SURJECTIVITY OF GENERALIZED LOCALLY EXPANSIVE MAPS

JONG AN PARK AND SANGSUK YIE

1. Introduction

Browder [1] established some fundamental surjectivity theorems on a map T of a Banach space E into a Banach space F in which the hypotheses on T are completely local in character. He proved that if T is a locally expansive, continuous open map of E into F, then T is a homeomorphism onto F [1].

In 1979, Kirk and Schönberg [3] proved the following generalized version of Browder's result:

Theorem [3]. Let X and Y be complete metric spaces with Y metrically convex, and $T: X \longrightarrow Y$ an open map having closed graph. Suppose also that T is locally expansive on X. Then T(X) = Y.

Here, a map T of a metric space X into a metric space Y is said to have closed graph if $x_n \longrightarrow x$ in X and $Tx_n \longrightarrow y$ in Y implies Tx = y. And following Menger [4], a metric space Y is said to be metrically convex if for all u, v in Y with $u \neq v$ there exists $w \in Y$ distinct from u and v, such that

$$d(u, v) = d(u, w) + d(w, v).$$

In section 2, we apply the Maximal Ordering Principle of Turinici to more generalized version of the lemma of Kirk and Schönberg which was proved by using a continuation method.

In section 3, we prove a surjectivity theorem for locally c-expansive maps, and obtain some related results.

2. Maximal Element Techniques

In [6], Turinici introduced the Maximal Ordering Principle. In order

Received March 23, 1987.

Supported by a grant from the Korea Science and Engineering Foundation, 1986-87.

to state the principle we need the following terms:

Let X be a metric space and \leq an order on X. A subset $D \subset X$ is said to be order-closed if for every monotone increasing sequence $\{x_n | n \in \mathbb{N}\}$ in D and every $x \in X$ with $x_n \to x$ as $n \to \infty$ we have $x \in D$, and the ambient order \leq on X is said to be self-closed if $S(x) = \{u \in X | u \geq x\}$ is order-closed for all $x \in X$. Finally, the ambient metric space (X, d) is said to be order-compact if every monotone increasing sequence in X has a convergent (monotone) subsequence.

Now we state the Maximal Ordering Principle of Turinici:

Theorem [6]. Suppose that the metric space (X, d) and the order \leq on X are such that

- (1) \leq is self-closed on X,
- (2) (X, d) is order-compact.

Then, for every $x \in X$, there exists a maximal element $z \in X$ such that $x \le z$.

We apply the Maximal Ordering Principle of Turinici to more generalized version of the lemma of Kirk and Schönberg [3].

Lemma. Let X be a metric space, Y a complete metric space with metric convexity and $T: \overline{B} \longrightarrow Y$ an open map having closed graph where B is open in X. Suppose that

- (a) T is injective on \overline{B} , and
- (b) for any Cauchy sequence $\{Tv_n\}$ in Y, $\{v_n\}$ is relatively compact. Suppose also that for fixed $y \in Y$, there exists u_0 in \overline{B} such that

$$d(Tu_0, y) \ge d(Tu, y) + d(Tu_0, Tu)$$

for all $u \in \partial B$.

Then there exists $u \in B$ such that Tu = y.

Proof. We consider a relation \leq on \overline{B} defined by for any $u, v \in \overline{B}$, $u \leq v$ iff

$$d(Tu, y) \ge d(Tv, y) + d(Tu, Tv)$$
 for a fixed $y \in Y$.

Then it is easy to see that the relation \leq is reflexive, antisymmetric and transitive, i. e., \leq is actually an order on \overline{B} .

So, in order to apply the principle of Turinici, we claim that:

- (1) S(u) is order-closed for any $u \in \overline{B}$, and
- (2) (\overline{B}, d) is order-compact.

To prove (1), we choose any monotone increasing sequence $\{v_n\}$ in

S(u). Since $v_n \le v_{n+1}$, for a fixed $y \in Y$, we have

$$d(Tv_n, y) \ge d(Tv_{n+1}, y) + d(Tv_n, Tv_{n+1}).$$

Hence $\{Tv_n\}$ is Cauchy. Since T satisfies (b), a subsequence $\{u_{n_i}\}$ is convergent in \overline{B} . Furthermore, for all n,

$$d(Tu, y) \ge d(Tv_n, y) + d(Tu, Tv_n).$$

Since T has closed graph, $Tv_{n_i} \longrightarrow Tv$ in Y for some v in \overline{B} , and

$$d(Tu, y) \geq d(Tv, y) + d(Tu, Tv).$$

Hence $v \in S(u)$. This completes the proof of (1).

And any monotone increasing sequence $\{v_n\}$ in \overline{B} has a convergent subsequence. Indeed, since $\{Tv_n\}$ is a Cauchy sequence, by (a), $\{v_n\}$ has a convergent subsequence. This proves (2).

