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ASYMPTOTIC BEHAVIOR OF SEMIGROUPS OF
ASYMPTOTICALLY NONEXPANSIVE
TYPE ON BANACH SPACES

Han-Soo Kt anp Tae-Hwa K

1. Introduction

Let G be a semitopological semigroup. G is called right reversible if
any two closed left ideals of G has non-void intersection. In this case,
(G, =) is a directed system when the binary relation “=” on G is
defined by ¢=s if and only if {s§UGs2{} UG:, s t€G. Right
reversible semitopological semigroups include all commutative semigroups
and all semitopological semigroups which are right amenable as discrete
semigroups (see [9]). Left reversibility of G is defined similarly. G
is called reversible if it is both left and right reversible.

In 1976, Kirk [12] introduced any non-Lipschitzian self-mapping
which extends, in a sense, an asymptotically nonexpansive mapping
inherited by Goebel and Kirk [4] ; a continuous mapping T : K — K,
K a nonempty closed subset of a real Banach space X, is said to be of
asymptotically nonexpansive type if for each z€ K,

limsup {suplll T*z—T"yll—lle—sl] : y&K} 0.

Now, we introduce a semigroup of non-Lipschitzian self-mappings ;
let C be a nonempty closed convex subset of a real Banach space X
with norm ||-|l. A family 3= {7, : s€G} of continuous mappings of C
into C is said to be a right reversible semigroup of asymptotically
nenexpansive type on C if the following conditions are satisfied :

(a) the index set G is a right reversible semitopological semigroup
with the above order = ;

(b) Tyzx=T,T,z for all 5,¢&G and 2€C ;

(c) for each z=C,

limsup {sup[l| Tsz— Toyll — llz— 1] : y&C} =0 5
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(d) T is continuous with respect to the strong operator topology :
Ta — T,z for each z&C as s— ¢ in G.

Left reversible semigroup of asymptotically nonexpansive type is defined
similarly. For semigroups of another non-Lipschitzian self-mappings,
see [3], [10], [11] etc.

For each z€C, G(z) = {T,x : s&G} is called the orbit of x under @ and
a point 2C such that G(z) = {2} is called a common fixed point of .
We denote by F(T) the set of common fixed points of G and by w,, (z)
the set of weak subnet limits of the net {T,z:s€G} and set E(z)=

{yeC : liI(I;l | Tox— yl| exists}.
=1
It is the purpose of this paper that some of the weak convergence and
fixed point theory of semigroups of nonexpansive mappings ([8], [13],
[147) carries over to the larger class of mappings definded above.
2. Weak convergence

Unless other specified, let G, X,C, 6= {T,: s&G} be as before. We
begin with the following

LemMa 2. 1. For each z=C, F(0) S E(x).

Proof. let yeF(G) and r=sié16f WTex—xyl. Given >0, there is
5o<G such that | T, z— yl|<r+%. Since G is of asymptotically nonex-
pansive type, there also exists t,€G such that

| T, T, z— sl =T, x*yll+%

for all :=¢. Let b=a,=t,, Since G is right reversible, we may
assume bEGa, Let {s,} be a net in G such that s,a,—b. Then, for
each «,

1T, e, To s I ST, 2l 4+
Hence IlT;,.z——yHéHTs,x—y[I—l—%. So, we have

inf supll T,z—yllsupll Toe— 5yl <11 7., z—dll+ 5 <rte.
Since ¢ is arbitrary, we have inf supllT,:c-—yH§r=in£||Tsx—yI].
s (=1 SES

Therefore, lim || T,z —y|| exists and so yEE(z).
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Lemma 2.2, Let X be uniformly convex and suppose that F(T) #{.
Let z&C, f<F(0) and 0<a=B<1. Then, for each >0, there is
a,&G such that

NT AT+ 1—Df)— AT, Tz+ A=) 1<e
for all 5, t€G with s,t=a, and A: a=1<8.
Proof. Let >0, c=min{24(1—A3) : a<A=g}, =max{24(1—2) :
asA=8} and r=lim|| T.x—fl. For r=0, it is easy. Let r>0. Then
we can choose d>>0 so small that

