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OPERATORS HAVING ANALYTIC SPECTRAL RESOLVENTS

Jae Cuvr Rno and Tag Geun Cho

1. Introduction

Throughout this paper, X is an abstract Banach space over the field of
complex numbers C, T is an element of B(X), T* denotes the dual
operator of T on the dual space X*. For a set S=X, S is the
annihilator of 8, § for the closure of S in an appropriate topology and
8S for the boundary of S. If 7 is endowed with the single valued
extension property (SVEP), then o(x, T) denotes the local spectrum
for v¢ X, and X;(S)={veX 0o, T)S}. If M is a T-invariant
subspace, we write T, M for the restriction and T'M {or the operator
induced by T on the quotient space X/M. We use o(7T) for the
spectrum of T and p(7) {or its resolvent set, the symbol Cov[ie(T)]
stands for the class of all finite open coverings of o(1). We write
AI(T), Inv(T) for the Analytic invariant subspaces, invariant
subspaces of X for 7 respectively. And the symbol SM(77) denotes the
spectral maximal subspaces of X for 7.

A decomposable operator, analytic invariant subspaces, and  analytic
spectral resolvent appear in this paper frequently, we begin with their
definitions,

DeriniTion 1.1. An operator T€B(X) said to be decomposable if,

for every finite system {Gy, Gy, -+-+- , G} of open subsets of C that cover
o (T, there exist spectral maximal subspaces Y7, Yo, veeee , Y, such that
(1> X:ZI)'i’
(2) a(TIY) <Gy (1=1,2, -+, n).

DEFINITION 1.2, A T-invariant subspace Y of X is said to be analytic
invariant if, for every X-valued analvtic function defined on a region
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DcC such that
QA—T)FQA) €Y for i&D, then fFA) €Y for 2= D.

DErINION 1.3. E is said to be an analytic spectral resolvent (ASR)
for T if

(i) E:Y%—AI(T), where ¥ is the usual topology of C,

(i) E(p)=1{0},

@) for {G}meCov[o(T)], X=3E(G), and

(v) o(TIE(G))CG for any GEU.

In the definition 1.3, if one replace AI(T) by Inv(7T) then E is
called the spectral resolvent [13].

It is shown through lengthy computations that if T7€B(X) has a
spectral resolvent then T is a decomposable operator ([13], p.77,
Theorem 11). Thus it is true that f 7 has an ASR then T is deco-
mposable. But the later case the decomposability follows from the
following results:

THEOREM 1.4. [10]. For an operator T, the following are equivalent.
() T is decomposable.

(ii) For every open set G_z'n C, there is a T-invariant subspace M
such that ¢ (T/M)CG and o(T/M)C\G.

THEOREM 15. [15]. Let E : U—Inv(T) be a spectral resolvent for T,
then 6(T/E(G)) CC\G if and only if E(G) is analytic invariant under T.
2. Invariance of an analytic spectral revolvent

In the first part of this section, we will give an answere to the
following question:

If E is an ASR of T1,€B(X), when does it also be an ASR for
another operator T,eB(X)?

Before stating the result, we need a Lemma and a definition.

DEeFINITION 2.1. [3]. We say that T; and T, are quasi-nilpotent
7

. equivalent (T1~T3) if,

- 1 - 1

lim|[ (73— T ™| =0=lim|| (T,— T)™]%,

where
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(Ty—Ty) DJ:é(“D ”_lz< Z > T Tk,

g
LemMa 2.2. [3]. () If Ty~Ty then o(Ty) =0 (Ty).
q
(ii) If T, has the SVEP and if Ty~T,, then T, has the SVEP.

q
(¢it) If T, is decomposable and Ti~T,, then T,is also decomposable
and Xr, (F)=Xr,(F) for every closed FCC.

q
(iv) If T has the SVEP and if T\~T,, then o(x, T) =0{x, Ts)
for every z€ X,

THEOREM 2.3. For T, To€B(X), let E be an ASR for T,. If T,

q
~Ty and if E(G)<EAI(Ty) NAI(T,) for each GEU, then E is also an
ASR for T,.

Proof. By Lemma 2.2, (i), we have ¢(T))=0(T,). For any
(G eCova (T, le(Gg:X and o (T1|E(G)) =G for any GE L.

It remains to prove that ¢(T1|E(G)) =0 (T,|E(G)) for any G&U.
For any € E(G) € AI(T;) NAI(T,), we have

o(x, T) =0 (x, T E(G)), o(x, To) =0 (x, T2|E(G)).

