OPERATORS HAVING ANALYTIC SPECTRAL RESOLVENTS

JAE CHUL RHO and TAE GEUN CHO

1. Introduction

Throughout this paper, X is an abstract Banach space over the field of complex numbers C, T is an element of B(X), T^* denotes the dual operator of T on the dual space X^* . For a set $S \subseteq X$, S^\perp is the annihilator of S, \overline{S} for the closure of S in an appropriate topology and $\widehat{\sigma}S$ for the boundary of S. If T is endowed with the single valued extension property (SVEP), then $\sigma(x,T)$ denotes the local spectrum for $x \in X$, and $X_T(S) = \{x \in X : \sigma(x,T) \subseteq S\}$. If M is a T-invariant subspace, we write T_*M for the restriction and T_*M for the operator induced by T on the quotient space X/M. We use $\sigma(T)$ for the spectrum of T and $\sigma(T)$ for its resolvent set, the symbol $\operatorname{Cov}[\sigma(T)]$ stands for the class of all finite open coverings of $\sigma(T)$. We write $\operatorname{AI}(T)$, $\operatorname{Inv}(T)$ for the Analytic invariant subspaces, invariant subspaces of X for T respectively. And the symbol $\operatorname{SM}(T)$ denotes the spectral maximal subspaces of X for T.

A decomposable operator, analytic invariant subspaces, and analytic spectral resolvent appear in this paper frequently, we begin with their definitions.

DEFINITION 1.1. An operator $T \in B(X)$ said to be decomposable if, for every finite system $\{G_1, G_2, \dots, G_n\}$ of open subsets of C that cover $\sigma(T)$, there exist spectral maximal subspaces Y_1, Y_2, \dots, Y_n such that

$$(1) X = \sum_{i=1}^{n} Y_i,$$

(2)
$$\sigma(T|Y_i) \subset G_i \quad (i=1,2,\cdots,n).$$

DEFINITION 1.2. A T-invariant subspace Y of X is said to be analytic invariant if, for every X-valued analytic function defined on a region

Received October 29, 1986.

This research is supported by MOE grant 1986.

 $D \subseteq C$ such that

$$(\lambda - T) f(\lambda) \in Y$$
 for $\lambda \in D$, then $f(\lambda) \in Y$ for $\lambda \in D$.

DEFINION 1.3. E is said to be an analytic spectral resolvent (ASR) for T if

- (i) $E: \mathcal{U} \to AI(T)$, where \mathcal{U} is the usual topology of C,
- (ii) $E(\phi) = \{0\}$,
- (iii) for $\{G_i\}_{i=1}^n \in \operatorname{Cov}[\sigma(T)], X = \sum_{i=1}^n E(G_i)$, and
- (iv) $\sigma(T|E(G)) \subset \overline{G}$ for any $G \in \mathcal{U}$.

In the definition 1.3, if one replace AI(T) by Inv(T) then E is called the spectral resolvent [13].

It is shown through lengthy computations that if $T \in B(X)$ has a spectral resolvent then T is a decomposable operator ([13], p. 77, Theorem 11). Thus it is true that if T has an ASR then T is decomposable. But the later case the decomposability follows from the following results:

THEOREM 1.4. [10]. For an operator T, the following are equivalent.

- (i) T is decomposable.
- (ii) For every open set G in C, there is a T-invariant subspace M such that $\sigma(T/M) \subset \overline{G}$ and $\sigma(T/M) \subset C \setminus G$.

THEOREM 15. [15]. Let $E: \mathcal{U} \to Inv(T)$ be a spectral resolvent for T, then $\sigma(T/E(G)) \subset \mathbb{C} \setminus G$ if and only if E(G) is analytic invariant under T.

2. Invariance of an analytic spectral revolvent

In the first part of this section, we will give an answere to the following question:

If E is an ASR of $T_1 \in B(X)$, when does it also be an ASR for another operator $T_2 \in B(X)$?

Before stating the result, we need a Lemma and a definition.

