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ASYMPTOTIC BEHAVIOR OF SEMIGROUPS OF
ASYMPTOTICALLY NONEXPANSIVE

TYPE ON BANACH SPACES

HAN-SOO KIM AND TAE-HwA KIM

1. Introduction

Let G be a semitopological semigroup. G is called right reversible if
any two closed left ideals of G has non-void intersection. In this case,
(G, ;;;;;) is a directed system when the binary relation ";;;;;" on G is
defined by t;;;;; s if and only if {s} UGs;:;.2 {t} UGt, s, t E G. Right
reversible semitopological semigroups include all commutative semigroups
and all semitopological semigroups which are right amenable as discrete
semigroups (see [9J). Left reversibility of G is defined similarly. G
is called reversible if it is both left and right reversible.

In 1976, Kirk [l2J introduced any non-Lipschitzian self-mapping
which extends, in a sense, an asymptotically nonexpansive mapping
inherited by Goebel and Kirk [4J ; a continuous mapping T: K -7 K,
K a nonempty closed subset of a real Banach space X, is said to be of
asymptotically nonexpansive type if for each xEK,

limsup {sup[IITRx -TR yll-llx-yIIJ : yEK} ~O.

Now, we introduce a semigroup of non-Lipschitzian self-mappings;
let C be a nonempty closed convex subset of a real Banach space X
with norm 11·11. A family 70= {T, : sEG} of continuous mappings of C
into C is said to be a right reversible semigroup of asymptotically
nenexpansive type on C if the following conditions are satisfied :

(a) the index set G is a right reversible semitopological semigroup
with the above order ;;;;; ;

(b) T,tx= T, Ttx for all s, tEG and xEC ;
(c) for each xEC,

limsup {sup[11 T,x- T,yll-lIx- yIIJ : yEC} ~o ;
sEG
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(d) T is continuous with respect to the strong operator topology :
Tsx ---+ 'Tzx for each xEC as s ---+ t in G.

Left reversible semigroup of asymptotically nonexpansive type is defined
similarly. For semigroups of another non-Lipschitzian self-mappings,
see [3J, [10J, [l1J etc.

For each xEC, 70 (x) = {Tsx: sEG} is called the orbit of x under 75 and
a point zEC such that 7O(z) = {z} is called a common fixed point of w.
We denote by F(70) the set of common fixed points of wand by ww(x)
the set of weak subnet limits of the net {T.x : sE G} and set E (x) =

{yEC : Hm 11 Tsx- yll exists}.
,EG

It is the purpose of this paper that some of the weak convergence and
fixed point theory of semigroups of nonexpansive mappings ([8J, [13J,
[14J) carries over to the larger class of mappings definded above.

2. Weak convergence

Unless other specified, let G, X, C, 70 = {Ts : sE G} be as before. We
begin with the following

LEMMA 2.1. For each xEC, F(70) c;::;,E(x).

Proof. Let yE F(w) and r=inf 11 T.x- yll. Given 8>0, there is
,EG

soEG such that IITs• x-yll<r+;. Since 70 is of asymptotically nonex­

pansive type, there also exists toE G such that

11 TtTs• x-yll~1I Ts. x-YII+ ~

for all t~to' Let b~ao=toso' Since G is right reversible, we may
assume bEGa o' Let {sa} be a net in G such that saao--.b. Then, for
each a,

11 Tsat. Ts• x- yll ~ 11 Ts• x- yll + ~

Hence 11 TbX- yll ~ 11 Ts• x- yll + ~. So, we have

inf supll Ttx- ylI supll Tbx- yll ~ 11 Ts. x- yll + 2s <r+s.
s t:ii:, b;;;a.

Since c is arbitrary, we have inf supll Ttx- yll ~ r=infll Tsx- yll.
s t~$ sEG

Therefore, lim 11 T.x-yll exists and so yEE(x).
s
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LEMMA 2.2. Let X be uniformly convex and suppose that F(7fJ) *0.
Let XEC, fEF(7fJ) and O<a~tl<l. Then, for each e>O, there is
aoEG such that

11 T,(ATtx+ (l-A)f) - (A T,Ttx + (l-A)f) II<e

for all s, tEG with s, t~ao and A : a~A~tl.

