ih}) + h_{kh}h_{ii} - h_{ih}h_{ki} + k_{kh}k_{ii} - k_{ih}k_{ki} + l_{kh}l_{ii} - l_{ih}l_{ki},$$

(2.11)
$$\nabla_k k_{ji} - \nabla_j k_{ki} + l_k h_{ji} - l_j h_{ki} - n_k l_{ji} + n_j l_{ki} = 0,$$

$$(2.12) V_k l_{ji} - V_j l_{ki} + m_k h_{ji} - m_j h_{ki} + n_k k_{ji} - n_j k_{ki} = 0,$$

$$(2.13) V_k l_i - V_i k_k + h_k^t k_{it} - h_i^t k_{kt} + m_k n_i - m_i n_k = 0,$$

$$(2.14) V_{k}m_{j} - V_{j}m_{k} + h_{k}^{t}l_{jt} - h_{j}^{t}l_{kt} + n_{k}l_{j} - n_{j}l_{k} = 0,$$

Now, we denote the normal component of V_jC by $V_j^{\perp}C$. The normal vector field C is said to be *parallel* in the normal bundle if $V_j^{\perp}C=0$, namely, l_j and m_j vanish identically. From now on we suppose that the normal vector C is parallel in the normal bundle. Then the equations (2.4), (2.5), (2.7) and (2.8) turn out respectively to be

$$(2.16) k_{ii} = -l_{it} f_{i}^{t}, \quad l_{ij} = k_{it} f_{i}^{t},$$

$$(2.17) k_{it}p^{t} = 0, l_{it}p^{t} = 0, k = l = 0,$$

$$(2.18) k_{it}l_{i}^{t} + k_{it}l_{i}^{t} = 0,$$

$$(2.19) k_{jt}k_{i}^{t} = l_{jt}l_{i}^{t}.$$

Thus, (2.15) is reduced to

$$(2.20) A_{ji} = 2(l_j^t k_{it} + c f_{ji}),$$

where we have put $A_{ji} = \nabla_j n_i - \nabla_i n_j$. By the properties of the almost contact metric structure (f, g, p) induced on M, it follows from (2.17) and (2.20) that

$$(2.21) A_{ir}p^r = 0.$$

Applying f_{k}^{i} to (2.20) and making use of (2.16), we find

$$(2.22) A_{jr}f_{i}^{r}-2k_{jr}k_{i}^{r}=2c(g_{ji}-p_{j}p_{i}),$$

which implies

$$(2.23) A_{jr}f_{i}^{r} = A_{ir}f_{j}^{r}.$$

For the sake of brevity, a tensor T_{ji}^{m} and a function T_{m} on M for any positive integer m are introduced as follows:

$$T_{ji}^{m} = T_{ji}, T_{i2}^{i_1} \cdots T_{i}^{i_{m-1}}, T_{m} = \sum_{i} T_{ii}^{m}.$$

Using this notation, we have from (2.18) and (2.19)

$$(2.24) k_{2m-1}=l_{2m-1}=0, k_{2m}=l_{2m},$$

$$(2.25) k_{ji}^{m}l^{ji} = 0, l_{ji}^{m}k^{ji} = 0.$$

for any positive integer m.

Since the fact that the distinguished normal C is parallel in the normal bundle is assumed, we see from (2.18) that

$$k_{j}^{r} \nabla_{k} l_{ir} + (\nabla_{k} k_{jr}) l_{i}^{r} + l_{j}^{r} (\nabla_{k} k_{ir}) + (\nabla_{k} l_{jr}) k_{i}^{r} = 0,$$

which together with (2.11) and (2.12) yield

$$k_i {}^r \nabla_i l_{kr} - k_i {}^r \nabla_j l_{kr} + l_j {}^r \nabla_i k_{kr} - l_i {}^r \nabla_j k_{kr} = 0.$$

Therefore, the last two equations give

$$k_j r \nabla_k l_{ir} + l_j r \nabla_k k_{ir} = 0$$
,

which together with (2.16) imply that

$$(2.26) k_j {}^r \nabla_k k_{ir} - l_j {}^r \nabla_k l_{ir} = 0.$$

3. Parallel normal curvature

Let M be a real (2n+1)-dimensional semi-invariant submanifold of codimension 3 in $\overline{M}(c)$. In the sequel we suppose that the normal curvature tensor R^{\perp} of M in the normal bundle is parallel, namely $V_iR^{\perp}=0$. Then we have from the Ricci equation

$$\nabla_{i} \{ \nabla_{k} n_{i} - \nabla_{i} n_{k} + l_{k} m_{i} - l_{i} m_{k} \} = 0.$$

