ASYMPTOTIC BEHAVIOR OF SEMIGROUPS OF ASYMPTOTICALLY NONEXPANSIVE TYPE ON BANACH SPACES

HAN-SOO KIM AND TAE-HWA KIM

1. Introduction

Let G be a semitopological semigroup. G is called right reversible if any two closed left ideals of G has non-void intersection. In this case, (G, \geq) is a directed system when the binary relation " \geq " on G is defined by $t \geq s$ if and only if $\{s\} \cup \overline{Gs} \supseteq \{t\} \cup \overline{Gt}$, $s, t \in G$. Right reversible semitopological semigroups include all commutative semigroups and all semitopological semigroups which are right amenable as discrete semigroups (see [9]). Left reversibility of G is defined similarly. G is called reversible if it is both left and right reversible.

In 1976, Kirk [12] introduced any non-Lipschitzian self-mapping which extends, in a sense, an asymptotically nonexpansive mapping inherited by Goebel and Kirk [4]; a continuous mapping $T: K \to K$, K a nonempty closed subset of a real Banach space X, is said to be of asymptotically nonexpansive type if for each $x \in K$,

limsup
$$\{\sup[||T^nx-T^ny||-||x-y||]: y \in K\} \le 0.$$

Now, we introduce a semigroup of non-Lipschitzian self-mappings; let C be a nonempty closed convex subset of a real Banach space X with norm $\|\cdot\|$. A family $\mathcal{T} = \{T_s : s \in G\}$ of continuous mappings of C into C is said to be a right reversible semigroup of asymptotically nenexpansive type on C if the following conditions are satisfied:

- (a) the index set G is a right reversible semitopological semigroup with the above order \geq ;
 - (b) $T_{st}x = T_s T_t x$ for all $s, t \in G$ and $x \in C$;
 - (c) for each $x \in C$,

 $\limsup_{s \in G} \{\sup[||T_s x - T_s y|| - ||x - y||] : y \in C\} \le 0;$

Received February 25, 1987.

(d) T is continuous with respect to the strong operator topology: $T_s x \to T_t x$ for each $x \in C$ as $s \to t$ in G.

Left reversible semigroup of asymptotically nonexpansive type is defined similarly. For semigroups of another non-Lipschitzian self-mappings, see [3], [10], [11] etc.

For each $x \in C$, $\mathcal{T}(x) = \{T_s x : s \in G\}$ is called the orbit of x under \mathcal{T} and a point $z \in C$ such that $\mathcal{T}(z) = \{z\}$ is called a common fixed point of \mathcal{T} . We denote by $F(\mathcal{T})$ the set of common fixed points of \mathcal{T} and by $\omega_w(x)$ the set of weak subnet limits of the net $\{T_s x : s \in G\}$ and set $E(x) = \{y \in C : \lim_{s \in G} ||T_s x - y|| \text{ exists}\}$.

It is the purpose of this paper that some of the weak convergence and fixed point theory of semigroups of nonexpansive mappings ([8], [13], [14]) carries over to the larger class of mappings definded above.

2. Weak convergence

Unless other specified, let $G, X, C, \mathcal{T} = \{T_s : s \in G\}$ be as before. We begin with the following

LEMMA 2.1. For each $x \in C$, $F(\mathcal{T}) \subseteq E(x)$.

Proof. Let $y \in F(\mathcal{T})$ and $r = \inf_{s \in G} ||T_s x - y||$. Given $\varepsilon > 0$, there is $s_o \in G$ such that $||T_{s_o} x - y|| < r + \frac{\varepsilon}{2}$. Since \mathcal{T} is of asymptotically nonexpansive type, there also exists $t_o \in G$ such that

$$||T_tT_{s_{\bullet}}x-y|| \leq ||T_{s_{\bullet}}x-y|| + \frac{\varepsilon}{2}$$

for all $t \ge t_o$. Let $b \ge a_o = t_o s_o$. Since G is right reversible, we may assume $b \in \overline{Ga}_o$. Let $\{s_\alpha\}$ be a net in G such that $s_\alpha a_o \to b$. Then, for each α ,

$$||T_{s_{\alpha}t_{\bullet}}T_{s_{\bullet}}x-y|| \leq ||T_{s_{\bullet}}x-y|| + \frac{\varepsilon}{2}$$

Hence $||T_bx-y|| \le ||T_{s_*}x-y|| + \frac{\varepsilon}{2}$. So, we have

$$\inf_{s} \sup_{t \geq s} ||T_t x - y|| \sup_{b \geq a_s} ||T_b x - y|| \leq ||T_{s_s} x - y|| + \frac{\varepsilon}{2} < r + \varepsilon.$$

Since ε is arbitrary, we have $\inf_{s} \sup_{t \ge s} ||T_t x - y|| \le r = \inf_{s \in G} ||T_s x - y||$.