DEFINITION 2.1. [3]. We say that T_1 and T_2 are quasi-nilpotent equivalent $(T_1 \sim T_2)$ if,

$$\lim_{n \to \infty} \| (T_1 \! - T_2)^{{{\lceil n \rceil}}} \|^{\frac{1}{n}} \! = \! 0 \! = \! \lim_{n \to \infty} \! \| (T_2 \! - T_1)^{{{\lceil n \rceil}}} \|^{\frac{1}{n}},$$

where

$$(T_1-T_2)^{[n]} = \sum_{k=0}^{n} (-1)^{n-k} {n \choose k} T_1^{k} T_2^{n-k}.$$

LEMMA 2.2. [3]. (i) If $T_1 \stackrel{q}{\sim} T_2$ then $\sigma(T_1) = \sigma(T_2)$.

- (ii) If T_1 has the SVEP and if $T_1 \sim T_2$, then T_2 has the SVEP.
- (iii) If T_1 is decomposable and $T_1 \sim T_2$, then T_2 is also decomposable and $X_{T_1}(F) = X_{T_2}(F)$ for every closed $F \subset \mathbb{C}$.
- (iv) If T has the SVEP and if $T_1 \sim T_2$, then $\sigma(x, T_1) = \sigma(x, T_2)$ for every $x \in X$.

THEOREM 2.3. For T_1 , $T_2 \in B(X)$, let E be an ASR for T_1 . If $T_1 \sim T_2$ and if $E(G) \in AI(T_1) \cap AI(T_2)$ for each $G \in \mathcal{U}$, then E is also an ASR for T_2 .

Proof. By Lemma 2.2, (i), we have $\sigma(T_1) = \sigma(T_2)$. For any $\{G_i\}_{i=1}^n \in \text{Cov}[\sigma(T_1)], \sum_{i=1}^n E(G_i) = X \text{ and } \sigma(T_1|E(G)) \subset \overline{G} \text{ for any } G \in \mathcal{U}.$

It remains to prove that $\sigma(T_1|E(G)) = \sigma(T_2|E(G))$ for any $G \in \mathcal{U}$. For any $x \in E(G) \in AI(T_1) \cap AI(T_2)$, we have

$$\sigma(x, T_1) = \sigma(x, T_1 | E(G)), \ \sigma(x, T_2) = \sigma(x, T_2 | E(G)).$$

Since T_1 is decomposable so it has the SVEP, thus $\sigma(x, T_1) = \sigma(x, T_2)$ by Lemma 2.2, (iv). Therefore we have

$$\underset{x \in E(G)}{\bigcup} \sigma(x, T_1) = \underset{x \in E(G)}{\bigcup} \sigma(x, T_1 | E(G)) = \sigma(T_1 | E(G)), \text{ and }$$

$$\underset{x \in E(G)}{\bigcup} \sigma(x, T_2) = \sigma(T_2 | E(G)).$$

It follows that $\sigma(T_1|E(G)) = \sigma(T_2|E(G)), G \in \mathcal{U}$.

The condition $E(G) \in AI(T_1) \cap AI(T_2)$ for every $G \in \mathcal{U}$ in Theorem 2.3. seems to be crucial, but the following example shows it is not so unreasonable.

EXAMPLE. Let T be a spectral operator with the spectral measure μ in the sense of N. Dunford. Thus it can be represented by T=S+Q, where S and Q are the scalar and radical part respectively, and $\sigma(T)=\sigma(S)$. Putting $T_1=T$, $T_2=S$, we have

$$||(T_1-T_2)^{[n]}||^{\frac{1}{n}}=||Q_n||^{\frac{1}{n}}=||(T_2-T_1)^{[n]}||^{\frac{1}{n}},$$

whence $T_1 \stackrel{q}{\sim} T_2$.

We define $E(G) = \mu(\overline{G}) X$ for $G \in \mathcal{U}$, then we have $\mu(\overline{G}) X = X_{T_1}(\overline{G})$, $X_{T_1}(\overline{G}) = X_{T_2}(\overline{G})$ ([3], p. 40, Theorem 2.1). Moreover, $X_{T_1}(\overline{G})$ is a spectral maximal space for T_1 since T_1 is decomposable, thus $E(G) = X_{T_1}(\overline{G})$ is analytically invariant under T_1 . i. e. $E(G) \in SM(T_1) \subset AI(T_1)$, $AI(T_1) \cap AI(T_2) \neq \phi$. Furthermore, T_1 and T_2 are decomposable, thus $E: \mathcal{U} \to AI(T_1) \cap AI(T_2)$ is an ASR for T_1 and T_2 .