Now we suppose that the distinguished normal C is parallel in the normal bundle. Then we have $\nabla_k A_{ji} = 0$ with the aid of the above equation. Thus, differentiating (2.21) covariantly along M and taking account of (2.3), we find $A_{jr}h_{kt}f^{rt}=0$, which together with (2.23) give

$$(3.1) A_{ir}h_{i}^{r}=0$$

because the set (f, g, p) defines an almost contact metric structure.

Hence the equation (2.20) implies

(3.2)
$$k_{ir}l_{s}^{r}h_{j}^{s}+cf_{ri}h_{j}^{r}=0.$$

By the way, since $\nabla_j^{\perp}C=0$ is assumed, it follows from (2.13) and (2.14) that k_{ji} and l_{ji} are commutative with h_{ji} each other. Thus the last equation yields

(3.3)
$$c(h_{jr}f_{i}^{r} + h_{ir}f_{j}^{r}) = 0$$

by means of (2.18), which implies

$$(3.4) c(h_{ir}p^r-\alpha p_i)=0,$$

where we have put $\alpha = h_{rs}p^rp^s$. Differentiating this covariantly and making use of (2.3) we obtain

$$c\{(\nabla_j h_{ir}) p^r - h_{ir} h_{js} f^{rs} - \alpha_j p_i + \alpha h_{jr} f_i^r\} = 0,$$

which together (2.10) with $l_j = m_j = 0$ and (3.3) give

(3.5)
$$c\{cf_{jk}+h_{j}{}^{r}h_{sr}f_{k}{}^{s}-\alpha h_{jr}f_{k}{}^{r}-\frac{1}{2}(\alpha_{k}p_{j}-\alpha_{j}p_{k})\}=0,$$

where $\alpha_j = V_j \alpha$. By the properties of the almost contact metric structure, it follows that

(3.6)
$$c \{ cf_{jk} + h_j{}^r h_{sr} f_k{}^s - \alpha h_{jr} f_k{}^r \} = 0,$$

$$(3.7) c(\alpha_j - Bp_j) = 0$$

for some function B on M. Hence (3.1) and (3.6) give rise to $c^2A_{ji}f_i^r=0$. Consequently we have $c^2A_{ji}=0$ because the set (f,g,p)

defines an almost contact metric structure. Thus, relationship (2.22) gives

(3.8)
$$c^{2}\{k_{i}^{2}+c(g_{i}-p_{i}p_{i})\}=0$$

and hence $c^2(2nc+k_2)=0$. Therefore we have following fact:

Proposition 3.1. Let M be a semi-invariant submanifold of codimension 3 in a complex space form $\overline{M}(c)$, $(c \ge 0)$. If the distinguished normal C and the normal curvature of M are parallel in the normal bundle, then the ambient space is Euclidean.

Now we suppose that c does not vanish. Then (3.6) and (3.7) reduce respectively to

(3.9)
$$h_{ii}^2 = \alpha h_{ii} + c (g_{ii} - p_i p_i),$$

 $\alpha_j = Bp_j$ because of (3.7). Differentiation (3.7) covariantly yields $\nabla_k \alpha_j = (\nabla_k B) p_j - Bh_{kr} f_j^r$, which implies $(\nabla_k B) p_j - (\nabla_j B) p_k + 2Bh_{jr} f_k^r = 0$, where we have used (2.3) and (3.3). $\nabla_k B$ is proportional to p_k , it follows that $Bh_{jr} f_k^r = 0$, which means $B(h_{ji} - \alpha p_j p_i) = 0$. From this fact and (3.9) we can see that α is constant on M. Therefore (3.9) means that h_j^i has constant eigenvalues. By differentiating (3.9) and taking account of (2.3), we get

$$(\nabla_k h_{jr}) h_i{}^r + h_j{}^r (\nabla_k h_{ir}) - \alpha \nabla_k h_{ji} = c \left\{ (h_{kr} f_j{}^r) p_i + (h_{kr} f_i{}^r) p_j \right\}.$$