Therefore, $\lim ||T_s x - y||$ exists and so $y \in E(x)$.

Lemma 2.2. Let X be uniformly convex and suppose that $F(\overline{c}) \neq \emptyset$. Let $x \in C$, $f \in F(\overline{c})$ and $0 < \alpha \le \beta < 1$. Then, for each $\varepsilon > 0$, there is $a \in G$ such that

$$||T_s(\lambda T_t x + (1-\lambda)f) - (\lambda T_s T_t x + (1-\lambda)f)|| < \varepsilon$$

for all s, $t \in G$ with s, $t \ge a_o$ and $\lambda : \alpha \le \lambda \le \beta$.

Proof. Let $\varepsilon > 0$, $c = \min \{2\lambda(1-\lambda) : \alpha \le \lambda \le \beta\}$, $c' = \max \{2\lambda(1-\lambda) : \alpha \le \lambda \le \beta\}$ and $r = \lim_s || T_s x - f||$. For r = 0, it is easy. Let r > 0. Then we can choose d > 0 so small that

$$(r+d)\Big[1-c\delta\left(rac{arepsilon}{r+d}
ight)\Big] < r,$$

where δ is the modulus of convexity of the norm. Since $r = \lim_{s} ||T_s x - f||$ and \tilde{o} is of asymptotically nonexpansive type, there exists $a_o \in G$ such that

$$||T_s x - f|| < r + \frac{d}{2}, \quad ||f - T_s z|| < \frac{c}{4}d + ||f - z||$$

and

$$||T_{s}T_{t}x-T_{s}z|| < \frac{c}{4}d + ||T_{t}x-z||$$

for all $s \ge a_0$, $z \in C$ and each $t \in G$. Suppose that

$$||T_s(\lambda T_t x + (1-\lambda)f) - (\lambda T_s T_t x + (1-\lambda)f)|| \ge \varepsilon$$

for some $s, t \ge a_o$ and $\lambda : \alpha \le \lambda \le \beta$. Put $u = (1-\lambda)(T_s z - f)$ and $v = \lambda(T_s T_t x - T_s z)$, where $z = \lambda T_t x + (1-\lambda)f$. Then we have that ||u||, $||v|| < \lambda(1-\lambda)(r+d)$, $||u-v|| = ||T_s z - (\lambda T_s T_t x + (1-\lambda)f)|| \ge \varepsilon$ and $\lambda u + (1-\lambda)(T_s T_t x - f)$. So, by using the Lemma in [7] we have

$$||T_{st}x-f|| \le (r+d) \left[1-c\delta\left(\frac{\varepsilon}{r+d}\right)\right] < r.$$

This contradicts $r=\inf ||T_sx-f||$ by Lemma 2.1.

Let x and y be elements of a Banach space X. Then we denote by [x, y] the set $\{\lambda x + (1-\lambda)y : 0 \le \lambda \le 1\}$ and $\overline{\operatorname{co}}(A)$ denotes the closure of the convex hull of A.

LEMMA 2.3. Let X have a Fréchet differentiable norm and $\{x_{\alpha}\}$ a bounded net in C. Let $z \in \bigcap_{\beta} \overline{co} \{x_{\alpha} : \alpha \ge \beta\}$, $y \in C$ and $\{y_{\alpha}\}$ a net of elements in C with $y_{\alpha} \in [y, x_{\alpha}]$ and $\|y_{\alpha} - z\| = \min \{\|u - z\| : u \in [y, x_{\alpha}]\}$.

If $y_a \rightarrow y$, then y=z.

