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OPERATORS HAVING ANALYTIC SPECTRAL RESOLVENTS

l\E Clll'I. Rllo and T\E GEl::\ (HO

1. Introduction

Throughout this paper, X is an abslract Banach space over the fidd of
comp1<:x numbers C, T is an element of B (X), 1'* denotes the dual
operator of l' on the dual space X*. For a set S=X, SL is the
annihilatc)r of S, S for the closure of S in an approprialL' topology and
oS fm tlw boundary of S. If l' is endowed \\'ith the single valued
exten~ion property (SVEP), then (J (x, T) dl'notes the local spectrum
{or .lC:-:X, and XT(S) = {.lEX: (J(x, 1') =S}. If J1 is a T-imariant
subslx1ce, \H' write T; 111 {or the restriction and T,i 111 for the operator
induced by T on the quotient space X,/ A1. \Ve USl' (J (1') {or the
spectrum of T and peT) {or its resoln.'nt set, the symbol (U\'[(J(T)]
stands for the class of all fin ite open coverings of (J (T). \Ve write
AI(T), Inv(T) for the Analytic invariant subspaCt.'s, invariant
subspaces of X fur T respectively. And the symbol S:\1(T) denotes the
spl'ctral maximal subspaces of X for T .

..\ decomposable operator, analytic invariant subspaces, and analytic
spectral resolYl'nt appear in this paper frequently, \H' begin with their
ddinitions.

DEIT\lTIO:\ 1. 1. An operator TE B (X) said to be dl'CO 111 posable if,
for l'Yl'fy finite system {Gb G~, ...... , Gn } of open subsets of C that cover

(J (T). t1wre exist spectral maximal subspaces )'1' )'~, ...... , 1'" such that

0)

(2)

"
X= L; )'"

,- 1

(J(TI)',)cG, Ci=1,2,···,n).

DEFI:\ITIO:\ 1. 2. AT-invariant subspace Yof X is said to be analytic
invariant if, for every X-valued analytic function defined on a region
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DcC such that

()..-T)f().) EY for ).ED, then f()..) EY for )..ED.

DEFINION 1. 3. E is said to be an analytic spectral resolvent (ASR)
for T if

(i) E: U~AI(T), where U is the usual topology of C,
(ii) E (ifJ) = to} ,

"(iii) for {Gili'=lECov[a(T)J, X=~E(Gi)' and
i=l

(iv) a(TIE(G» cC; for any GEU.

In the definition 1. 3, if one replace AI (T) by Inv (T) then E is
called the spectral resolvent [13J.

It is shown through lengthy computations that if TEB(X) has a
spectral resolvent then T is a decomposable operator ([13J, p.77,
Theorem 11). Thus it is true that if T has an ASR then T is deco­
mposable. But the later case the decomposability follows from the
following results:

THEOREM 1. 4. [10J. For an operator T, the following are equivalent.

(i) T is decomposable.
(ii) For every open set G in C, there is aT-invariant subspace M

such that a(T/M) cC; and a(T/M) cC\G.

THEOREM 15. [15J. Let E : U~Inv(T) be a spectral resolvent for T,
then a(T/E(G» cC\G if and only if E(G) is analytic invariant under T.

2. Invariance of an analytic spectral revolvent

In the first part of this section, we will give an answere to the
following question:

If E is an ASR of T1EB(X), when does it also be an ASR for
another operator T 2 EB(X)?

Before stating the result, we need a Lemma and a definition.

DEFINITION 2. 1. [3J. We say that Tt and T 2 are quasi-nilpotent
q

. equivalent (Tt""T2) if,
1 1

limll (Tt - T2)(nJ II"=0=limll (T2 - Tt) (nJII " ,
n_~

where
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q
LEMMA 2.2. [3J. (i) If T1"'-'Tz then a(T1)=a(Tz).

q
(ii) If T 1 has the S VEP and if T1",-,Tz, then T z has the S VEP.

q
(iii) If T 1 is decomposable and T 1"'-' T z, then T z is also decomposable

and X T1 (F) =XT2 (F) for every closed FeC.
q

(iv) If T has the SVEP and if T1",-,Tz, then a(x, T 1) =a(x, T z)
for every xE X.

THEOREM 2.3. For T h TzEB(X), let E be an ASR for T 1. If T 1
q

"'-'Tz and if E(G) EAI(T1) nAI(Tz) for each GEU, then E is also an
ASR for T z.

Proof. By Lemma 2. 2, (i), we have a(T1) =a(Tz). For any
•

{G;} :~1 ECov[a(T1) J, ~E (G;) = X and a (T 11 E (G» eC for any GE U.
i=l

It remains to prove that a(T1IE(G»=a(TzIE(G» for any GE1l.
For any oxEE(G) EAI(T1) nAI(Tz) , we have

a(x, T1)=a(x, T1IE(G», a (.x, Tz)=a(x, TzIE(G».