(r+d)[1—c5<;%>]<r,

where § is the modulus of convexity of the norm. Since r=lim || T,z—
Sl and O is of asymptotically nonexpansive type, there exists a,€G such
that

1 Ta—f <+, If— Tl <fd+l) f—=)
and
1T, Ty — Tl <gd +| Tzl

for all s=a,, 2=C and each t=G. Suppose that
NT(ATz+ A=A f)— AT, Tiz+A—Df )| ze
for some s,t=a, and A:a=<A<B. Put u=1—2)(Tz—f) and v=
AT, T,x— Tiz), where z=AT,x+(1—2A)f. Then we have that [u]],
lel <A1 —A) r+4d), lla—ol|=lTz— QAT T+ A—Df)||=¢e and u+
(1—2) v=AQ—) (T;T.x—f). So, by using the Lemma in [7] we have
£
| Tua—f 1S )| 1-e8 (£ ) | <.
This contradicts r=inf]|T.x—f|| by Lemma 2. 1.

Let z and y be elements of a Banach space X. Then we denote by
[z, v] the set {&z+ (1—2)y:0=<A=1} and co(A) denotes the closure
of the convex hull of A.

Lemma 2.3. Let X have a Fréchet differentiable norm and {z,} a
bounded net in C. Let 2z ¢olz, : a=p}, yEC and {v,} e net of

elements in C with y, €[y, z,] and |y.—zll=min {{lu—=z| : €[y, 2,7}.
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If y,—y, then y==.

For the proof of Lemma 2.3, see Lemma 3 in [14]. Now we can
prove the following :

ProrosiTion 2.4. Let C be a closed convex subset of a uniformly convex
Banach space X with a Fréchet differentiable norm. Suppose that F(0)
is nonempty. Then, for each z&C, the set ﬂG EaiT,x 1=y NF(D)

consists of at most one point

Proof. For each z€C, let W(z)=Nco{T,z:¢=s}. Suppose that

£,8€W @ NF®) and f#g. Put h=L(f+g) and r =lim || T.o—gl.
Since ke W(z), llh—gll<r. For each s€G, choose p,&[ T.x, k] such
that [[p,—gll=min{lly—gll : y& [T, 21}. If liminf]| p,—gll=|h—gl,
then obviously p, — A Hence, by Lemma 2. 3, hs= g. This contradicts
f#g. Now we suppose that lim inf||p,—g||<{||[k—gll. Then there exists
¢>0 and s,=G such that sazasand

s, — gll+ec<|Ih—gll

for every aeG. Put p,,=a, T, z+ (1—a,)k for every a. Then there
is >0 and y<1 such that 8<a,<7y for all . By Lemma 2.2, and
since U is of asymptotically nonexpansive type, there exists a G such
that

IT.(ATe+ (1B — AT, Ta+ A=W <5

and

llg— Tszl|<—;—+llg—2ll

for all s,t=a, 2€C and 1: §<A<7.

For s,. =a., let s=28,=a.s, . Then, since G is right reversible, s& {8}
UG, we may assume s€Gg . Let {t} be a net in G such that #48,
— 5. Then, for each 8,

”Pt;ﬂq ~g“ = ”aa, Ttﬁﬁ. .Z+ (l—aa. )h_g“
= “ 7},,01° Psa, ™ (aa., T, T.Ya.x+ (1*‘14. )hH
Hllg— Tt bl Sc+llg— 2ol <llh—gll.

Hence, |lp,—gll<|lk—gll for all s=8, Thererfore we have p,#%k for
all s=8, Let s=8, and wp=~k(h— Tx)+ T.z for all 2=1. Then
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llez—gll =lh—gl| for all 221 and hence, by Theorem 2. 5 of [2]], we have
Ch—up, J(g—h)>={QA—k) (h—T,x), J(g—h))>=0

for all k=1, where J is the duality mapping of X. Therefore, it

follows that (A—T,z, J(g—h)><0 for all s=B, Then we have

h—y, J(g—h)>=Z0 for all yeco{Tiz: t=8.} Put y=f=h+(h—g),

then h=g, This contradicts f#g. The proof is completed.