For the proof of Lemma 2.3, see Lemma 3 in [14]. Now we can prove the following:

PROPOSITION 2. 4. Let C be a closed convex subset of a uniformly convex Banach space X with a Fréchet differentiable norm. Suppose that $F(\overline{v})$ is nonempty. Then, for each $x \in C$, the set $\bigcap_{s \in G} \overline{co} \{T_t x : t \ge s\} \cap F(\overline{v})$ consists of at most one point

Proof. For each $x \in C$, let $W(x) = \bigcap_t \overline{\cos}\{T_t x : t \ge s\}$. Suppose that $f, g \in W(x) \cap F(\emptyset)$ and $f \ne g$. Put $h = \frac{1}{2}(f + g)$ and $r = \lim_s \|T_s x - g\|$. Since $h \in W(x)$, $\|h - g\| \le r$. For each $s \in G$, choose $p_s \in [T_s x, h]$ such that $\|p_s - g\| = \min\{\|y - g\| : y \in [T_s x, h]\}$. If $\lim_s \inf \|p_s - g\| = \|h - g\|$, then obviously $p_s \to h$. Hence, by Lemma 2.3, h = g. This contradicts $f \ne g$. Now we suppose that $\lim_s \inf \|p_s - g\| < \|h - g\|$. Then there exists c > 0 and $s_\alpha \in G$ such that $s_\alpha \ge \alpha$ and

$$||p_{s_{\alpha}}-g||+c<||h-g||$$

for every $\alpha \in G$. Put $p_{s_{\alpha}} = a_{\alpha} T_{s_{\alpha}} x + (1 - a_{\alpha}) h$ for every α . Then there is $\beta > 0$ and $\gamma < 1$ such that $\beta \le a_{\alpha} \le \gamma$ for all α . By Lemma 2.2, and since \mathcal{T} is of asymptotically nonexpansive type, there exists $\alpha \in G$ such that

$$||T_s(\lambda T_t x + (1-\lambda)h) - (\lambda T_s T_t x + (1-\lambda)h)|| < \frac{c}{2}$$

and

$$||g-T_sz||<\frac{c}{2}+||g-z||$$

for all $s, t \ge \alpha_0$, $z \in C$ and $\lambda : \beta \le \lambda \le \gamma$.

For $s_{\alpha_{\circ}} \geq \alpha_{\circ}$, let $s \geq \beta_{\circ} = \alpha_{\circ} s_{\alpha_{\circ}}$. Then, since G is right reversible, $s \in \{\beta_{\circ}\}$ $\cup \overline{G}_{\beta_{\circ}}$, we may assume $s \in \overline{G}_{\beta_{\circ}}$. Let $\{t_{\beta}\}$ be a net in G such that $t_{\beta}\beta_{\circ} \to s$. Then, for each β ,

$$||p_{t,\beta_{\circ}} - g|| \leq ||a_{\alpha_{\circ}} T_{t,\beta_{\circ}} x + (1 - a_{\alpha_{\circ}}) h - g||$$

$$\leq ||T_{t,\alpha_{\circ}} p_{s_{\alpha_{\circ}}} - (a_{\alpha_{\circ}} T_{t,\alpha_{\circ}} T_{s_{\alpha_{\circ}}} x + (1 - a_{\alpha_{\circ}}) h||$$

$$+ ||g - T_{t,\beta_{\circ}} p_{s_{\alpha_{\circ}}}|| \leq c + ||g - p_{s_{\alpha_{\circ}}}|| < ||h - g||.$$

Hence, $||p_s-g|| < ||h-g||$ for all $s \ge \beta_o$. Therefore we have $p_s \ne h$ for all $s \ge \beta_o$. Let $s \ge \beta_o$ and $u_k = k(h-T_s x) + T_s x$ for all $k \ge 1$. Then

 $||u_k-g|| \ge ||h-g||$ for all $k \ge 1$ and hence, by Theorem 2. 5 of [2], we have $\langle h-u_k, J(g-h)\rangle = \langle (1-k)(h-T,x), J(g-h)\rangle \ge 0$

for all $k \ge 1$, where J is the duality mapping of X. Therefore, it follows that $\langle h-T,x, J(g-h)\rangle \le 0$ for all $s \ge \beta_o$. Then we have $\langle h-y, J(g-h)\rangle \le 0$ for all $y \in \overline{co} \{T_t x : t \ge \beta_o\}$ Put y=f=h+(h-g), then h=g, This contradicts $f \ne g$. The proof is completed.

THEOREM 2.5. Let X, C, and $F(\overline{o})$ as in Proposition 2.4. Let $x \in C$. If $\omega_m(x) \subseteq F(\overline{o})$, then the net $\{T_sx : s \in G\}$ converges weakly to some $y \in F(\overline{o})$.