Since 1\ is decomposable so it has the SVEP, thus a (x, T 1) =a (x, T z)
by Lemma 2.2, (iv). Therefore we have

U a(x, T 1)= U a(x, T1IE(G»=a(T1IE(G», and
xccE(G) xEE(G)

U a(x, Tz)=a(TzIE(G».
xcE(G)

It follows that a(T1IE(G» =a(TzIE(G», GE1l.

The condition E (G) E AI (T1) nAI (Tz) for every G E U in Theorem
2.3. seems to be crucial, but the following example shows it is not so
unreasonable.

EXAMPLE. Let T be a spectral operator with the spectral measure J1.
in the sense of N. Dunford. Thus it can be represented by T=S +Q,
where Sand Q are the scalar and radical part respectively, and a (T)
=a(S). Putting T1=T, Tz=S, we have
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q
whence T l"JT2•

We define E(G) =p,(G) X for GE11, then we have p,(G)X=XT1 (G),
X T1 (G) =XT2 (G) ([3J, p.40, Theorem 2.1). Moreover, X T1 (G) is a
spectral maximal space for Tl since T l is decomposable, thus E(G) =
X T1 (G) is analytically invariant under T 1• i. e. E(G) ESM(Tl) cAI(Tl),
AI(Tl) nAI(T2) =l=ep. Furthermore, T l and T 2 are decomposable, thus
E : ru~AI(Tl) nAI(T2) is an ASR for T l and T 2•

A decomposable operator is not a strongly decomposable operator,
thus if T is decomposable, the restriction operator TIE (G) and the
quotient operator T / E (G) are not decomposable in general even if E (G)
is a spectral maximal space for T. We will give the conditions under
which these operators are decomposable for some fixed GE11. To do this
we need a Lemma.

LEMMA 2. 4. [14J. Let T be decomposable 011: a reflexive Banach space
X. If Y reduces T, then TI Y is decomposable.

For an operator T with the disconnected spectrum, GE 11 is said to
be disconnect the spectrum (J (T) if.

Gn(J(T) =l=ep, (J(T) etG and oGc(J(T).

PROPOSITION 2. 5. Let X be a reflexive Banach space, let E be an
ASR for T. If GE11 disconnects the spectrum (J(T), then both TIE(G)
and T / E (G) are decomposable.

Proof. By the assumption on G, X=E(G) EBE(GC) ([5J, p.62, Le­
mma 12). Thus E (G) reduces T so by Lemma 2.4, TI E (G) is deco­
mposable. T* is decomposable since T is, X* is also reflexive and

X*=E(G) *EBE(GC) *=:.(X/E(GC» *EB (XIE(G» *
=:.E (GC) .LEt>E (G) .L.

A simple computation shows that both E(G).L and E(GC).L are inva­
riant under T*. Using again the Lemma 2.4, T* IE(G).L is decomposa­
ble.

Now, by the indentification T*IE(G).L=:.(TIE(G»*, T/E(G) is
decomposable. The last conclusion follows from the fact that T is dec­
omposable if and only if T* is decomposable. ([10J, p.95, Corollary
1) .
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3. Constructions of new ASR from given ASR.

In this section, we will formulate an ASR for the functional calculus,
the direct sum of two ASR and a transformation of an ASR by an
invertible operator. In what follows, we use the symbol [J (T) for the
set of all non-constant complex valued analytic functions on some open
neighborhood of the spectrum (J (T), and f(T) for the functional
calculus for T if fE [J (T).

AT-invariant subspace Y of X is said to be a v-space if o-(T/ Y) c
(J(T).

LEMMA 3.1. [9]. Let TEB(X), let g be analytic on some open neighbo­
rhood of 0- (T). If Y is analytically invariant under T, then Y is ana­
lytically invariant under g (T) .

LEMMA 3.2. [6J. (1) Given TEB(X), let f be an analytic injective fun­
ction on some neighborhood of (J (T). Then Y is a v-space for f (T)
then Y is a v-space for T.

(2) Given TEB(X), let f be an analytic function on an open neighb­
orhood of o-(T). If Y is v-space for T then Y is v-space for f(T).
Furthermore, we have

f(T) IY=f(TI Y), f(T) / Y=f(T/Y).

(3) Given TEB(X), let f; D~C be analytic on an open neighborhood
D of (J(T) and nonconstant on every component of D.

If YEAI[f(T) J and YEInv (T), then YEAI(T).

THEOREM 3.3. Let E be an ASR jor T, let fE[J(T) and if f is
continuous on C then the map 6 defined by 6=Eof-l is an ASR for
f(T).