Since T, is decomposable so it has the SVEP, thus ¢ (x, T)) =0 (z, T5)
by Lemma 2.2, (iv). Therefore we have

U )O(x, T)) = etg(c)o(x, T,|E(G)) =0 (Ty|E(G)), and

1= E(G

Y o T =a(T2EG)).

TCE(

It follows that ¢ (THE(G)) =c (T, E(G)), Gl

The condition E(G) € Al(T;) NAI(T,) for every GE1 in Theorem
2.3. seems to be crucial, but the following example shows it is not so
unreasonable.

ExaMpLE. Let T be a spectral operator with the spectral measure g
in the sense of N. Dunford. Thus it can be represented by T=S-+@Q,
where S and @ are the scalar and radical part respectively, and ¢ (T)
=¢(S). Putting T,=T, T,=S, we have

1 (T— To) " =@, "= 1] (To— T,
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whence TliTZ. .

We define E(G) =¢(G) X for GEY, then we have 1(G) X=Xr,(G),
X7, (G)=Xr,(G) ([3], p.40, Theorem 2.1). Moreover, Xr,(G) is a
spectral maximal space for 7T since T, is decomposable, thus E(G)=
X7, (G) is analytically invariant under T;. i.e. E(G) €SM(Ty) CAI(TY),
AI(Ty) NAI(T,) #¢. Furthermore, T; and T, are decomposable, thus
E : 4—AI(T) NAI(T,) is an ASR for T; and Ts.

A decomposable operator is not a strongly decomposable operator,
thus if T is decomposable, the restriction operator 7'|E(G) and the
quotient operator T/E(G) are not decomposable in general even if E(G)
is a spectral maximal space for T. We will give the conditions under
which these operators are decomposable for some fixed GE%. To do this
we need a Lemma. '

LEMMA 2.4. [14]. Let T be decomposable on a reflexive Banach space
X. If Y reduces T, then T|Y is decomposable.

For an operator 7 with the disconnected spectrum, GE¥ is said to
be disconnect the spectrum ¢ (7T) if.

GNo(T)+#¢, o(T)ZG and 0G=a(T).

PROPOSITION 2.5. Let X be a reflexive Banach space, let E be an
ASR for T. If GEY disconnects the spectrum o(T), then both T|E(G)
and T/E(G) are decomposable.

Proof. By the assumption on G, X=E(G®) DE(G) ([5], p.62, Le-
mma 12). Thus E(G) reduces T so by Lemma 2.4, T}E(G) is deco-
mposable. T* is decomposable since T is, X* is also reflexive and

X*=E(@*QEG)*=(X/EGY))*®(X/EG)*
=E(G)'®EG) L.

A simple computation shows that both E(G)* and E(G€)* are inva-
riant under T*. Using again the Lemma 2.4, T*|E(G)+ is decomposa-
ble.

Now, by the indentification T*|E(G)=(T/E(G))*, T/E(G) is
decomposable. The last conclusion follows from the fact that T is dec-
omposable if and only if T* is decomposable. ([10], p.95, Corollary
1).
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3. Constructions of new ASR from given ASR.

In this section, we will formulate an ASR for the functional calculus,
the direct sum of two ASR and a transformation of an ASR by an
invertible operator. In what follows, we use the symbol F(T) for the
set of all non~constant complex valued analytic functions on some open
neighborhood of the spectrum ¢(T), and f(7T) for the functional
calculus for T if f=F(T).

A T-invariant subspace Y of X is said to be a v-space if a(T|Y)C
o(T).

LEmMMA 3.1.19]. Let T€B(X), let g be analytic on some open neighbo-
rhood of o(T). If Y is analytically invariant under T, then Y is ana-
Iytically invariant under g(T).

LemMA 3.2.[6]. 1) Given TEB(X), let f be an analytic injective fun-
ction on some neighborhood of o(T). Then Y is a v-space for f(T)
then Y is a y-space for T.

(2) Given T€B(X), let f be an analytic function on an open neighb-
orkood of c(T). If Y is v-space for T then Y is v—space for f(T).
Furthermore, we have

F(T) I Y=f(TIY), J(T)/¥Y=F(T/Y).

(3) Given TeB(X), let f: D-C be analytic on an open neighborhood
D of o(T) and nonconstant on every component of D.

If YEAI[f(T)] and YEInv(T), then YEAI(T).

THEOREM 3.3. Let E be an ASR for T, let f€F(T) and if f is
continuous on C then the map & defined by &E=Eof! is an ASR for
F(T).