A decomposable operator is not a strongly decomposable operator, thus if T is decomposable, the restriction operator T|E(G) and the quotient operator T/E(G) are not decomposable in general even if E(G) is a spectral maximal space for T. We will give the conditions under which these operators are decomposable for some fixed $G \in \mathcal{U}$. To do this we need a Lemma.

LEMMA 2.4. [14]. Let T be decomposable on a reflexive Banach space X. If Y reduces T, then $T \mid Y$ is decomposable.

For an operator T with the disconnected spectrum, $G \in \mathcal{U}$ is said to be disconnect the spectrum $\sigma(T)$ if.

$$G \cap \sigma(T) \neq \phi$$
, $\sigma(T) \not\subset G$ and $\partial G \subset \sigma(T)$.

PROPOSITION 2.5. Let X be a reflexive Banach space, let E be an ASR for T. If $G \in \mathcal{U}$ disconnects the spectrum $\sigma(T)$, then both $T \mid E(G)$ and $T \mid E(G)$ are decomposable.

Proof. By the assumption on G, $X=E(G) \oplus E(\overline{G}^C)$ ([5], p. 62, Lemma 12). Thus E(G) reduces T so by Lemma 2.4, T|E(G) is decomposable. T^* is decomposable since T is, X^* is also reflexive and

$$X^* = E(G)^* \oplus E(\overline{G}^c)^* \equiv (X/E(\overline{G}^c))^* \oplus (X/E(G))^*$$
$$\equiv E(\overline{G}^c)^{\perp} \oplus E(G)^{\perp}.$$

A simple computation shows that both $E(G)^{\perp}$ and $E(\overline{G}^{c})^{\perp}$ are invariant under T^{*} . Using again the Lemma 2.4, $T^{*}|E(G)^{\perp}$ is decomposable.

Now, by the indentification $T^*|E(G)^{\perp} \equiv (T/E(G))^*$, T/E(G) is decomposable. The last conclusion follows from the fact that T is decomposable if and only if T^* is decomposable. ([10], p. 95, Corollary 1).

3. Constructions of new ASR from given ASR.

In this section, we will formulate an ASR for the functional calculus, the direct sum of two ASR and a transformation of an ASR by an invertible operator. In what follows, we use the symbol $\mathcal{F}(T)$ for the set of all non-constant complex valued analytic functions on some open neighborhood of the spectrum $\sigma(T)$, and f(T) for the functional calculus for T if $f \in \mathcal{F}(T)$.

A T-invariant subspace Y of X is said to be a ν -space if $\sigma(T|Y) \subset \sigma(T)$.

LEMMA 3.1. [9]. Let $T \in B(X)$, let g be analytic on some open neighborhood of $\sigma(T)$. If Y is analytically invariant under T, then Y is analytically invariant under g(T).

LEMMA 3.2. [6]. (1) Given $T \in B(X)$, let f be an analytic injective function on some neighborhood of $\sigma(T)$. Then Y is a ν -space for f(T) then Y is a ν -space for T.

(2) Given $T \in B(X)$, let f be an analytic function on an open neighborhood of $\sigma(T)$. If Y is ν -space for T then Y is ν -space for f(T). Furthermore, we have

$$f(T) | Y = f(T|Y), f(T)/Y = f(T/Y).$$

(3) Given $T \in B(X)$, let $f: D \rightarrow C$ be analytic on an open neighborhood D of $\sigma(T)$ and nonconstant on every component of D.

If
$$Y \in AI[f(T)]$$
 and $Y \in Inv(T)$, then $Y \in AI(T)$.

THEOREM 3.3. Let E be an ASR for T, let $f \in \mathcal{F}(T)$ and if f is continuous on C then the map \mathcal{E} defined by $\mathcal{E} = E \circ f^{-1}$ is an ASR for f(T).