Proof. Since $F(\emptyset) \neq \phi$, by Lemma 2. 1, $\{T_sx : s \in G\}$ is bounded. So, there exists a subnet $\{T_{s_a}x\}$ of the net $\{T_sx : s \in G\}$ which converges weakly to some $y \in C$. Since $\omega_w(x) \subseteq F(\emptyset)$ and $y \in \bigcap_{co} \{T_tx : t \geq s\}$, we have $y \in \bigcap_{co} \{T_tx : t \geq s\} \cap F(\emptyset)$. Therefore, it follows from Proposition 2. 4 that $\{T_sx : s \in G\}$ converges weakly to $y \in F(\emptyset)$.

Let K be a subset of a Banach space X. A mapping $T: K \to K$ is called asymptotically nonexpansive [4] if for each $x, y \in K$,

$$||T^kx-T^ky|| \le a_k||x-y||, k=1,2,\cdots,$$

where $\{a_k\}$ is a fixed sequence of real numbers such that $\lim_{k\to\infty} a_k=1$. It is proved in [4] that if K is a bounded closed and convex subset of a uniformly convex space X then the set F(T) of fixed points of T is nonempty closed and convex. Taking G=N in Theorem 2.5, we have

Corollary 2.6. Let C be a closed convex and bounded subset of a uniformly convex Banach space X with a Fréchet differentiable norm. Let $x \in C$. If $T: C \to C$ is asymptotically nonexpansive mapping and $\omega_w(x) \subseteq F(T)$, then the sequence $\{T^nx: n \in N\}$ converges weakly to a fixed point of T, where $\omega_w(x)$ denotes the set of subsequential limits of $\{T^nx\}$.

3. Strong convergence and fixed point

Throughout this section, G denotes a commutative semitopological semigroup with the identity, directed by an order relation defined by $t \geqslant s$ if and only if t=as for some $a \in G$. Let C be a closed covex subset of a uniformly convex Banach space X. We suppose that the semigroup $\mathcal{T} = \{T_s : s \in G\}$ is of asymptotically nonexpansive type and, for each $x \in C$, its orbit $\mathcal{T}(x) = \{T_s x : s \in G\}$ is bounded.

By slight modification of Theorem 1 in [11], we have the following:

THEOREM 3.1. For each $x \in C$, the asymptotic center c(x) of the orbit $\mathcal{T}(x)$ with respect to C is a common fixed point of \mathcal{T} .

Lemma 3.2. For each $x \in C$, $\lim_{s} PT_{s}x$ exists, where P is the metric projection of X onto $F(\mathcal{T})$.

Proof. Let $r_s = ||T_sx - PT_sx||$. With a proof as in Lemma 2.1, we have $r = \inf_s ||T_sx - PT_sx|| = \limsup_s ||T_sx - PT_sx||$. If r = 0, then $\{PT_sx : s \in G\}$ is cleary a Cauchy net. For r > 0, suppose that $\{PT_sx\}$ is not a Cauchy net. Then, there exists $\varepsilon > 0$ and $\{s_\alpha, t_\alpha\} \subseteq G$ such that

$$||PT_{s_{\alpha}}x - PT_{t_{\alpha}}x|| \ge \varepsilon$$

for every α . Now choose a $\sigma > 0$ so small that

$$(r+\sigma)\left[1-\delta\left(\frac{\varepsilon}{r+\sigma}\right)\right] < r$$

where δ is the modulus of convexity of the norm.

For the $\sigma > 0$, there is $s_{\alpha}, t_{\alpha} \in G$ such that $r_{s_{\alpha}}, r_{t_{\alpha}} < r + \frac{\sigma}{2}$. Since \mathcal{T} is of asymptotically nonexpansive type, there is $t_{\alpha} \in G$ such that

$$||T_tT_{s_{\alpha}}x-PT_{s_{\alpha}}x|| \leq ||T_{s_{\alpha}}x-PT_{s_{\alpha}}x|| + \frac{\sigma}{2} < r + \sigma$$

and also

$$||T_tT_{t,x}x-PT_{t,x}x|| < r+\sigma$$

for all $t \ge t_o$ Taking $b = t_\alpha s_\alpha t_o$, by commutativity of G, we have that $||T_b x - PT_{s_\alpha} x||$, $||T_b x - PT_{t_\alpha} x|| < r + \sigma$ and $||PT_{s_\alpha} x - PT_{t_\alpha} x|| \ge \varepsilon$. So, by uniform convexity of X, we have

$$||T_b x - (PT_{s_{\alpha}}x + PT_{t_{\alpha}}x)/2|| \le (r+\sigma) \left[1 - \delta\left(\frac{\varepsilon}{r+\sigma}\right)\right].$$

Thus,

$$||T_b x - PT_b x|| \leq ||T_b x - (PT_{s_{\alpha}} x + PT_{t_{\alpha}} x)/2|| \leq (r + \sigma) \left[1 - \delta\left(\frac{\varepsilon}{r + \sigma}\right)\right] < r.$$

This contradicts $r = \inf ||T_s x - PT_s x||$. The proof is completed.