If we make use of (2.3), (2.10) with $l_j = m_j = 0$, (3.3) and (3.4), then the covariant derivative of the second fundamental form h_{ji} is given by (for detail, see $\lceil 4 \rceil$, $\lceil 5 \rceil$)

(3.10)
$$V_k h_{ii} = c (f_{ik} p_i + f_{ik} p_i).$$

On the other hand, we have from the Gauss equation (2.9) that the Ricci tensor of the semi-invariant submanifold is obtained:

$$R_{ii} = c \{(2n+3)g_{ii} - 3p_{j}p_{i}\} - 2k_{ji}^{2} + hh_{ji} - h_{ji}^{2},$$

where $h=\Sigma_i h_{ii}$ because of (3.8) and (3.9), which reduces to

(3.11)
$$R_{ji} = 2c \{ (n+2) g_{ji} - 2p_j p_i \} + (h-\alpha) h_{ji}.$$

Differentiating (3.11) covariantly and using (2.3) and (3.10), we find

$$\nabla_k R_{ji} = 4c \left\{ (h_{kr} f_j^r) p_i + (h_{kr} f_i^r) p_j \right\} + c (h - \alpha) \left(f_{ik} p_j + f_{jk} p_i \right)$$

because of the facts that α is constant and eigenvalues of h_j are constant.

If we suppose that M has harmonic curvature, that is, $\nabla_k R_{ji} - \nabla_j R_{ki}$

=0, then we see from the last equation that

$$4c \{2(h_{kr}f_{j}^{r})p_{i} + (h_{kr}f_{i}^{r})p_{j} - (h_{jr}f_{i}^{r})p_{k}\} + c(h-\alpha) \{f_{ik}p_{j} - f_{ij}p_{k} + 2f_{jk}p_{i}\} = 0.$$

Transforming this by p^j and taking account of (3.4), we get $c \{4h_{kr}f_{i'} + (h-\alpha)f_{ik}\} = 0$ and hence $h-\alpha=0$ because of $c \neq 0$. Thus, it follows that $h_{ji} = \alpha p_j p_i$. But this is impossible because of (3.9). Therefore, we have

Proposition 3.2. Let M be a semi-invariant submanifold of codimension $\overline{M}(c)$. Suppose that the distinguished normal and the normal curvature are parallel in the normal bundle. If M has harmonic curvature, then the ambient space is Euclidean.

Now we put

$$(3.12) D_k k_{ii} = \nabla_k k_{ii} - n_k l_{ii}, D_k l_{ii} = \nabla_k l_{ii} + n_k k_{ii},$$

then using (2.11) and (2.12) we can easily see that $D_k l_{ji}$ and $D_k l_{ji}$ are symmetric for all indices provided that the distinguished normal is parallel in the normal bundle.

4. Semi-invariant submanifolds in a complex Euclidean space

In this section we consider a semi-invariant submanifold M of codimension 3 in a Euclidean 2(n+2)-space such that the distinguished normal C and the normal curvature of M are parallel in the normal bundle. Then (3.2) becomes to $k_i, l_s^r h_i^s = 0$ and hence

$$(4.1) k_{jr}h_{i}^{r}=0, l_{jr}h_{i}^{r}=0$$

because of (2.18) and (2.19). Furthermore (2.20) turns out to be $2k_{ji}^2 = A_{jr}f_{i}^r$. Since the fact that the normal curvature of M is parallel in the normal bundle is assumed, it follows, in a direct consequence of (3.1), that