Proof. For any $\{H_i\}_{i=1}^n \in \text{Cov}[\sigma(f(T))], f(\sigma(T)) = \sigma(f(T)) \subset \bigcup_{i=1}^n H_i,$ whence

$$\sigma(T)\!\subset\!\!f^{-1}\!\left(\mathop{\cup}\limits_{i=1}^{\mathbf{n}}\!H_{i}\right)\!=\!\mathop{\cup}\limits_{i=1}^{\mathbf{n}}\!f^{-1}(H_{i})$$

We put $f^{-1}(H_i) = G_i$ $(i=1, 2, \dots, n)$, then $\{G_i\}_i \in \text{Cov}[\sigma(T)]$. Since E is an ASR for T, we have

$$\mathcal{E}(\phi) = \{0\}, \sum_{i=1}^{n} \mathcal{E}(H_i) = \sum_{i=1}^{n} E(G_i) = X, \text{ and}$$

For each $H \in \mathcal{U}$, putting $f^{-1}(H) = G$, $\mathcal{E}(H) = E(G)$ is an analytically invarint subspace under f(T) by Lemma 3.1. Thus $\mathcal{E}(H)$ is a ν -space for f(T). Therefore, by Lemma 3.2, (2), we have

$$\sigma(f(T)|\mathcal{E}(H)) = \sigma(f(T|\mathcal{E}(H))) = f(\sigma(T|\mathcal{E}(H))) = f(\sigma(T|\mathcal{E}(G))).$$
And since $\sigma(T|\mathcal{E}(G)) \subseteq \overline{G} \cap \sigma(T)$,

$$\sigma(f(T) | \mathcal{E}(H)) \subset f(\overline{G}) \cap f(\sigma(T)) \subset \overline{H} \cap \sigma(f(T))$$

hold by the continuity of f and the spectral mapping theorem. Therefore, $\mathcal{E}: \mathcal{U} \to AI[f(T)]$ is an ASR for f(T).

The converse of the Theorem 3.3 is following.

THEOREM 3.4. Let $f \in \mathcal{F}(T)$, let f be an injective open function on \mathbb{C} . If \mathcal{E} is an ASR for f(T), then the map E defined by $E = \mathcal{E} \circ f$ is an ASR for T.

Proof. Let $\{G_i\}_{i=1}^n \in \text{Cov}[\sigma(T)]$. Then $\{f(G_i)\}_{i=1}^n \in \text{Cov}[\sigma(f(T))]$ by the spectral mapping theorem, $\mathcal{E}(f(G_i)) \in \text{AI}(f(T))$ for each *i*. We put $f(G_i) = H_i$. Since $E(G_i) = \mathcal{E}(H_i)$, we have

$$E(\phi) = \mathcal{E}(\phi) = \{0\}, \quad \sum_{i} E(G_i) = \sum_{i} \mathcal{E}(H_i) = X.$$

For an admissible contour C which surrounds $\sigma(T)$ and is contained in $D \cap \rho(T)$, where D is a some open neighborhood of $\sigma(T)$. Applying Dunford's theorem on composite operator-valued function to the composite $f^{-1} \circ f$, we have

$$f^{-1}[f(T)] = \frac{1}{2\pi i} \int_{C} f^{-1}[f(\lambda)]R(\lambda, T) d\lambda = \frac{1}{2\pi i} \int_{C} \lambda R(\lambda, T) d\lambda = T.$$

By the same arguments as the proof of Theorem 3.3,

$$\sigma(T|E(G)) = \sigma(f^{-1}[f(T)]|E(G)) = \sigma(f^{-1}[f(T)]|\mathcal{E}(H))$$

$$= \sigma(f^{-1}[f(T|\mathcal{E}(H))]) = f^{-1}[\sigma(f(T)|\mathcal{E}(H))]$$

$$\subset f^{-1}[\overline{H} \cap \sigma(f(T))] = f^{-1}(\overline{H}) \cap \sigma(T).$$

And since f is an injective open function on C,

$$f^{-1}(\overline{H}) = f^{-1}(\overline{f(G)}) \subset \overline{f^{-1}(f(G))} = \overline{G}.$$

Thus we have $\sigma(T|E(G)) \subset \overline{G} \cap \sigma(T)$ for $G \in \mathcal{U}$, therefore $E : \mathcal{U} \to Inv$ (T) is a spectral resolvent for T.

