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SEMISIMPLE MALCEV-ADMISSIBLE MUTATION ALGEBRAS

l-IYo CHUL l\1YUI'\G * AKD DONG SUN SHIN

1 . Introduction

In this paper we investigate the relationships between an alternative
algebra A and its (p, q) -mutation algebra A (p, q) in terms of simplicity
and semisimplicity. The present discussion is a continuation of an earlier
work by Myung and Shin [4J which concerns with nonassociative
identities satisfied by A (p, q).

We first recall some basic facts from [4]. Let B denote an (nonasso­
ciative) algebra over a field F with multiplication xy. The commutator
[x, yJ, anticommutator {x, y} and associator (x, y, z) in B are defined
by [.T,YJ=XY-Yx, {x,y} =xy+yx and (x,y,z) = (xy)z-x(yz). For a
multiplication denoted by X*y, these will be expressed by [x, y]*,
{x, y) * and (x, y, z) *, respectively. Also, the commutative center K (B),
nucleus N(B) and center Z (B) of B are defined by K (B) = {xEB I [x, BJ
=0), N(B) = {xEBI (x, B, B) = (B, x, B) = (B, B, x) =O} and Z(B) =
K(B) UN(B). Thus, if xEN(B) then we-can write xyz for (xy)z=x(yz)
for all x, y, zEB. Attached to B are the anticommutative algebra B­
and the commutative algebra B+ with multiplications [x, y] and {x, y)
defined on the vector space B. The algebra B is called Malcev-admissible
if B- is a Malcev algebra, that is, the product [x, yJ satisfies the
Malcev identity

(1) [[x, y], [x, z]J = [[[x, yJ, z], x] + [[[y, z], xJ, x] + [[[z, x], x], y]

for all x, y, z E B, and B is called Lie-admissible if B- is a Lie algebra,
i. e., B- satisfies the ]acobi identity [[x, y], z] + [[y, z], x] + [[z, x], y]
=0. It is well known that any Lie-admissible algebra is Malcev­
admissible and that an octonion algebra is Malcev-admissible but not
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Lie-admissible (see Myung [3J).
An algebra A over F is termed alternative if it satisfies the alternative

laws x 2y=x(xy) and yx2= (yx)x for all x, yEA. Thus, any associative
algebra is alternative, and it is well known that an octonion algebra is
alternative but not associative [3J. Following Santilli's introduction of
the (p, q)-mutation of an associative algebra, Myung [2J introduced the
(left) (p, q)-mutation A (p, q) of an alternative algebra A as the algebra
with multiplication x*y= (xp)y- (yq)x defined on the vector space A,
where p and q are fixed elements in A. If p and q are in the nucleus
N(A), then X*y is described by

(2) ny=xpy-yqx.

As note in [2J, A (p, q) is not in general alternative but is Malcev­
admissible, that is, identity (1) holds for A(p, q) with product [x, yJ*
=ny-y*x. As shown in [4J, when p and q are in N(A), the
existence of a unit element e (i. e., x*e=e*x=x for all xEA) in
A(p, q) implies many of the well known identities for nonassociative
algebras. The following result proved in [4J is instrumental for our
investigation.

THEOREM 1. Let A be an alternative algebra over a field F and let
p, q be elements in the nucleus N(A) of A such that A(p, q) has a unit
element e. Then

( i) A has a unit element 1-
(ii) p-q is invertible in A and e= (p_q)-I.
(iii) s=(p_q)-Iq is an element in the center Z(A).
(iv) The (s+ 1, s)-mutation A (s+ 1, s) is isomorphic to A(p, q) by the

map

(3) f(x) =x(p_q)-I, xEA.

(v) A(p, q) is power-associative, that is, every element Zll A(p, q)
generates an associative subalgebra.

2. Simplicity in A(p, q)

By a theorem of Jacobson [5J, the center Z (B) of any simple algebra
B over a field F is either zero or a field. In the latter case, B has a
unit element e. Recall that an algebra B over F is called central simple
over F if the scalar extension of B to any extension field K of F is
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simple over K. If B has a unit element e, then B is central simple over
F if and only if B is simple and Z (B) = Fe [5].