Proof. For any {Hj}i=IECov[o-(j(T)J, f(o-(T))=o-(j(T))c

"UHi ,
i=1

whence

o-(T) Cf-{QIHi) = ,Q/-l (Hi)

Weputf-l(Hi)=Gi (i=1,2,···,n), then {GiliECov[o-(T)]. SinceE
is an ASR for T, we have
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" "8(ifJ) = {O}, ,,£8 (H;) = ,,£E(G;) =X, and
;=1 i=l

For each HEU, putting f- 1(H) =G, 8(H) =E(G) is an analytically
invarint subspace under J (T) by Lemma 3.1. Thus 8(H) is a v-space
for f(T). Therefore, by Lemma 3.2, (2), we have

q(f(T) 18(H)) =q(f(TI8(H))) =f(a(TI8(H))) f(q(TIE(G))).

And since q(TIE(G)) cG nq(T),

q(f(T) I8(H)) cf(G) nf(q(T)) cH nq(f(T))

hold by the continuity of f and the spectral mapping theorem. There­
fore, 8: U-AI[f(T)] is an ASR for f(T).

The converse of the Theorem 3. 3 is following.

THEOREM 3.4. Let fE ~ (T), let f be an injeetive open function on C.
If 8 is an ASR for f(T), then the map E defined by E=80 f is an
ASR for T.

Proof. Let {G;}i=lECov[q(T)]. Then {J(G;)}i=lECov [q(f(T))]
by the spectral mapping theorem, 8(f(G;)) EAI(f(T)) for each i.

We put f(G;)=H;. Since E(G;) =8 (H;) , we have

E(ifJ) =8(ifJ) = {O}, ,,£E(G;) = ,,£8 (H;) =X.
i i

For an admissible contour C which surrounds q(T) and is contained
in D np (T), where D is a some open neighborhood of q (T). Apply­
ing Dunford's theorem on composite operator-valued function to the
composite f-1 0 f, we have

f-1[f(T)]= 21 . r f- 1[feA)]R(A, T)dA= 21 . rAReA, T)dA=T.
~zJc ~zJc

By the same arguments as the proof of Theorem 3. 3,

q(TIE(G)) =q(f-1[f(T)] IE(G)) =q(J-1[f(T)] 18(H))
=q(f-1[f(TI8(H))]) =f-1[a(J(T) 18(H))]
cf--'1[Hnq(J(T))]-f-1(H) nq(T).

And since f is an injective open function on C,

f- 1(H) - f- 1(f(G)) Cf-1 (f(G)) =G.

Thus we have q(TIE(G)}cGnq(T) for GEU, therefore E: U-Inv
(T) is a spectral resolvent for· T.

It remains to show that E(G) =8(H) is analytically invariant under
T for each GEU, where H f(G).
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Since E(G) =€'(H) is analytically invariant under J(T),

(3. a) (J «((T) /€'(H» eHc n(J (((T» = J(G)C nj«(J (T»
= J(Gc na(T»,

the last equality holds since f is injective.
Now, by Lemma 3.2, l5(H) =E(G) is a v-space for J(T) if and

only if it is a v-space for T. Thus

(3. b) Lf(T) /€'(H) J=(JL f(T/ E(G» J= f«(J(T/ E (G»).

It fo11o\\·s from (3. a) and (3. b) that

a(T/ E(G» eGC n(J(T) eC\G.

Therefore, by Theorem 1. 5, E (G) is analytically invariant under T
for each GE 11. This corn pletes the proof.

From Theorem 3. 3 and Theorem 3.4, we have the following coro­
llary.

COROLLARY 3.5. Let fE'J(T), if f: C-'>C is a homeomorphism then

E is an ASR for T iJ and only if l5=Eof-1 is an ASR for J(T).

THEORE\! 3.6. Let Xk (k=I,2) be Banach spaces, let TkEB(Xk)
(k=l, 2). If E k is an ASR Jor T k for k=l, 2. Then the map E defined
by E(G)=E1 (G)EBE2 (G) (GElL) is an ASRfor T=T1EBT2•

Proof. For {G;} ~=l ECov[(J(T) J, {G j } ~=lECov[(J(Tk) J (k=l, 2) since
(J(T)=(J(Tl) U(J(T2). Thus L::Ek(G j ) =Xk (k=1,2) and L::E(G;)=X.

i i

Clearly E (9) = to} .
For any GE 11, E (G) E AI (T) ([6J, p.20, proposition 2. 18). Furt­

hermore,

(J (TI E (G» =(J (TlEB T 2 1 El (G) ffiE2 (G»
=(J(TlIEl(G» U(J(T2 IE2 (G»eG

Therefore, E: lL-'>AI (T) is an ASR for T.

For the converse of the Theorem 3.6, we need some basic results
for analytically invariant subspaces.

