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FUNCTIONS IN THE BANACH AlGEBRA S(v)

K. S. CHANG*, G. W. ]OHNSON AND D. L. SKOUG

1. Introduction and Preliminaries.

Let u be a positive integer and let Co [0, tJ denote v-dimensional
Wiener space, that is the space of R"-valued continuous functions X
= (Xl> "', xu) on [0, tJ such that X(0) =0. In case v=l we suppress
the v and simply write xECo [0, tJ. In [2J Cameron and Storvick
introduced a Banach algebra 8 (v) of (equivalence classes of) functions
on Wiener space which are a type of stochastic Fourier transform of
finite Borel measures. They showed [2, Theorem 5. 1J that the analytic
Feynman integral exists for all elements of 8 (v) . In this paper we
establish a general theorem insuring that various functions f : Co[O, tJ~
C belong to 8(u). We then give several corollaries which contain, with
the exception of some results in [6, 16, 19J on quadratic potentials, all
of the results that we know of to date which insure that various func­
tions of interest in connection with the Feynman integral and quantum
mechanics are in 8(v) for some u. The results of this paper combined
with the results in [6,16, 19J show that 8(u) contains a broad class of
functions.

Next we give the definition of 8 (v). Let mU denote v-dimensional
Wiener measure. A subset A of Co [0, t] is said to be scale-invariant
measurable [14J provided pA is Wiener measurable for every p>O, and
a scale invariant measurable set N is said to be scale-invariant null pro­
vided m"(pN) =0 for every p>O. A property that holds except on a
scale-invariant null set is said to hold scale-invariant almost everywhere
(s-a. e.). Let M(L'2 [0, t]) denote the collection of complex-valued
countably additive measures on /3(!J2 [0, t]), the Borel class of L'2 [0, t].
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M(/)2) is a Banach algebra under the total variation norm where con­
volution is taken as the multiplication.
Let a be in M(L'2). Consider the function a defined for s-a. e.
X = (Xl. "', xv) in Cll [0, t] by the formula

(1.1) a(X) =S u eXP{i t se Vj(s)Jxj(s)}da(V)
L,[O, e] J~1 0

where V=(Vh "', vn) and where S: Vj (s)JXj (s) denotes the

Paley-Wiener-Zygmund stochastic integral [6, or 16]. The elements of
8 (v) consist of equivalence classes [a] of functions which are s-a. e.
equal to a for some (J in MC/)2[O, t]). One often uses loose terminology
and refers to the elements of 8(v) as functions. Cameron and Storvick
[2J show that the correspondence a~[(jJ is injective, carries convolution
into pointwise multiplication and that 8 (v) is a Banach algebra with
norm II[a]II=llall.

2. The General Theorem.

In this section we establish the theorem discussed in the introduction.

THEOREM 1. Let A be afinite Borel measure on [0, tJn. For j=l, 2, "', n
let if>j : [0, t]-L2 [0, t] be Borel measurable. Let 0: [0, tJnXRnv~C be
such that for all -; = (rh "', rn) E [0, t]n,

(2.1) 0(; ; V h ''', V n) = SR'U exp {iit <V j, V j) da;:(V h ''', V n)

=0-;:( (Vh "', V n )

where a;:EM(R"v), the measure algebra of Rnv, V j = (Ujh "', Ujv) ERv,
(2.2) for every BE{J(R"v), a;:(E) is a Borel measurable function of

-;, and

(2.3) Ila,.-11 EL1 ([0, t]n, {J([O, t]n), A).

Then the function f : Co[O, t]-C defined by the formula

(2.4) f(X)=S 0(-;; ire if>l(Tl) (s)JXj(s»)v. ,"',
[0, e]" Vo J~l

(5: if>n(rll ) (s)JXj(s) ):~JdA(-;)

belongs to the Banach algebra 8(v).

Proof. To show that f is in 8(v) we need to find a measure a in
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M(L'2[O,tJ) such that 1J(X)=!(X) for s-a.e. X=(Xb "',xu) in
Co[O, tJ where 1J is given by (1. 1).

First using [13, Proposition 2J it is quite easy to see that () is a
Bore! measurable function of (r; Ub "', U,,), It then follows that the
integrand on the right hand side of (2. 4) is a Bore1 measurable function
of r since it is composed of Borel ~easurable functions.