Proof. Let e>O, c=min {U(l-A) : a~A~tl}, c'=max {2A(I-A.) :
a~A~tl} and r=lim 11 T-x-fll. For r=O, it is easy. Let r>O. Then

•
we can choose d>O so small that

(r+d) [I-eo (r~d ) ] <r,

where 0 is the modulus of convexity of the norm. Since r=lim 11 T,x-
s

fll and (rj is of asymptotically nonexpansive type, there exists aoEG such
that

and

11 T, Ttx- T,zll <1d +1\ Ttx- zll

for all s~ao, zEC and each tEG. Suppose that

11 T,(ATtx+ (l-A)f) - (AT,Ttx+ (l-A)f) 11 ~e
for some s, t~ao and A: a~A~tl. Put u= (I-A)(T,z-f) and v=
A(T,Ttx-T,z), where z=ATtx+(I-A)f. Then we have that lIull,
Ilvll<A(I-A)(r+d), Ilu-vll=IIT,z-(AT,Ttx+(I-A)f)II~eand Au+
(I-A) v=A(I-A) (T,Ttx-f). So, by using the Lemma in [7J we have

11 T,tx - fll ~ (r+d) [I-co ( r~d ) ]<r.

This contradicts r=infll T-x-f 11 by Lemma 2. l.
s

Let x and y be elements of a Banach space X. Then we denote by
[x, yJ the set {Ax+ (l-A)y : O~A~I} and coCA) denotes the closure
of the convex hull of A.

LEMMA 2.3. Let X have a Frechet differentiable norm and {xa} a
bounded net in C. Let zE n co {xa : a~tJ}, yEC and {Ya} a net of

~

elements in C with YaE[y,xaJ and IIYa-zll=min{lIu-zll: UE[y,xa]}.
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If Ya -+ Y, then y=z.

For the proof of Lemma 2. 3, see Lemma 3 in [14]. Now we can
prove the following :

PROPOSITION 2.4. Let C be a closed convex subset of a uniformly convex
Banach space X with a Frechet differentiable norm. Suppose that F(76)

is nonempty. Then, for each XEC, the set nro{Ttx: t~s} nF(76)
,EG

consists of at most one point

Proof. For each xEC, let W(x) = nco {Ttx : t~s}. Suppose that
t

f, gE W(x) nF(76) and f=l=g. Put h= ~ (f+g) and r = l\m 11 T.,x-gll.

Since hE W(x), IIh-gll ~r. For each sEG, choose PsE [Tsx, h] such
that lIPs-gll =min {lIy-gll : yE[Tsx,h]}. If liminfllps-gll=llh-gll,

s

then obviously Ps -+ h. Hence, by Lemma 2. 3, h = g. This contradicts
f*g. Now we suppose that Hm infllps-gll<lIh-gll. Then there exists. ,
c>O and saEG such that sa~a and

IIPsa- gll +c<llh-gll
for every aEG. Put psa=aaT.ax+(l-aa)h for every a. Then there
is fJ>O and r<l such that fJ~aa~r for all a. By Lemma 2.2, and
since 76 is of asymptotically nonexpansive type, there exists a oEG such
that

and

Ilg- T .zll< ~ + lIg- zll

for all s, t~aos zEC and A.: fJ~J..~r.

For Sa. ~ao, let s~fJo=aosa .. Then, since G is right reversible, sE {fJo}
UGfl., we may assume sEG fl•• Let {tfl} be a net in G such that tflfJo
-+ s. Then, for each fJ,

IIPt,fl. -gll ~llaa. Tt'fl. X+ (l-aa. )h-gll
~ 11 Tt,a. PSa. - (aa. Tt,a. Tsa.x+ (l-aa. ) hll

+Ilg- Tt,a. Psa.11 ~c+ IIg-Psa.II<llh-gll.

Hence, IIPs-gll<lIh-gll for all s~fJo. Thererlore we have Ps*h for
all s~fJo. Let s~fJo and uk=k(h- 7'sx) + Tsx for all k~l. Then
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lIuk-gll~\Ih-gll for all k~l and hence, by Theorem 2. 5 of [2J, we have

(h-Uk, J(g-h)=«l-k) (h- T,x), J(g-h»~O

for all k~ 1, where J is the duality mapping of X. Therefore, it
follows that (h- Tsx, J(g-h) >~O for all s~f3o' Then we have
(h-y, J(g-h»~O for all yEco{Ttx: t~f3o} Put y-j=h+(h-g),
then h= g, This contradicts f =1= g. The proof is completed.