THEOREM 3.3. For each $x \in C$, $\lim PT_s x = c(x)$, where c(x) is the asymptotic center of $\mathcal{T}(x)$ with respect to C.

Proof. By Lemma 3.2, there exists $z \in C$ such that $PT_s x \to z$. It suffices to show that z = c(x). Indeed,

$$\lim_{s} \sup \|T_{s}x - z\| \leq \lim_{s} \sup \{ \|T_{s}x - PT_{s}x\| + \|PT_{s}x - z\| \}$$

$$\leq \lim_{s} \sup \|T_{s}x - PT_{s}x\|$$

$$\leq \lim_{s} \sup \|T_{s}x - c(x)\|.$$

Hence the uniqueness of asymptotic center implies that z=c(x) (see[6]).

REMARK. With a proof as in Theorem 3.3, it is clear that if X satisfies Opial's condition ([15], [13; Lemma 2.1]), and $\{T_sx:s\in G\}$ converges weakly to a $y\in F(\emptyset)$, then the net $\{PT_sx:s\in G\}$ converges strongly to the same fixed point y. It is easy that if C is a closed convex subset of a uniformity convex space space X and if \emptyset is a right reversible semigroup of asymptotically nonexpansive type on C, then the set $F(\emptyset)$ of common fixed points is closed convex.

Finally, employing the method of the proof due to Goebel-Kirk-Thele [5; Theorem 3.1]. For each $s \in G$ and $x \in C$, we denote by ω^s (x) the set of subnet limits of the net $\{T_{ts}x : t \in G\}$.

- Lemma 3.4. Let C be a compact convex subset of a Banach space X and let G, $\mathcal{T} = \{T_s : s \in G\}$ be as before. Then there exists two subsets M and H of C satisfying the following properties:
- (a) $H \subseteq C$ is minimal with respect to being nonempty, closed, convex and satisfying that
 - (*) for each $x \in H$ and $s \in G$, $\omega^s(x) \subseteq H$;
- (b) $M \subseteq H$ is minimal with respect to being nonempty, closed and satisfying that
 - (**) for each $x \in M$ and $s \in G$, $\omega^s(x) \subseteq M$;
 - (c) $M \subseteq \bigcap_{s \in G} \{T_s(M)\}.$

Proof. Use Zorn's lemma to obtain the subset H of C which is minimal with respect to being nonempty, closed, convex and satisfying the property (*). Again, we use Zorn's lemma to obtain the subset M of H which is minimal with respect to being nonempty, closed and satisfying the property (**). To prove (c), we note first that if $x \in M$

and $w \in \omega^t(x)$ for some $t \in G$, say, $\lim_{\alpha} T_{t_{\alpha}t}x = w$ for some subnet $\{t_{\alpha}\}$ of G, then $\lim_{\alpha} T_{st_{\alpha}t}x = T_sw \in M$ by (**). Therefore, for each $s \in G$,

$$H_{\overline{o}}=M\cap T_s(M)\neq\emptyset$$
.

Obviously $T_s(M)$ is nonempty and closed. By minimality of M, to prove that $H_{\overline{v}}=M$, it suffices to show that for each $x\in H_{\overline{v}}$ and $t\in G$, $\omega^t(x)\subseteq H_{\overline{v}}$. Indeed, let $z\in \omega^t(x)$, say $z=\lim_{\alpha}T_{t_{\alpha}t}x$ for some subnet $\{t_{\alpha}\}$ of G. Then, since $x\in M$, $z\in M$ by (**). Also $x\in T_s(M)$ implies that $x=T_sy$ for some $y\in M$. By continuity and commutativity of members of \overline{v} , we get

$$\lim_{\alpha} T_{t_{\alpha}t}x = \lim_{\alpha} T_{t_{\alpha}t}T_{s}y$$

$$= T_{s}(\lim_{\alpha} T_{t_{\alpha}t}y) = T_{s}v.$$

This implies $z = T_s v$ for some $v \in M$; hence $z \in M \cap T_s(M) = H_{\overline{v}}$. Thus, $T_s(M) \supseteq M$ and since $s \in G$ is arbitrary, (c) is proved.