Proof. For any {H}i.€Cov[o(f(T)], f(a(T))=o(f(T))c
0 H,

whence
o (1)< f-1( 0 )= 05 ()

We put f-1(H)) =G; (i=1,2,-,n), then {G}};€Cov[e(T)]. Since E
is an ASR for T, we have
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8@)= (0}, L6(H) =ZEG) =X, and

For each He¥, putting f1(H)=G, &(H)=E(G) is an analytically
invarint subspace under f(7) by Lemma 3.1. Thus 8(H) is a v-space
for £(T). Therefore, by Lemma 3.2, (2), we have

o(f(T)|EH))=a(f(TIEH)))=f(o(TIEH)))=f(6(TIEG))).
And since ¢(T|E(G))=GNo(T),
c(f(TYIEHD))f(G) Nfle(T))cHNG(f(T))

hold by the continuity of f and the spectral mapping theorem. There-
fore, &:U—AI[f(T)] is an ASR for f(T).

The converse of the Theorem 3.3 is following.

THEOREM 3.4. Let fEJ(T), let f be an injective open function on C.
If & is an ASR for f(T), then the map E defined by E=Ecf is an
ASR for T.

Proof. Let {G;}7.1€Covia(T)]. Then {f(G)}i=,€Cov [a(f(T))]
by the spectral mapping theorem, &(f(G;))€AIl(f(T)) for each i.
We put £(G;)=H;. Since E(G;)=8(H;), we have

E(@)=8(=1{0}, LEG)=XEH)=X.

For an admissible contour ¢ which surrounds ¢(7T) and is contained
in DNp(T), where D is a some open neighborhood of ¢ (7). Apply-
ing Dunford’s theorem on composite operator—valued function to the
composite f‘lof, we have

FALAD =5 FIrDIRG, T)di=—L| JRG, T)dA=T.

By the same arguments as the proof of Theorem 3.3,
o (TIEG))=c(fFALA(TYIIE®)=a(fAF(T)]IEH))
=o(fAUATIEH)) ) =Ffo(f(T) lé(H))]

CAANG(F(T))]=f1H) No(T).

And since f is an injective open function on C,

FAE) =f1(F ) (f(&)=C.
Thus we have ¢(T|E(G))<=GNo(T) for GEY, therefore E : U—Inv
(T) is a spectral resolvent for 7. ‘
It remains to show that E(G)=&(H) is analytlcally invariant under
T for each G, where H=f(G).
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Since E(G)=&(H) is analytically invariant under £(T),
(8.a) o(f(T)/EWMH))CH N (F(T))=F(G)Nf(a(T))
=f(G°Ne(T)),

the last equality holds since f is injective.

Now, by Lemma 3.2, §(H)=E(G) 1s a v-space for f(T) if and
only if it is a v-space for T. Thus

3.by [f(T)/EH)]I=0el fF(T/EG))]=f(a(T/E(G))).
It follows from (3.a) and (3.b) that

d(T/E(G))c=GNo(T)cC\G.
Therefore, by Theorem 1.5, E(G) is analytically invariant under T

for each GeU. This completes the proof.
From Theorem 3.3 and Theorem 3.4, we have the following coro-

Hary.

COROLLARY 3.5. Let f€JF(T), if f: C—C is a homeomorphism then
E is an ASR for T if and only if E=Eof-1 is an ASR for f(T).

THEOREM 3.6. Let X, (k=1,2) be Banach spaces, let Tr=B(X})
(k=1,2). If E; is an ASR for T, for k=1,2. Then the map E defined
by E(G)=E{(G)PE:(G) (GEU) is an ASR for T=T,DT,.

Proof. For {G}i-:€Covlia(T)], {Gi}i-1€Covle(Ts)](k=1,2) since
o(T)=5(T) Uo(Ty). Thus DE4(G) =X, (k=1,2) and SE(G,) =X.
Clearly E(¢)=1{0}.

For any G€U, E(G)<=AI(T) ([6], p.20, proposition 2.18). Furt-
hermore,

o(TIE(G))=0(T\® T E,(G) DE,(G)) _
=0 (T E(G)) Ua (T2 E:(G)) =G

Therefore, E: §—AI(T) is an ASR for T.

For the converse of the Theorem 3.6, we need some basic results
for analytically invariant subspaces.

Lenmva 3.7.[9). () Let T;€B(X;) (i=1,2), let Y; be an T;~inva-
riant subspace (i=1,2). Then Y @Y, is analytically invariant under
T:®PT, if and only if Y; is analytically invariant under T;.