THEOREM 2.5. Let X, C, and F(7fi) as in Proposition 2.4. Let xEC. If
ww(x) <;; F(7fi) , then the net {T.x : sEG} converges weakly to some yE F(7fi).

Proof. Since F(7fi) =l=if>, by Lemma 2. 1, {T,x: sEG} is bounded.
So, there exists a subnet {Tsax} of the net {T,x: sEG} which converges
weakly to some yE C. Since Ww (x) <;; F (7fi) and yEn co {Ttx : t ~ s}, we

s

have yE nco {Ttx : t ~s} nF(7fi). Therefore, it follows from Proposition
s

2.4 that {T.x: sEG} converges weakly to yEF(7fi).
Let X be a subset of a Banach space X. A mapping T: X -t K is

called asymptotically nonexpansive [4J if for each x, yE X,

11 Tkx - TkY\l ~akllx- y11, k=1,2, ''',

where {ak} is a fixed sequence of real numbers such that Hm ak=l. It
k~oo

is proved. in [4J that if X is a bounded closed and convex subset of a
uniformly convex space X then the set F( T) of fixed points of T is
nonempty closed and convex. Taking G=N in Theorem 2.5, we have

COROLLARY 2. 6. Let C be a closed convex and bounded subset of a
uniformly convex Banach space X with a Frechet differentiable norm. Let
xEC. If T: C-tC is asymptotically nonexpansive mapping and ww(x)
c:;;,F(T), then the sequence {Tnx : nEN} converges weakly to a fixed
point of T, where ww(x) denotes the set of subsequentinllimits of {Tnx }.

3. Strong convergence and fixed point

Throughout this section, G denotes a commutative semitopological
semigroup with the identity, directed by an order relation defined by
t~s if and only if t=as for some aEG. Let C be a closed covex subset
of a uniformly convex Banach space X. We suppose that the semigroup
70= {T. : sEG} is of asymptotically nonexpansive type and, for each
xEC, its orbit 7fi(x) = {T,x : sEG} is bounded.

By slight modification of Theorem 1 in I11J, we have the following:



174 Han-&>o Kim and Tae-Hwa Kim

THEOREM 3.1. For each xEC, the asymptotic center c(x) of the orbit
75(x) with respect to C is a common fixed point of 75.

LEMMA 3.2. For each xEC, limPTsx exists, where P is the metric
$

projection of X onto F(75).

Proof. Let rs=llT,x-PT,xll. With a proof as in Lemma 2.1, we
have r=infllT.x-PTsxll=limsupllTsx-PTsxll. If r=O, then {PTsx :

S $

sEG} is c1eary a Cauchy net. For r>O, suppose that {PT.x} is not a

Cauchy net. Then, there exists e>O and {sa, tal t;;.G such that

for every a. Now choose a 0'>0 so small that

(r+O') [1-0( r~O') ]<r,

where (} is the modulus of convexity of the norm.

For the 0'>0, there is Sa, taEG such that rSa' rta<r+ ~. Since 75 is of

asymptotically nonexpansive type, there is t oEG such that

11 Tt Tsax-PT,axll ~ 11 Tsax-PTsaxll+ ~ <r+O'

and also

11 Tt Ttax- PTtaxll <r+O',

for all t ~t 0 Taking b=tasat 0' by commutativity of G, we have that
1I1bx-P1~axll, 11 TbX-PTtaxll<r+O' and liP TSax-PTtaxll ~e. So, by
uniform convexity of X, we have

11 Tbx- (P Tsax+P Ttax) /211 ~ (r+O')[l-(}C~O' )J
Thus,

11 Tbx-PTbXII ~ 111bx- (PT,ax+PT.ax) /211

~ (r+O') [l-a( r~O')]<r.