In the remainder of this paper, A will denote an alternative algebra
over a field F of characteristic 1= 2, 3 with multiplication denoted by xy
and p, q are fixed elements in the nucleus N(A), so that the multiplica­
tion ny in the (p, q)-mutation A(p, q) IS given by relation (2). We
begin with

THEOREM 2. Assume that A (p, q) has a unit element e. Then, A is
simple over F if and only if A(p, q) is simple over F

Proof. It is clear that if A(p, q) is simple, then so is ;1, since an
ideal of A is also an ideal of A (p, q) by (2). ConYl'rsely, assume that
A is simple. Denote by A(p-q) the algebra with multiplication .1"' y

=:r(p-q)y defined on the vector space A. Since p-q is ilwl'rtible in
A by Theorem 1, we can consider the map f giYen by (:)) which is
easily shown to be an isomorphism of A to A(p-q). Thus, A(p-q)
is an alternative algebra also. Since {x, y} *=.r(p-q)y+ y(p-q).2· by
(2), we have the isomorphisms A(p,q)+:::;;:,A(jJ-q) :::::11'. It follows
from [6J that A is simple if and only if A + is simple. Hence, A (p, q) +

is simple and so is 11 (p, q).

For the relationship between Z (A) and Z (A (p, q)), and for central
simplicity in A (p, q), we can show

THEOREM 3. Assume that A (p, q) has a unit element e. Then

(i) K(A(p,q))= {1.'EAI (p+q)[1.'(p-q), AJ=OJ, and if jJ+q is
not a zero divisor in 11, then K(A(p,q))=Z(A)e.

Oi) Z(A)ecZ(A(p, q)), and if P+q is not a zero divisor in A thell
Z(A)e=Z(A(p, q)) =K(A(p, q).

In addition, let P+q1=O. Then,
(iii) if Jl is simple then Z(A)e=Z(A(p,q))=K(A(p,q)).
(iv) A is central simple over F if and only if A(p, q) is central

simple over F.

Proof. Note from Theorem 1 that the element s= (p-q) -Iq is in the
center Z (A) and A (s+ 1, s) is isomorphic to A (p, q) under the map f
defined by (3). Denote the .multiplication, commutator and associator in
A(s+l,s) by1.'oy, [1.',yJo=1.'oy-yo1.' and (1.',y,z)o=(xoy)oz-1.'o(yoz).

Using (2) with p and q replaced by s+ 1 and s, we have
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(4) [x, yJo = (2s+ 1) [x, yJ,
(5) (x, y, z)O = (s+1)2(x, y, z) -S2(Z, y, x)

+s(s+1) [x (zy) + (yz)x- (yx)z-z(xy) J.
We also note that

(6) 2s+ 1= (p-q) -1 (p+q).

If XEK(A(p, q», then [x, AJ*=O and so f-1([x, A]*) =[f-l(X),
AJo = (2s+ 1) [x(p-q), AJ =0 by (4), hence by (6) (p+q) [x(p-q), A]
=0. Similarly, the converse follows and this proves the first part of
(i). We note from [6J that 3K (A) cN(A) for any alternative algebra
A and hence Z(A)=K(A) nN(A)=K(A), since the characteristic of
F is not three. Let xeEZ(A)e for xEZ(A). Then, f-l([xe, AJ*)
=[f-l (xe),AJo=[x,AJo=(2s+1)[x,AJ=O by (6), and so [xe,AJ*
=0 to show that Z(A)ecK(A(p, q». Since xEZ(A), from (5) we
have (x,y,z)o=s(s+l)[[x,zJ,YJ=O for all y,zEA and similarly
(A,x,A)o=(A,A,x)o=O. Thus, f-l(x)=xe is in N(A(p,q» for all
xEZ(A), and this proves the first part of (ii). Assume now that p+q
is not a zero divisor in A. For xEK(A(p, q», we have f-l(X)
=x(p-q) in K(A(s+l, s» and hence by (4), (6) [x(p-q), AJ=O,
so x(p-q) EZ(A) to show that Z(A)e=K(A(p, q». In view of part
(i), it suffices to show that K(A(p, q» cN(A(p, q». Thus, for
xEK(A(p, q», we have f-l(X) =x(p-q) in K(A(s+l, s» and by (4)
x(p-q) EK(A) =Z(A). As before, by (5) this implies that x(p-q)
is in N(A(s+l,s» and hence f(x(p-q»=xEN(A(p,q», to show
that K(A(p,q»cN(A(p,q» which proves part (ii).