(2) Let Y,Z be T—invariant subspaces with YCTZ. Then the following
hold.

(i) If YEAI(T), then YEAI(T|Z).
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Gi) If YEAI(T|Z) and Z€AI(T), then YEAI(T).

(iii) ZEAI(T) if and only if Z]YEAI(T/Y).

(#v) If T have the SVEP and let P be a bounded projection operator
on X commuting with T, then PX&AI(T).

" LEMMA 3.8.[6]. Let T have the SVEP and let YE Inv(T). Then T|Y
has the SVEP and o(y, T)Co(y, T|Y) for every yeY.

THEOREM 3.9. Let T€B(X), X=X DX, and let P, be a bounded
projection operator of X onto X; commuting with T.

If E is an ASR for T, then the map E,—=PioE (k=1,2) are ASR
for Th (k=1,2), where P;=I—P,, T=T|X; for k=1, 2.

Proof. We note that the condition TP;=P;T is equivalent to TX,
cX,, TX,=X, Obviously, E;(G)=P;E(G) is a closed subspace for
k=1,2.

Since TE(G)CE(G) (Gel), P,TE(G)CPLE(G)=EL(G), we have
TE,(G) CE;(G). Hence T E, (G) = (Tl Xk) E; (G) =TE;(G)CE, (G).

Now we will show that E.(G)€AI(T|E(G)), k=1,2. Putting
A=T|E(G), A: E(G)—>E(G) have the SVEP by Lemma 3.8. P,T
=TP; implies that P,A=AP;. Therefore P,E(G)=E;(G) (k=1,2)
are considered as subspaces of E(G) invariant under A, and E.(G)
€AI(A)=AI(T|E(G)) by Lemma 3.7, (2), (@) and (iv).

It follows that

(T Ey (@) =0(T|E: (&) =0([TIE(G)]IE:(G)) Co(T|E(G)),
the last inclusion relation follows from Lemma 3.7, (i) and every ana-
lytically invariant subspace is a v-space. Thus we have

o (T11E1(G)) <G, and similary ¢(Ts| E+(G)) <G.
Obviously Ez(¢)= {0}, k=1,2. It remains to prove that ﬁ:Ek (G) =
X; for every {G}ii€Covle(TH] ((=1,2). -
‘We choose G4 such that ¢(Ty) NG=¢ and satisfying (‘QIG,-) UG

Do (T).

By Lemma 3.7, (1), E;(G)@DE;(G)=E(G)=AI(T) if and only if
E;(G) € AI(Ty) for k=1,2. Thus ¢(T1|E1(G)) =G Na(Ty)=¢. Ther-
efore,

o(T) NG=¢ implies that E;(G) = {0}.

Since {Gy, G, -+, G,, G} €Covlo(T)], Z::l EG)H+EG)=X. So we
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have Z E,(G;)=X,. Similary Z} E,(Gy) =X, for any {(G;}i.,€
Cov[a(Tz)] We have proved the Theorem.

THEOREM 3.10. Let E be an ASR for T&B(X), let Y be another
Banach space. If T is similar to SEB(Y), then the map E=VE defined
by E(G)=VE(G) (GEU) is an ASR for S, where VEB(X,Y) is an
invertible operator such that VI=SV.

Proof. We propose to show that &(G)=VE(G)<cAI(S). Clearly,
VE(G) is a closed subspace of X for each GE=7, and invariant under
S.

Let f: D—X be analytic and satisfy

(I—8) f(D) € VE(G) on D.
Then
VIQAI—8)fD) EE(G) and AI—T) V-if () €E(G) on D.
And since V-1f(2) is analytic on D and E(G) € AI(T), we have
V-1If(DH EE(G), thus fFRQ e VE(G), 2€D.
Now, for any {G}i.€Cov[e(T)]=Cov[a(S)],

3 VEG)=VE EG)=VX=Y, ie. 3 &G =Y.
Furthermore, S| VE(G) is similar to T]E(G); this follows from the
facts that

LVIEG)I[TIEG)]=[SIVEG)][VIE(G)], and
V]{E(G) is invertible. Theorefore,
o8I VE(G))=6(T|E(G))=GNa(T) i.e. a(S|EG))=GNa(S).
Hence & : 4—AI(S) is an ASR for S.
In difinition of the ASR E for T if n=2 then E is said to be two—
ASR for T. Auther previously proved that if 7T has a two-ASR E,

then the dual operator T* has also a two-ASR E*, where E*: {—
AI(T*) is defined by E*(G)=E(C\G)+ ([12], p.77, Theorem 6).
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