Next we use the Borel measure A and the family of Borel measures
{a; : rE [0, tJ"l to construct a Borel measure f.l on [0, tJnxR"u by letting

(2.5) f.l(E) =f a;(EC;)d),(r)
[0. I]"

for EE,8([O, tJnxRnu). Using the Unsymmetric Fubini Theorem [13J
we see that fl is an element of M([O, t]"xRnu).

Now for j=1, 2, "', l) let f/J j : [0, t]"xRnu-L2[0, t] be defined by the
formula

(2. 6) ifJj (s) =:.ifJj (r ; t\, "', t;\)(s) = ±vkj(h(rk)(s)
k~l

where V m= (Vmb "', vmu) ERu for m=1, "', n. Le t ifJ : [0, t]"xRnu_
I;z [0, tJ be defined by the formula

ifJ(s)=rfJ(r: Vb "', V,,)(s) = (ifJ1(s), ·",ifJu(s».

Clearly ifJ is Borel measurable.
Finally define a in M(L2[O, tJ) by a=:'florfJ-l. We need to show that

1J(X) =!(5{) for s-a. e. X EC;;[O, t]. That is to say, for fixed P>O,
we need to show that 1J(pX)=!(pX) for a.e. XEC;;[O,t]. But using
the Change of Variables Theorem [11, p. 163J and the Unsymmetric
Fubini Theorem [13J it follows that for a. e. X in C;;[O, t],

1J(pX) =f u exp{ip .tfl Uj(s)JXj(s)}da(ub "', uu)
L,[O,/] J=l 0

=f v exp{ip i: Uj(s)JXj(s)}d(fl orfJ- 1) (Ub "', uu)
L,[O, I] J=l

=f exp liP t fl ifJj(s)JXj(s)} dfl(r ; Vb "', V,,)
[0, t]"xR" j=l 0

=f [f exp{ip t t Vkjfl (h(rk) (s)JXj(S)}
[0, I]" R.. k=l j=l 0

da;(Vb "', V,,) JdA(r)

=J' [f exp tiP t <fl (h(rk) (s)JXj(S»i=b (VH, ... ,Vku»}
[0, I]" R." k=l 0
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dtJ-;(Vb "', Vn)JdA(r)

=f O(r; (pIt tPl(rl) (s)dXj(S»j;b "',
[0, t]n 0

(pf: tPn(rn) (s)dXj (s»j;l)dJ. (T)

/(pX).

Thus / is in S(v) which completes the proof of Theorem 1-

We remark that we could have given an alternative proof of Theorem
1 using some recent results [7J concerning the Fresnel class ';] (H) of
Fourier-StieItjes transforms of bounded Borel measures on a separable
infinite-dimensional Hilbert space H and the fact that for proper choice
of H, ';] (H) and S (1) are isometrically isomorphic [12]. However,
under our present assumptions and state of knowledge, the proof involves
certain measure theoretic technicalities which makes it more complicated
than the proof that we have given above.

3. Various Corollaries of Theorem 1.

Our first corollary is an easy consequence of the fact that S (v) is a
Banach algebra. This result is relevant to quantum mechanics where
exponential functions play a prominent role.

COROLLARY 1. Let / be as in Theorem 1 and let h be an entire function
on C. Then hC/(X» is in S(v). In particular exp ffeX)} is in S(v).

COROLLARY 2. Let 0 : [0, tJnXRn"~C be given by (2.1). Let(sh S2,

"', sn) be any fixed point in [0, tJn. Let

(3.1) /1 (X) =O(S1o "', Sn ; X (SI), "', X (sn»'

Then /1 belongs to S(v).

Proof. Apply Theorem 1 with tPj(rj) (s) =X[O,rj] (s) for j=l, "', n,
and with J. having unit mass concentrated at the point (SI> ''', sn) (or
let J. be any probability measure on[O, tJn and choose tPj (rj) (s) =X[O' Sj] (s)

for j=l, 2, "', n).

REMARK 1. Various results in [17J, for example Proposition 3.1, and
Corollaries 3. 3 and 3. 5, now follow easily from Corollary 2 above by
letting n= 1 and SI = t. The resulting functions arise in connection with
the Schroedinger equation with potential O=O(t, U).
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REMARK 2. Let rjJ : R~C and define 12: Co[O, tJ~C by the formula

(3.2) 12 (x) =rjJ(x(t».