Tueorem 2. 5. Let X, C, and F(G) as in Proposition 2. 4. Let xC. If
Wy (z) S F(T), then the net {T,x : s&G) converges weakly to some y& F(T).

Proof. Since F(T)#¢, by Lemma 2.1, {T,x:s&G} is bounded.
So, there exists a subnet {7, 2} of the net {T,x : s&€G} which converges
weakly to some y&C. Since v, (z) SF(0) and y&Neo{Tiz : t=s}, we
have y&€ Ncol{Twx : t=s} N F(T). Therefore, it follows from Proposition
2.4 that {T\z: s€G} converges weakly to yc F(T).

Let K be a subset of a Banach space X. A mapping T: K— K is
called asymptotically nonexpansive [4] if for each z, yeK,

Ttz — Tyl S arllz—yll, k=1,2,--,
where {a;} 1is a fixed sequence of real numbers such that }im a=1. It
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is proved in [4] that if K is a bounded closed and convex subset of a
uniformly convex space X then the set F(T) of fixed points of T is
nonempty closed and convex. Taking G=N in Theorem 2.5, we have

CoroLrary 2. 6. Let C be a closed convexr and bounded subset of a
uniformly convex Banach space X with a Fréchet differentiable norm. Let
zeC. If T:C—oC is asympiotically nonexpansive mapping and w,{z)
CSF(T), then the sequence {T*»x: nEN} converges weakly to a fixed
point of T, where w,(x) denotes the set of subsequentinl limits of {T"x}.

3. Strong convergence and fixed point

Throughout this section, G denotes a commutative semitopological
semigroup with the identity, directed by an order relation defined by
t>s if and only if t=as for some a&G. Let C be a closed covex subset
of a uniformly convex Banach space X. We suppose that the semigroup
T={T, : s€G} is of asymptotically nonexpansive type and, for each
z€C, its orbit G(z)={T\x : s&€G} is bounded.

By slight modification of Theorem 1 in [11], we have the following :
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TucoreM 3. 1. For each z<C, the asymptotic center c¢(x) of the orbit
T(x) with respect to C is a common fized point of G.

Lemma 3. 2. For each z=C, WUmPT.x exists, where P is the metric
projection of X anto F(T).

Proof. Let r,=||T.x—PT,x|l. With a proof as in Lemma 2.1, we
have r=inf|| T\x— P T,z||=limsup|| T,z— PTz|. If r=0, then{PT.z:

s€G)} is cleary a Cauchy net. For r>>0, suppose that {PT,z} is not a
Cauchy net. Then, there exists &>0 and {s,, ¢} ©G such that
WPT, x—PT,,zllze
for every . Now choose a ¢>>0 so small that
o132 )]<
where ¢ is the modulus of convexity of the norm.

For the ¢>>0, there is s,, £, G such that r,, r, <r+ —g—. Since @ is of

asymptotically nonexpansive type, there is £,£G such that
1T, T,z =P T2l S| Topz— P Tl + 5 <rto

and also
NT, T, z—PT; z||<r+to,

for all £=¢, Taking b=t,s,t,, by commutativity of G, we have that
| Tz—PT.,zll, ||Tye—PT, zl|<r+o and ||PT, z—PT,zl|Ze. So, by
uniform convexity of X, we have

| Tye— (PT, x+PT,ax)/2H<(7‘+0')[1 5( +0>J

Thus,
| Tyz—P Tzl S || Tyx— (P T, 2+ P Ty, 2) /2]

= G+o)|1- 5( >]<r

This contradicts r=inf||T,z— P T,x}]. The proof is completed.