LE~L\1A 3.7. [9J. (1) Let TjEB(X j) (i=l, 2), let Yj be an Tj-inva­
riant subspace (i=1,2). Then Yl EBY2 is analytically invariant under
T l ffiT2 if and only if Yj is analytically invariant under T j •

(2) Let Y, Z be T-invariant subspaces with YeZ. Then the following
hold.

(i) U YEAI(T), then YEAI(TIZ).
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(ii) If YEAI(TIZ) and ZEAI(T), then YEAI(T).
(iii) ZEAI(T) if and only if ZjYEAI(TjY).
(iv) If T have the S VEP and let P be a bounded projection operator

on X commuting with T, then PXEAI(T).

LEMMA 3.8. [6J. Let T have the SVEP and let YEInv(T). Then TIY
has the SVEP and O'(y, T)cO'(y, TIY) for every yEY.

THEOREM 3.9. Let TEB(X), X=XIE!1XZ and let PI be a bounded
projection operator of X onto Xl commuting with T.

If E is an ASR for T, then the map Ek=PkoE (k=1,2) are ASR
for Tk (k=l, 2), where Pz=I-Ph Tk=T/Xk for k=1,2.

Proof. We note that the condition TPI=PIT is equivalent to TXI
cXh TXzcXz. Obviously, Ek(G) =PkE(G) is a closed subspace for
k=1,2.

Since TE(G) cE(G) (GEl.l), PkTE(G) cPkE(G) =Ek(G) , we have
TEk(G) cEk(G). Hence TkEk(G) = (TIXk)Ek(G) = TEk(G) cEk(G).

Now we will show that Ek(G) EAI(TIE(G», k=1,2. Putting
A=TIE(G), A: E(G)~E(G) have the SVEP by Lemma 3.8. PkT
=TPk implies that PkA=APk. Therefore PkE(G)=Ek(G) (k=1,2)
are considered as subspaces of E(G) invariant under A, and Ek(G)
EAI(A)=AI(TIE(G» by Lemma 3.7, (2), (ii) and (iv) .

.It follows that
u(Td El (G» =O'(TI El (G» =O'([TI E(G) J IEl (G» cu(TI E (G»,

the last inclusion relation follows from Lemma 3.7, (i) and every ana­
lytically invariant subspace is a ),i-space. Thus we have

O'(TIIEI(G»)cG, and similary O'(TzIEz(G)cG.

Obviously Ek(cp) = {O}, k=1,2. It remains to prove that 'tEk(G;) =
i=1

Xk for every {G;}i=lECoV[O'(Tk)J (k=1,2).

We choose GEl.l such that O'(TI) nG=cp and satisfying CQp;) UG

::Ju(T) •
By Lemma 3.7, (1), E I(G)E!1Ez(G)=E(G)EAI(T) if and only if

Ek(G)EAI(Tk) for k=1,2. Thus O'(TI/EI(G»cGnO'(TI)=ep. Ther­
efore,

It

Since \GhGZ,···,GmG}ECOV[O'(T)J, I: E(G;)+E(G)=X. So we
i=1
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n n

have :E El (G j ) =XI • Similary :E Ez(G j ) = Xz for any {Gil ~~l E
i=l ,=1

Cov[a(Tz)]' We have proved the Theorem.

THEOREM 3.10. Let E be an ASR fur TEB(X), let Y be another
Banach space. If T is similm' to SE B (Y), then the map {5= VE defined
by {5(G) = VE(G) (GEU) is an ASR for S, where VEB(X, Y) is an
invertible operator such that VT=S V.

Proof. We propose to show that {5(G) = VE(G) EA/(S). Clearly,
VE(G) is a closed subspace of X for each GE1t, and invariant under
S.

Let f : D-X be analytic and satisfy
(U-S)f(A) E VE(G) on D.

Then

V-I (U-S)f(A) EE(G) and (U- T) V-If 0) E E(G) on D.

And since V-If 0) is analytic on D and E(G) EA/(T), we have

V-Ifc?') EE(G), thus f(A) E VE(G), AED.

Now, for any {Gjl ~=l ECov[a(T)] =Cov[a(S)],
n n n

:E VE(GJ=V:E E(Gi)=VX=Y, i.e. :E {5(Gi)=Y.
;=1 ;=1 i=1

Furthermore, SI VE(G) is similar to TIE(G); this follows from the
facts that

[VI E(G)] [TI E(G)] = [S I VE(G)] [VI E(G)], and

V IE (G) is invertible. Theorefore,

a(SIVE(G))=a(TIE(G))cGna(T) i.e. a(SI{5(G))cGna(S).

Hence {5 : 1t-AI (S) is an ASR for S.

In difinition of the ASR E for T if n=2 then E is said to be two­
ASR for T. Auther previously proved that if T has a two-ASR E,
then the dual operator T* has also a two-ASR E*, where E*: 1t­
AI(T*) is defined by E*(G)=E(C\G).l ([12J, p.77, Theorem 6).
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