THEOREM 3.5. Let C be a compact convex subset of a Banach space X and let G, T as before. Then T has a common fixed point in C.

Proof. Let M, H be given as in Lemma 3.4. Then it suffices to show that diam(M) = 0. Now suppose that

$$\delta = \operatorname{diam}(M) > 0$$
.

Since $\overline{\operatorname{co}}(M) = H$, by Lemma 1 in [1], there exists $r < \delta$ such that for some $u \in H$,

$$\sup\{||u-x||:x\in M\}\leq r.$$

Set

$$D = \{x \in H : M \subseteq B(x, r)\}, \text{ where } B(x, r) = \{u \in X : ||u - x|| \subseteq r\}.$$

Since $u \in D$, D is nonempty, closed and convex subset of H. Moreover, because $\delta > r$ and D can not contain points of M whose distance exceeds r, it follows that D is a proper subset of H.

Next, let $z \in D$ and suppose $\lim_{\alpha} T_{t_{\alpha}s}z = w$ for some $s \in G$ and some subnet $\{t_{\alpha}\}$ of G. To show that $w \in D$, let $y \in M$. Since $T_{t_{\alpha}s}(M) \supseteq M$ for every $t_{\alpha} \in G$ by (c) of Lemma 3.4, there exists $u_{\alpha} \in M$ such that $y = T_{t_{\alpha}s}u_{\alpha}$. Therefore, we have

$$||w - y|| \le ||w - T_{t_{\alpha}s}z|| + ||T_{t_{\alpha}s}z - y||$$

$$= ||w - T_{t_{\alpha}s}z|| + [||T_{t_{\alpha}s}z - T_{t_{\alpha}s}u_{\alpha}||$$

$$- ||z - u_{\alpha}|| + ||z - u_{\alpha}||$$

Taking both sides by limsup, we obtain

$$||w-y|| \leq r$$
.

Since $w \in H$ by (*), $w \in D$. This contradicts the minimality of H; hence $\delta = 0$. The proof is completed.

References

- 1. R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math., 13(1963), 1139-1141.
- 2. F.R. Deutsch and P.H. Maserick, Applications of the Hahn-Banach theorem in approximation theory, SIAM Rev., 9(3) (1967), 516-530.
- 3. M. Edelstein and M. T, Kiang, On ultimately nonexpansive semigroups, Pacific J. Math., 101(1) (1982), 93-102.
- 4. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1) (1972), 171-174.
- K. Goebel, W.A. Kirk and R.L. Thele, Uniformly Lipschitzian families of transformations in Banach spaces, Can. J. Math., XXVI(5) (1974), 12 45-1256,
- 6. K. Goebel and S. Reich, Uniform convexity, Hyperbolic geometry, and nonexpansive mappings, Mongraphs and textbook in Pure and Applied Math., 83, Marcel Dekker, Inc., New York and Basel, (1984).
- C.W. Groetsch, A note on segmenting Mann iterates, J. Math. Anal. Appl., 40(1972), 369-372.
- 8. N. Hirano, A proof of the mean ergodic theorem for nonexpansive mappings in Banach space, Proc. Amer. Math. Soc., 78(3) (1980), 361-365.
- 9. R.D. Holmes and A.T. Lau, Nonexpansive actions of topological semigroups and fixed points, J. London Math. Soc. (2), 5(1972), 330-336.
- 10. M.T. Kiang, Fixed point theorems for certain classes of semigroups of mappings, Trans. Amer. Math. Soc., 189(1976), 63-76.
- 11. M.T. Kiang and K.K. Tan, Fixed point theorems for proximately nonexpansive semigroups, Canad. Math. Bull., 29(2) (1986), 160-166.
- 12. W.A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math, 17(1976), 339-346.
- 13. A.T. Lau, Semigroup of nonexpansive mappings on a Hilbert space, J. Math. Anal. Appl., 105(1985), 514-522.
- A.T. Lau and W. Takahashi, Weak convergence and non-linear ergodic theorems for reversible semigroups of nonexpansive mappings, Pacific J. Math., 126(2) (1987), 277-294.
- 15. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591-597.

Kyungpook National University Taegu 635, Korea and National Fisheries University of Pusan Pusan 608, Korea