Tueorem 3.3. For each z=C, UimPTz=c(x), where c(z) is the
asymptotic center of T(x) with respect to C.
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Proof. By Lemma 3.2, there exists z€C such that PT,x — 2 It
suffices to show that z=¢(z). Indeed,

lim sup|| Tyz—z||<lim sup {|| Tyz— P Tzl + || P Tz —=||}
<lim sup|| Tz — P Tz||
<lim sup||Tx—c(2)|.

Hence the uniqueness of asymptotic center implies that z=c(z) (see[6]).

Remark. With a proof as in Theorem 3.3, it is clear that if X
satisfies Opial’s condition ([15], [13 ; Lemma 2.1]), and {T.z: s€G}
converges weakly to a yEF(T), then the net {PT,z : s€G} converges
strongly to the same fixed point y. It is easy that if C is a closed
convex subset of a uniformiy convex space space X and if T is a
right reversible semigroup of asymptotically nonexpansive type on C,
then the set F(G) of common fixed points is closed convex.

Finally, employing the method of the proof due to Goebel-Kirk-
Thele [5 ; Theorem 3.1]. For each s€G and z&C, we denote by w* (z)
the set of subnet limits of the net {7,z :teG}.

Lemma 3.4. Let C be a compact convex subset of a Banach space X
and let G, G={T,: s&G} be as before. Then there exists two subsets
M and H of C satisfying the following properties:

(a) HEC is minimal with respect to being nonempty, closed, convex
and satisfving that

(*) for each € H and s€G, o (z)CH;

(b)) MCH is minimal with respect to being nonempty, closed and

satisfying that
(#%) for each x=M and s=G, o(x)SM;
(e MQSQG{TS(M)}-

Proof. Use Zorn’s lemma to obtain the subset H of C which is
minimal with respect to being nonempty, closed, convex and satisfying
the property (*). Again, we use Zorn’s lemma to obtain the subset M
of H which is minimal with respect to being nonempty, closed and
satisfying the property (#+). To prove (c), we note first that if zeM
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and wew'(z) for some t=G, say, lim T,,2=w for some subnet
{t.} of G, then lim T 2= Tiw&M by (). Therefore, for each s&G,

Hy=MnNT,(M) #0.
Obviously T,(M) is nonempty and closed. By minimality of M, to
prove that Hz=M, it suffices to show that for each x&Hp and 1&G,
o' (z) SHg. Indeed, let zew!(x), say z=lim T,z for some subnet
{t} of G. Then, since z&M, z€M by (*x). Also z& T,(M) implies
that z= T,y for some y=M. By continuity and commutativity of mem-
bers of ¥, we get
lim T, ,z=lm T,,Ty

—T,(lim T,y = Te.

This implies =Ty for some v&M ; hence zeMN T, (M) =Hy.
Thus, T,(M)>2M and since s&G is arbitrary, (c) is proved.

Taeorem 3.5. Let C be a compact convex subset of a Banach space X
and let G, T as before. Then © has a common fized point in C.

Proof. Let M, H be given as in Lemma 3.4. Then it suffices to
show that diam(M)=0. Now suppose that

d=diam (M) >(.

Since co(M)=H, by Lemma 1 in [1], there exists r<@ such that
for some uc H,
sup {flu—=z| : zE M} =1

Set

D= {zeH: MCB(z,r)}, where B(z,r)={ucX: |lu—z|S+}.
Since #&€ D, D is nonempty, closed and convex subset of H. Moreover,
because d>r and D can not contain points of M whose distance exceeds
r, it follows that D is a proper subset of H.

Next, let z&D and suppose lim T;z=w for some s&G and some
subnet {,} of G. To show that weD, let yeM. Since T, (M)2M
for every t,€G by (¢) of Lemma 3. 4, there exists u,&M such that y
=T, s Therefore, we have

lw—yll = llw— T, 2l + | T, .zl
= Hw— Ttaszn + [H Ttasz_ Ttasuan
—llz— 2l ]+llz— 2]l
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Taking both sides by limsup, we obtain

lw—yll<r.

Since weH by (*), weD. This contradicts the minimality of H ;
hence d=0. The proof is completed.
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