Thus by the principle, we have a maximal element v_0 in \overline{B} such that $u_0 \le v_0$ and

$$d(Tu_0, y) \ge d(Tv_0, y) + d(Tv_0, Tu_0).$$

From the boundary condition, we have $v_0 \in B$. Since T(B) is open and $T(v_0) \in T(B)$, if $y \notin T(B)$, then by Menger's theorem [4], there exists $T(u) \neq T(v_0)$ for some $u \in B$ such that

$$d(Tv_0, y) \ge d(Tu, y) + d(Tv_0, Tu).$$

Hence there exists $u \in B$ such that $v_0 < u$. This is a contradiction to the maximality of v_0 . So $y \in T(B)$.

3. Surjectivity of Generalized Locally Expansive Maps

For a Banach space, we may consider more generalized classes of maps than those of locally expansive ones.

Let $c:[0,\infty)\longrightarrow (0,\infty)$ be a continuous nonincreasing function such that $\int_0^\infty c(s) ds = \infty$.

For convenience, a nonlinear map T from a subset B of a Banach space X into a metric space Y is said to be locally c-expansive if each $x \in B$ has a neighborhood N of x in B such that

$$c(||x||)||u-v|| \le d(Tu, Tv)$$
 for all $u, v \in N$.

From the lemma in section 2, we obtain the following surjectivity theorem of locally c-expansive maps:

THEOREM. Let X be a Banach space, Y a complete metric space with

metric convexity, and B open in X. Let $T: \overline{B} \longrightarrow Y$ have closed graph. If T is locally c-expansive and open on B, then for $y \in Y$ the following are equivalent:

- (a) $y \in T(B)$.
- (b) there exists $x_0 \in B$ such that $d(Tx_0, y) \le d(Tx, y)$ for all $x \in \partial B$.

Proof. (a) \Longrightarrow (b) is trivial.

(b) \Longrightarrow (a). For given $u \in B$, we let r(u) denote the supremum of all $r \in [0, 1]$ such that $B(u, r) \subset B$ and $c(\|u\|) \|u_1 - u_2\| \le d(Tu_1, Tu_2)$ for all $u_1, u_2 \in B(u, r)$ where B(u, r) denotes the open ball of radius r around u. Since B is open and T is locally c-expansive on B, r(u) > 0 for all $u \in B$. Furthermore, by definition, $\overline{B}(u, r(u)/2) \subset B$ and $c(\|u\|) \|u_1 - u_2\| \le d(Tu_1, Tu_2)$ for all $u_1, u_2 \in \overline{B}(u, r(u)/2)$ where $\overline{B}(u, r(u)/2)$ denotes the closed ball of radius r(u)/2 around u. Assume, on the contrary, that $y \notin T(B)$. Then the negation of the above lemma implies the existence of a sequence $\{u_n\}$ in B such that the following four conditions hold:

- (1) $u_1 = x_0$;
- (2) $c(||u_n||)||u_{n+1}-u_n|| \le d(Tu_{n+1}, Tu_n)$ for all n;
- (3) $||u_{n+1}-u_n||=r(u_n)/2$ for all n;
- (4) $d(Tu_{n+1}, y) + d(Tu_{n+1}, Tu_n) \le d(Tu_n, y)$ for all n.

Then (1) and (4) imply by induction

(5)
$$d(Tu_{n+1}, y) + \sum_{j=1}^{n} d(Tu_{j+1}, Tu_j) \le d(Tx_0, y)$$

for all n.

In particular, $\sum_{j=1}^{\infty} d(Tu_{j+1}, Tu_j) < \infty$ and by (2) $\sum_{j=1}^{\infty} c(\|u_j\|) \|u_{j+1} - u_j\| < \infty$. We claim that $\{\|u_n\|\}$ is bounded. On the contrary, we assume that $\{\|u_n\|\}$ is unbounded. Then we may choose a subsequence $\{u_{j_k}\}$ such that

- (6) $||u_{j_1}|| < ||u_{j_2}|| < \cdots$, $\lim_{k} ||u_{j_k}|| = \infty$, and $1 = j_1 < j_2 < \cdots$;
- (7) if $j_k < l < j_{k+1}$, then $||u_l|| \le ||u_{j_k}||$.

Then for $k=1, 2, 3, \dots$

$$\begin{split} &c(\|u_{j_k}\|)\left(\|u_{j_{k+1}}\|-\|u_{j_k}\|\right) \leq &c(\|u_{j_k}\|)\|u_{j_{k+1}}-u_{j_k}\|\\ \leq &c(\|u_{j_k}\|)\left(\|u_{j_k}-u_{j_{k+1}}\|+\|u_{j_{k+1}}-u_{j_{k+2}}\|+\cdots+\|u_{j_{k+1}-1}-u_{j_{k+1}}\|\right)\\ \leq &c(\|u_{j_k}\|)\|u_{j_k}-u_{j_{k+1}}\|+c(\|u_{j_{k+1}}\|)\|u_{j_{k+1}}-u_{j_{k+2}}\| \end{split}$$