Functions of the form (3. 2) are of interest in quantum mechanics where
rjJ is the initial state of the quantum system. By Corollary 2 above we
see that if cj,=a with aEM(R) then 12 is in 8(1). It is interesting to
ask if conditions insuring that a function is in 8 (1) are necessary as
well as sufficient. For a certain class of functions, including 12' the
authors [8J have recently shown that the answer is yes. In particular,
if 12 is given by (3. 2), then 12 is in 8 (1) if and only if rjJ=fJ with
aEM(R).

COROLLARY 3. Let A be a finite Bore! measure on [0, tJn and let

(3.3) 13U[)=f O(rh ''',r,,; X(rJ), "·,X(rn»dA.(rj, ''',r,,)
[0, tJ n

where 0 is given by (2.1). Then 13 belongs to 8 (ll).

Proof. Apply Theorem 1 with tPj (r) (s) =X[O' rj] (s) for j = 1, ''',1/.

REMARK 3. Note that Corollary 3 above contains the main result of
[15J. namely Theorem 1 on page 319. For simply choose n=l, u=l,
and A. to be Lebesgue measure on [0, t]' Then

(3.4) f1(X) =t OCr ; x(r»dr

and exp U4 (x) Iare both clearly in S (1).

In a recent expository essay [18J, Nelson calls attention to some
functions on Wiener space which were discussed in the book of Feynman
and Hibbs [10, section 3-13J and in Feynman's original paper [9,
section 13]. These functions have the form

f5(.r) =exp U;.C W(rh r2 ; x(rJ)' x(r2» drldr2' J
Feynman obtained such functions by integrating out the oscillator coor·
dinates in a system involving a harmonic oscillator interacting with a
particle moving in a potential. Further functions like (3. 5) but involving
multiple integrals of more dimensions than two arise when more parti
cles are involved. Our next corollary involves such functions.

COROLLARY 4. Let A. be a finite Borel measure on [0, tJn and let

(3.6) f6 (X) =expJ: ...J: OCr!> ''', rn ; X CrI), "', X (r,,) )dA,(rl, ' ..rn)}
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with () : [0, tJnXR"v~C given by (2.1). Then f6 belongs to 8(1)

REMARK 4. When Colollary 4 above is combined with the main results
of [19, Theorems 3.1 and 4. 1J involving quardratic potentials depending
on n time parameters, one sees that a rather large class of functions
involving n time parameters belong to 8 (I) [19, Corollary 3. 4].

In our next corollary we see that a Riemann sum approximation,

Rm O{) , for S;···S;()(rt. "',r,,; X(rl), "', X(r,,»drh "',dr" is in 8(1).

COROLLARY 5. Let 0 : [0, tJ"XR""~C be given by (2.1) and let

R m (X) =,i:. i ... f:. (t/ m) n o( .fIt, .f2t , "', .f"t ; X ( .fIt ), "', X .f"t
J>~1 ;,=1 1.=1 m m nz m m

for m=l, 2, .... Then R m is in 8(1) for m=l, 2, ....

Proof. For each m=l, 2, "', apply Theorem 1 with (!Ji(rj) (s)
=X[o. rj] (s) and with A a discrete measure with mass (t/m)" at each of

the m" points (.fIt, .f2t , "', .f"t) in (0, tJ".
m m m

Next we will show that functions of the form (3. 1) (and (3.3», but
involving independent increments X (SI), X (S2) - X (SI), . ", X (s,,)
-X(S"-I) are in 8(v). To do this we first need to adjust equation
(2. 4) accordingly.

COROLLARY 6. Let Ph "', Pm A and 0 be as in Theorem 1. Then the
function f7 : coCa, tJ~C defined by the formula

f7(X)=J O(r; (Jt pl (rl ) (s)JXj(s»)V , ('P[P2(r2)(s)
[O,t]" 0 j~1 Jo

-PI (rl) (s) ]JXj (s) ) :~1' '" (f: [p" (r,,) (s) -P"-1 (r"-I) (s) JJXj (s) ) :=J dA (r)

is in the Banach algebra 8(v).
Proof. The proof of this corollary parallels the proof of Theorem 1

above provided we replace equation (2.6) with

(2. 6)' fJJ j (s)=fJJj(r, Vh . ", V,,) = t Vkj [Pk (rk) (s) - Pk-l (rk-l) (s) ]
k~1

where Po (ro) (s) is identically zero.