Assume that P+q*O. If A is simple, then Z(A) is a field and 2s+1
= (p_q)-l(p+q) EZ(A) is invertible, so is p+q. Hence, part (iii)
follows from (ii). If A is central simple over F, then Z (A) = F1 and
by part (iii) Z(A(p,q»=Fe, which shows that A(p,q) is central
simple over F, since A (p, q) is simple over F by Theorem 1. Con­
versely, if A(p, q) is central simple, then Z(A)ecZ(A(p, q» = Fe,
hence Z(A) =F1 and A is central simple over F.

Theorem 3 has been proved in Cl] for the associative case. When A
is a finite-dimensional simple alternative algebra over F, one can prove
Theorem 3 without restrictions on P+q.

THEOREM 4. Let K 2(A) = {xEA I [[x, AJ, AJ =O}. Suppose that A is
finite-dimensional simple over F and that A (p, q) has a unit element e.
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Then
(i) Z(A)e=Z(A(p, q» =K2 (A)e.
(ii) A is central simple over F if and only if A(p, q) is central simple

over F.

Proof. Since A is simple, Z (A) is a field contammg Fl. Let
K=Z(A). Then, the scalar extension KQ9F A=AK of A to K is central
simple over K[5]. Since Z(AK)=Z(Ah and K 2 (A K)=K2 (Ah, to
show that Z (A) =K(A) it suffices to assume that A is central simple
over F. By the same argument, we can further assume that F is
algebraically closed. We first contend that K 2 (A) is an ideal of A- for
any alternative algebra A. For this, recall that a linearized form of
Malcev identity (1) is given by [[x, zJ, [y, tJJ = [[[x, yJ, zJ, t] + [[[y,
z], tJ, xJ + [[[z, tJ, x], y] + [[et, xJ, yJ, zJ for all x, y, z, tEA(see [3J).
From this identity, it is easily seen that K 2 (A) is an ideal of A-.
Owing to the known classification of finite-dimensional simple alternative
algebra over F [5,6J, we find that A is isomorphic either to the split
octonion algebra Cover F or to the nXn matrix algebra M(n, F) over
F. Let Co and 51 (n, F) be the sets of trace zero elements in C and
M(n, F). Then, it easily follows that Fl, Co and sl(n, F) are the only
proper ideals of C- and M(n, F)-. Thus, it must be that K 2 (A) =Fl
in either case. Since Z(A) =Fl, we have that Z(A) =K2 (A).

If P+q=f.O then it follows from Theorem 3 (iii) that Z(A)e=
Z(A(p, q», and hence part (i) is proved in this case. Suppose then that
p-t q=O. Thus, e= (p_q)-l= (2p)-1= (-2q)-1, and so p and q are
invertible in A. The product x*y in A(p, q) is given by x*yo-=xpy+yqx
and hence A(p, q) =::A(p)+, where as in the proof of Theorem 2 A(p)
is the algebra with multiplication x·y=xpy defined on the vector space
A (A(p) is called the p-isotope of A). Since the map g: A-tA(p)
defined by g(x) =Xp-l is an algebra isomorphism, A(p) is an alternative
algebra also. Letting (x, y, z) + denote the associator in A+, we have
from [6, p.53J the identity

(7) (x, y, z)+=-2(x, y, z) +[y, [x, zJJ

holding for any alternative algebra A. Note first that g«x, y, z)+)
= (x, y, z) *, the associator in A(p, q), since A(p, q) =::A(p)+. If xp
EZ(A), so that xEZ(A)e, then by (7) g«x, A, A)+) =g«A, x, A)+)
=g«A, A, x)+) =0 and so xEN(A(p, q». Since K(A(p, q» =A(p, q)
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by Theorem 3 (i), this shows that Z(A)ecZ(A(p, q». Conversely,
let xEN(A(p, q». Then, g-I(x) =xp is in N(A+) and hence by (7)

1
(8) (xp, u, v) =2[u, [xp, vJJ

for all u, vE A. Since A is alternative, when u=xp in (8), we have
[xp, [xp, vJJ=O for all vEA. But by our assumption, A=C or A=
M(n, F) which implies that xp is in F1=Z(A). Thus, xEZ(A)e and
N(A(p, q» cZ(A)e, so Z (A)e=Z(A(p, q». Therefore, we have
established part (i). Part (ii) follows immediately from part (i) and
Theorem 2.