This contradicts r=infll T,x- P T.xII. The proof is completed.
S

THEOREM 3.3. For each xEC, limP T.x=c(x) , where c(x) zs the
asymptotic center of 75 (x) with respect to C.
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Proof. By Lemma 3.2, there exists zEC such that PTsX ~ z. It
suffices to show that z=c(x). Indeed,

Hm supIITsx-zll~lim sup{IITrc-PTrcll+IIPTsx-.~1I}
s s

~lim supllTrc-PTsxll
s

~lim supll Tsx-c(x) 11.
s

Hence the uniqueness of asymptotic center implies that z=c(x) (see[6J).

REMARK. With a proof as in Theorem 3. 3, it is clear that if X
satisfies Opial's condition ([15J, [13 ; Lemma 2.1J), and {Tsx: sEG}
converges weakly to a yEF(w), then the net {PT,x: sEG} converges
strongly to the same fixed point y. It is easy that if C is a closed
convex subset of a uniformiy convex space space X and if wis a
right reversible semigroup of asymptotically nonexpansive type on C,
then the set F(w) of common fixed points is closed convex.

Finally, employing the method of the proof due to Goebel-Kirk­
Thele [5 ; Theorem 3. 1]. For each sEG and xEC, we denote by (J)S (x)
the set of subnet limits of the net {Ttsx: tEG}.

LEMMA 3. 4. Let C be a compact convex subset of a Banach space X
and let G, w= {Ts : sEG} be as before. Then there exists two subsets
M and H of C satisfying the following properties:

(a) H~C is minimal with respect to being nonempty, closed, convex
and satisfying that

(*) for each xEH and sEG, (J)s(x) ~H;
(b) M~H is minimal with respect to being nonempty, closed and

satisfying that
(**) for each xEM and sEG, (J)s(x) ~M;

(c) M~ n {Ts(M)}.
sEG

Proof. Use Zom's lemma to obtain the subset H of C which is
minimal with respect to being nonempty, closed, convex and satisfying
the property (*). Again, we use Zom's lemma to obtain the subset M
of H which is minimal with respect to being nonempty, closed and
satisfying the property (**). To prove (c), we note first that if xEM
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and wEwt(x) for some tEG, say, lim Ttatx=w for some subnet
er

(tal of G, then lim Tstatx= TswEM by (**). Therefore, for each sEG,
er

H 73 =Mn Ts(M) *0.
Obviously Ts(M) is nonempty and closed. By minimality of M, to
prove that HIii=M, it suffices to show that for each xEH7fj and tEG,
wt(x) -::;;.H73. Indeed, let ZEwt(x), say z=lim Ttatx for some subnet

er

{tal of G. Then, since xEM, zEM by (**). Also xE Ts(M) implies
that x= TsY for some yEM. By continuity and commutativity of mem­
bers of w, we get

lim Ttatx=lim T tat TsY
a

= T s(lim Tt"t y) = Tsv.
er

This implies z= Tsv for some vEM ; hence zEMn Ts(M) =H7iJ.
Thus, Ts(M) 2M and since sEG is arbitrary, (c) is proved.

THEOREM 3.5. Let C be a compact Convex subset of a Banach space X
and let G, W as before. Then W has a common fixed point in C.

Proof. Let M, H be given as in Lemma 3.4. Then it suffices to
show that diam(M) =0. Now suppose that

o=diam(M»O.

Since co(M) =H, by Lemma 1 in [lJ, there exists r<o such that
for some U E H,

sup{llu-xll : xEM} -;;:'r.
Set

D= {xEH: Mr;;;,B(x, r)}, where B(x, r) = {uEX: Ilu-xllr;;;,r}.

Since u E D, D is nonempty, closed and convex subset of H. Moreover,
because o>r and D can not contain points of M whose distance exceeds
r, it follows that D is a proper subset of H.

Next, let ZED and suppose lim Ttasz=w for some sEG and some
"subnet {tal of G. To show that WED, let yEM. Since T t"s(M)2M

for every taEG by (c) of Lemma 3.4, there exists u"EM such that y
= Ttasua. Therefore, we have

Ilw-yll ~ Ilw- Tt"szlI + 11 Ttasz- yll
= Ilw- Tta..zll +ell TtasZ- Ttasu" 1\
-lIz-ua llJ + IIz-ua ll
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Taking both sides by limsup, we obtain..

177

Ilw-yll~r.

Since wE H by (*), wED. This contradicts the minimality of H;
hence 0=0. The proof is completed.
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