(4.2)
$$(\nabla_k k_{jr}) k_i^r + (\nabla_k k_{ir}) k_j^r = 0.$$

If we take the skew-symmetric part of this with respect to the indices k and j and make use of (2.11) and (3.12), then we obtain $(n_k l_{jr} - n_j l_{kr}) k_i^r + (D_i k_{kr} + n_k l_{ir}) k_j^r - (D_i k_{jr} + n_j l_{ir}) k_k^r = 0$ and consequently $(D_i k_{kr}) k_j^r - (D_i k_{jr}) k_k^r = 0$ with the aid of (2.18). Combining this with (4.2), we have

$$(4.3) k_{ir}D_ik_k^r = 0,$$

where we have used (2.18) and (3.12). In the same way we have

$$(4.4) l_{ir}D_il_k^r=0.$$

Using the last two equations and making use of (2.25), it is easily seen that k_{2m} and l_{2m} are constant for any positive integer m. If we take account of (2.20) with c=0, then the equation (4.3) leads to

$$k_j^r \nabla_i k_{kr} = \frac{1}{2} n_i A_{kj}.$$

Differentiating this covariantly, we find

$$(\nabla^l k_j{}^r)\; (\nabla_i k_{kr}) + k_j{}^r \nabla^l \nabla_i k_{kr} = \frac{1}{2} \left(\nabla_l n_i\right) A_{kj}$$

since the normal curvature of M is parallel. If we take the skew-symmetric part of this with respect to indices l and i and make use of the Ricci identity, then we obtain

(4.5)
$$(\nabla_{l}k_{j}^{r}) (\nabla_{i}k_{kr}) - (\nabla_{i}k_{j}^{r}) (\nabla_{l}k_{kr})$$

$$= R_{lik}^{r}k_{jr}^{2} + R_{lirs}k_{s}^{s}k_{j}^{r} + \frac{1}{2}A_{li}A_{kj}.$$

Thus the symmetric part of this with respect to the indices j and k gives

$$R_{lik}{}^{r}k_{jr}{}^{2} + R_{lij}{}^{r}k_{kr}{}^{2} = 0,$$

which together with the Gauss equation of M in a Euclidean space yield

$$\begin{array}{l} k_{lj}{}^{3}k_{ik}-k_{lk}k_{ij}{}^{3}+l_{lj}{}^{3}l_{ik}-l_{lk}l_{ij}{}^{3} \\ +k_{lk}{}^{3}k_{ij}-k_{lj}k_{ik}{}^{3}+l_{lk}{}^{3}l_{ij}-l_{lj}l_{ik}{}^{3}=0, \end{array}$$

where we have used (2.18), (2.19) and (4.1).

Transforming the last expression by k_i^k and using (2.24) and (2.25), then one can get

$$(4.6) k_2 k_{jl}^3 - k_4 k_{jl} = 0.$$

In the same way we see from (4.4) that

$$(4.7) k_2 l_{jl}^3 - k_4 l_{jl} = 0.$$

If we suppose that the constant k_2 does not zero on M, then (4.6) and (4.7) reduces respectively to

(4.8)
$$k_{ji}^3 = Ak_{ji}, l_{ji}^3 = Al_{ji}.$$

for a constant A given by $A=k_4/k_2$. Differentiating the first equation of (4.8) covariantly and making use of (4.2), we find $A\nabla_k k_{ji} = (\nabla_k k_j^r) k_{ir}^2$, or, using (4.3) and (4.8) it follows that $AD_k k_{ji} = 0$ and hence $D_k k_{ji}$

=0. Thus the equation (4.5) turns out to be

$$R_{lik}^{r}k_{jr}^{2} + R_{lirs}k_{k}^{s}k_{j}^{r} + \frac{1}{2}A_{li}A_{kj} = 0.$$

If we substitute (2.9) and (2.20) with c=0 into the last equation and take account of (4.1), then we get

$$\begin{array}{l} k_{l}{}^{r}k_{ik} - k_{lk}k_{i}{}^{r} + l_{l}{}^{r}l_{ik} - l_{lk}l_{i}{}^{r}) k_{jr}{}^{2} \\ + (k_{l}{}^{s}k_{i}{}^{r} - k_{l}{}^{r}k_{i}{}^{s} + l_{l}{}^{s}l_{i}{}^{r} - l_{l}{}^{r}l_{i}{}^{s}) k_{ir}k_{ks} - 2k_{lr}l_{i}{}^{r}k_{js}l_{k}{}^{s} = 0. \end{array}$$

Thus, by contracting j and l and using (2.18), (2.19) and (4.8) we can verify that

$$2k_{ki}^4 + 2Ak_{ki}^2 + k_2k_{ik}^2 = 0,$$

which implies $k_2=0$. Thus we have $k_{ji}=0$ on M and hence $l_{ji}=0$ because of (2.19). Therefore we have

Lemma 4.1. Let M be a semi-invariant submanifold of codimension 3 in a Euclidean 2(n+2)-space. If the distinguished normal C and the normal curvature of M are parallel in the normal bundle, then $k_{ii}=l_{ji}=0$.