Theorem 4 has been proved in Cl] for the assodative case.

3. Semisimplicity in A(p, q)

For a power-associative algebra B, an element x in B is called nilpo­
tent if xn=o for some n>O. A nil ideal of B is an ideal of B in which
every element is nilpotent. There exists a unique maximal nil ideal of
B, which is defined to be the nilradical of B. We denote the nilradical
by NR(B). If NR(B) =0 then B is said to be (nil) semisimple.

We retain the assumptions that A denotes a finite-dimensional
alternative algebra over a field F of characteristic*2, 3 with multiplica­
tion denoted by xy and p, q are in N(A). Thus, as is well known
[5,6J, the nilradical NR(A) of A coincides with the solvable radical
of A which is shown to be nilpotent also. In fact, NR(A) equals
several other radicals (see [5, 6J). Note also that if A is semisimple
then A is a direct sum of simple ideals in A[5]. As before, assuming
that A(p, q) has a unit element e, by Theorem l(v) A(p, q) is power­
associative, so that NR (A (p, q» is definable. The principal result in
this section is to show that NR(A(p, q» =NR(A), and hence A is
semisimple if and only if A(p, q) is semisimple. We proceed as for the
associative case [lJ.

LEMMA 5. Assume that A(p, q) has a unit element e.
0) If A=AI(jJ···(jJAn is a direct sum of ideals Ai in A then A(p, q)

=:: Al (Ph ql) (jJ···(jJAn(Pn, qn) and each Ai (Pi, qj) has a unit element ej,

where Pi, qi, ei are the A,components of p, q, e.
(ii) If I is an ideal of A (so an ideal of A(p, q» then A(p, q) / I

is isomorphic to the (p+I, q+I)-mutation (A/I) (p+I, q+I) of A/I.
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Proof. (i) Since AiAj=O for i-=/=j, if X=Xl+"'+Xn with XiEAi

then x*y=xpy- yqx= i (XiPiYi- YiqiXi). This gives the desired iso-
i=l

morphism, and clearly each ei is a unit element of Ai (Pi, qi). Part (ii)
is straightforward.

Extending a result in [lJ for the associative case, we prove

THEOREM 6. Assume that A(p, q) has a unit element e. Then,
(i) NR(A) =NR(A(p, q)).
(ii) A is semisimple if and only if A(p, q) is semisimple.

Proof. Assume first that A is semisimple. Then, A is a direct sum
A=A1EB···EBAn of simple ideals Ai in A [5J. By Lemma 6(i), A(p, q)
:=::A1 (Ph ql) EB···EBAn(pn> qn), where each Ai (Pi, qi) is simple by
Theorem 2. Thus, A(p, q) is semisimple also. Next, we show that
NR(A) cNR(A(p, q)). Let x be any element of NR(A). Then,
X(p-q) ENR(A) and hence (x(p-q) )n=o for some n>O. Let x*m
denote the mth power in A(p, q). Then, x*=x(p-q)x and by induction
on m we have x*m=[x(p_q)Jm-lx for m:::::::1 using (2). Hence, x*Cn+ll

=0, and this shows that NR(A) is a nilideal of A(p, q), which must
be contained in NR(A(p, q)).

Let I=NR(A). Since AI I is semisimple, (AI I) (p+I, q+ I) is semisimple
also. But, by Lemma 5 (ii) (AI 1) (p+ I, q+1) is isomorphic to
A(p, q) I I and hence A(p, q) I I is semisimple. Since IcNR(A(p, q)),
NR(A(p,q))II is a nil ideal of A(p,q)II and so NR(A(p,q))II=O.
Therefore, we have established I=NR(A(p, q)), showing part(i). Part
(ii) is an immediate consequence of part (i).

REMARKS. It is not known whether NR(A(p, q») coincides with the
solvable radical of A (p, q). However, we conjecture that this is the
case. In relation to Theorem 2, it is shown in [lJ that if A is an
associative algebra, then A is prime if and only if A(p, q) is prime.
For an alternative algebra, this is an open problem.
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