$$+ \cdots + c(||u_{j_{k+1}-1}||) ||u_{j_{k+1}-1}-u_{j_{k+1}}||.$$
 Since $\int_{0}^{\infty} c(s) ds = \infty$,

$$\infty = \sum_{k=1}^{\infty} c(\|u_{j_k}\|) \|u_{j_{k+1}}\| - \|u_{j_k}\|)$$

$$\leq \sum_{k=1}^{\infty} c(\|u_j\|) \|u_{j+1} - u_j\| < \infty.$$

This is a contradiction. Hence $\{||u_n||\}$ is bounded and $\{u_n\}$ is Cauchy. Since X and Y are complete, there exists $x \in \overline{B}$ such that $u_n \longrightarrow x$ and $Tu_n \longrightarrow y'$ as $n \to \infty$. By the assumption that T has closed graph, we have y' = Tx. Since $r(u_n) \longrightarrow 0$, $x \notin B$, i. e., $x \in \partial B$. Since $\{||u_n||\}$ is bounded, $\alpha = \inf c(||u_n||)$ is a positive number. Hence (2) and (5) yield for all n,

$$d(Tu_{n+1}, y) + \alpha ||u_{n+1} - x_0||$$

$$\leq d(Tu_{n+1}, y) + \alpha \sum_{j=1}^{n} ||u_{j+1} - u_j||$$

$$\leq d(Tu_{n+1}, y) + \sum_{j=1}^{n} c(||u_j||) ||u_{j+1} - u_j||$$

$$\leq d(Tu_{n+1}, y) + \sum_{j=1}^{n} d(Tu_{j+1}, Tu_j)$$

$$\leq d(Tx_0, y),$$

so that letting $n \rightarrow \infty$ we get

$$d(Tx, y) + \alpha ||x - x_0|| \le d(Tx_0, y).$$

Since $x \in \partial B$, this contradicts (b).

Taking B=X in the above theorem, we obtain the following:

COROLLARY 1. Let X be a Banach space and Y a complete metric space with metric convexity. Let T: $X \rightarrow Y$ have closed graph. If T is open and locally c-expansive, then T(X) = Y.

The above corollary can be obtained from the surjectivity theorem of Ray and Walker [5] if Y is a Banach space. Also Theorem 3.4 in [5] can be obtained from the above corollary.

Here we need the following terms: Let X^* denote the dual of a real Banach space X. The duality map J from X into 2^{X^*} is defined by

$$J(x) = \{j \in X^* \mid (x, j) = ||x||^2 \text{ and } ||j|| = ||x||\}.$$

It is well-known that, by the Hahn-Banach theorem, J(x) is not empty for each $x \in X$, J is single-valued when X^* is strictly convex and J is uniformly continuous on bounded subsets of X whenever X^* is uniformly convex [2].

COROLLARY 2 [5, Theorem 3.4]. Let X be a Banach space, P a continuous selfmap of X, and $c:[0,\infty) \longrightarrow [0,\infty)$ a continuous nondecreasing function for which $\int_{-\infty}^{\infty} c(s) ds = \infty$. Suppose also that for each x, $y \in X$ there exists a $j \in J(x-y)$ for which

$$(Px-Py, y) \ge c(\max\{||x||, ||y||\}) ||x-y||^2$$
.

Then P is a homeomorphism on X.

Proof. In [5] Ray and Walker obtained 1 domain invariance result on P, i. e., P is an open map. By Corollary 1 we can show that P is surjective. Fix $\varepsilon > 0$. Let $\overline{c}(r) = c(r+\varepsilon)$. Then for any $x \in X$, x_1 , $x_2 \in B(x, \varepsilon)$, we have

$$||Px_1-Px_2|| \ge c (\max(||x_1||, ||x_2||) ||x_1-x_2||$$

 $\ge c (||x||+arepsilon) ||x_1-x_2||$
 $\ge \overline{c} (||x||) ||x_1-x_2|| .$

Hence P satisfies the hypotheses of Corollary 1. Therefore P is surjective and, hence, a homeomorphism from X onto X.

References

- 1. F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math. 18, Part I (1986).
- 2. T. Kato, Nonlinear semigroups and evolution equations, J. Math Soc. Japan 19 (1967), 508-519.
- 3. W.A. Kirk and R. Schönberg, Mapping theorems for local expansions in metric and Banach spaces, J. Math. Anal. Appl. 72 (1979), 114-121.
- 4. M. Menger, Untersuchunger über algemeine metrik, Math. Ann. 100 (1928), 75-163.
- 5. W.O. Ray and A.M. Walker, Mapping theorems for Gâteaux differentiable and accretive operators, Nonlinear Analysis, TMA. 6(1982), 423-433.
- M. Turinici, Mean value theorems via maximal element techiques, J. Math. Anal. Appl. 88 (1982), 48-60.

Kangweon National University Chuncheon 200, Korea and Soongsil University Seoul 151, Korea