COROLLARY 7. Let () and ;{ be as in Theorem 1 and let

f seX) =S OCr, X(rl), X (r2) -X err), "', X (r,,) - X (r"-I»d;{(r)
[O.t]"

Then f8 belongs to 8 (v).
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Proof. In Corollary 6 choose f/Jj (rj) (5) =XCQ. ri] (5) for j=l, "', n.

COROLLARY 8. Let 0<51<52 <"·<s,.5,.t be a fixed partition of [0, tJ.

Let -;= (Si> ''', 5,.) and let

f9(X) = ()(sX (SI), X (52) -X (51), "', X (5,.) -X (5,.-1))

where () is given by (2.1). Then f9 is in 8(1)).

Proof. In Corollary 7 let A have unit mass at the point
-;= (Sh "', S,.) E [0, tJ".

References

1. S. Albeverio and R. Hq\egh-Krohn, Mathematical Theory of Feynman Path
Integrals, Springer Lecture Notes in Mathematics, Berlin 523 (1976).

2. R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic
Feynman integrable functionals, in Analytic Functions, Kozubnik, 1979,
Springer Lecture Notes in Mathematics, Berlin, 798(1980), 18-67.

3. R. H. Cameron and D. A. Storvick, A new translation theorem for the
analytic Feynman integral, Rev. Roumaine Math., Pure Appl. 27 (1982),
937-944.

4. R. H. Cameron and D. A. Storvick, A simple definition of the Feynman
integral, 'with applications, lvlemoirs of the Amer. Math. Soc. No. 288,
46 (1983), 1-46.

5. K. S. Chang, G. W. ]ohnson, and D. L. Skoug, Necessary and sufficient
conditions for the Fresnel integrability of certain classes of functions, ].
Korean Math. Soc., 21(1984), 21-29.

6. K. S. Chang, G. W. ]ohnson, and D. L. Skoug, The Feynman integral of
quadratic potentials depending Of! two time variables, Pacific]. Math..
122(1986), 11-33.

7. K.S. Chang, G. W. ]ohnson, and D.L. Skoug, Functions in the Fresnel
class, to appear in Proc. Amer. Math. Soc.

8. K. S. Chang, G. W. ]ohnson, and D. L. Skoug, Necessary and sufficient
conditions for membership in the Banach algebl'a S for certain classes of
junctions, to appear in Suppear in SuppIemento ai Rendiconti del Circolo
Matematico di Palermo, Proceedings of a Conference on Functional
Integration held in Sherbrooke, Canada, July, 1986.

9. R. J. Feynman, Space-time approach to non-relativistic quantum mechanics,
Rev. Mod. Phys., 20(1948), 367-387.

10. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals,
McGraw-Hill, New York, 1965.

11. P. Halmos, Measure Theory, Van-Nostrand, Princeton, New Jersey, 1950.



158 K. S. Chang, G. W. Johnson and D. L. Skoug

12. G. W. Johnson, The equivalence of two approaches to the Feynman integral.
J. Math. Phys., 23 (1982), 2090-2096.

13. G. W. Johnson, An unsymmetric Fubini theorem, Amer. Math. Monthly,
91(1984), 131-133.

14. G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener
space, Pacific J. of Math., 83(1979), 157-176.

15. G. W. Johnson and D. L. Skoug, Notes on the Feynman integral, I, Pacific
J. of Math., 93(1981), 313-324.

16. G. W. Johnson and D. L. Skoug, Notes on the Feynman integral, If, J. of
Functional Analysis, 41 (1981), 277-289.

17. G. W. Johnson and D. L. Skoug, Notes on the Feynman integral, If!: The
Schroedinger equation, Pacific J. of Math., 105(1983), 321-358.

18. E. Nelson, The use of the Wiener process in quantum theory, preprint
intended for inclusion in V01. In of the Collected Work of Norbert
Wiener, edited by P. Masani, M.1. T. Press.

19. C. Park and D. L. Skoug, The Feynman integral of quadratic potentials
depending on n time parameters, submitted for publication to Nagoya
Math. J.

Yonsei University
Seoul 120, Korea
and
University of Nebraska
Lincoln, NE 68588
U. S. A.