According to Proposition 3.2 and Lemma 4.1 we prove the following fact:

Theorem 4.2. Let M be a simply connected complete semi-invariant submanifold of codimension 3 in a real 2(n+2)-dimensional complex space form $\overline{M}(c)$. Suppose that the distinguished normal C and the normal curvature of M are parallel in the normal bundle. If M has harmonic curvature, then c=0. In particular, if c=0 and the shape operator in the direction of the distinguished normal has no simple roots, then M is isometric one of the following spaces:

$$E^{2n+1}$$
, S^{2n+1} or $S^r \times E^{2n-r+1}$.

Proof. According to Proposition 3.2, the ambient space is Euclidean. Thus, the Ricci tensor of M is given by $R_{ji} = hh_{ji} - h_{ji}^2$ because of Lemma 4.1. Since M has harmonic curvature, the above equation implies

$$(4.9) h_k h_{ji} - h_j h_{ki} = \nabla_k h_{ji}^2 - \nabla_j h_{ki}^2,$$

where $h_k = \mathcal{V}_k h$. Since the fact that the shape operator in the direction of C has no simple roots is assumed, it is well known from (4.9) that the mean curvature of M is constant, namely $h_k = 0$ (for detail see [6], [7]). Thus (4.9) means that h_{ij}^2 is of Codazzi type and $\mathcal{V}_k h_{ji} = 0$ (cf.

[6], [7], [9]). Thus the first normal space $N_1(p)$ defined to be orthogonal complement of $\{C_p \in N_p(M) : H_{C_p} = 0\}$ in $N_p(M)$ is invariant under the parallel translation and of constant dimension 1, where H_{C_p} are the second fundamental forms associated C_p and $N_p(M)$ is the normal space at p in M. Thus, by the reduction theorem [3], we conclude that there exists a 2(n+1)-dimensional totally geodesic submanifold E^{2n+2} in E^{2n+4} in which M is hypersurface with parallel second fundamental form. Since M is complete and simply connected, due to [8], we see that M is isometric with a plane E^{2n+1} , a sphere S^{2n+1} or $S^r \times E^{2n-r+1}$. This completes the proof.

References

- 1. D.E. Blair, G.D. Ludden and K. Yano, Semi-invariant immersion, Ködai Math. Sem. Rep. 27 (1976), 313-319.
- 2. B.Y. Chen, Geometry of submanifolds, Marcel Deckker. Inc., New York, (1973).
- J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geom. 5 (1971), 333-340.
- S.-S. Eum, U-H. Ki, U.K. Kim and Y.H. Kim, Submanifolds of codimension 3 of a Kaehlerian manifolds (I), J. Korean Math. Soc. 16 (1980), 137-153.
- 5. S.-S. Eum, U-H. Ki, U.K. Kim and Y.H. Kim, Submanifolds of codimension 3 of a Kaehlerian manifolds (II), J. Korean Math. Soc. 17 (1981), 211-228.
- 6. U-H. Ki, H. Nakagawa and M. Umehara, On complete hypersurfaces with harmonic curvature in a Riemannian manifold of constant curvature, Tsukuba J. Math., 11 (1987), 61-76.
- 7. U-H. Ki and H. Nakagawa, Submanifolds with harmonic curvature, Tsukuba J. Math. 10 (1986), 285-292.
- 8. K. Nomizu and B. Smyth, A formular of Simon's type and hypersurfaces with constant mean curvature, J. Diff. Geom. 3 (1969), 367-377.
- 9. M. Umehara, Hypersurfaces with harmonic curvature, Tsukuba J. Math. 10 (1986), 79-88.
- 10. K. Yano and U-H. Ki, On $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$, Kōdai Math. Sem. Rep. **29** (1978), 285-307.
- 11. K. Yano and M. Kon, *Structures on manifolds*, World Scientific, Singapore, (1984).

Kyungpook University Taegu 635, Korea, Taegu Teacher's College Taegu 634, Korea and Chungbuk University Cheongju 310, Korea