It remains to show that $E(G) = \mathcal{E}(H)$ is analytically invariant under T for each $G \in \mathcal{U}$, where H = f(G).

Since $E(G) = \mathcal{E}(H)$ is analytically invariant under f(T),

(3. a)
$$\sigma(f(T)/\mathcal{E}(H)) \subset H^c \cap \sigma(f(T)) = f(G)^c \cap f(\sigma(T))$$

= $f(G^c \cap \sigma(T))$,

the last equality holds since f is injective.

Now, by Lemma 3.2, $\mathcal{E}(H) = E(G)$ is a ν -space for f(T) if and only if it is a ν -space for T. Thus

(3. b)
$$[f(T)/\mathcal{E}(H)] = \sigma[f(T/E(G))] = f(\sigma(T/E(G))).$$

It follows from (3. a) and (3. b) that

$$\sigma(T/E(G)) \subset G^{c} \cap \sigma(T) \subset C \setminus G$$
.

Therefore, by Theorem 1.5, E(G) is analytically invariant under T for each $G \in \mathcal{U}$. This completes the proof.

From Theorem 3.3 and Theorem 3.4, we have the following corollary.

COROLLARY 3.5. Let $f \in \mathcal{F}(T)$, if $f : \mathbb{C} \to \mathbb{C}$ is a homeomorphism then E is an ASR for T if and only if $\mathcal{E} = E \circ f^{-1}$ is an ASR for f(T).

THEOREM 3.6. Let X_k (k=1,2) be Banach spaces, let $T_k \in B(X_k)$ (k=1,2). If E_k is an ASR for T_k for k=1,2. Then the map E defined by $E(G) = E_1(G) \oplus E_2(G)$ $(G \in \mathcal{U})$ is an ASR for $T = T_1 \oplus T_2$.

Proof. For $\{G_i\}_{i=1}^n \in \text{Cov}[\sigma(T)]$, $\{G_i\}_{i=1}^n \in \text{Cov}[\sigma(T_k)] (k=1,2)$ since $\sigma(T) = \sigma(T_1) \cup \sigma(T_2)$. Thus $\sum_i E_k(G_i) = X_k (k=1,2)$ and $\sum_i E(G_i) = X$. Clearly $E(\phi) = \{0\}$.

For any $G \in \mathcal{U}$, $E(G) \in AI(T)$ ([6], p. 20, proposition 2.18). Furthermore,

$$\sigma(T|E(G)) = \sigma(T_1 \oplus T_2 | E_1(G) \oplus E_2(G))
= \sigma(T_1 | E_1(G)) \cup \sigma(T_2 | E_2(G)) \subseteq \overline{G}$$

Therefore, $E: \mathcal{U} \rightarrow AI(T)$ is an ASR for T.

For the converse of the Theorem 3.6, we need some basic results for analytically invariant subspaces.

LEMMA 3.7. [9]. (1) Let $T_i \in B(X_i)$ (i=1,2), let Y_i be an T_i -invariant subspace (i=1,2). Then $Y_1 \oplus Y_2$ is analytically invariant under $T_1 \oplus T_2$ if and only if Y_i is analytically invariant under T_i .

- (2) Let Y, Z be T-invariant subspaces with $Y \subset Z$. Then the following hold.
 - (i) If $Y \in AI(T)$, then $Y \in AI(T|Z)$.

- (ii) If $Y \in AI(T|Z)$ and $Z \in AI(T)$, then $Y \in AI(T)$.
- (iii) $Z \in AI(T)$ if and only if $Z/Y \in AI(T/Y)$.
- (iv) If T have the SVEP and let P be a bounded projection operator on X commuting with T, then $PX \in AI(T)$.

LEMMA 3. 8. [6]. Let T have the SVEP and let $Y \in Inv(T)$. Then $T \mid Y$ has the SVEP and $\sigma(y, T) \subset \sigma(y, T \mid Y)$ for every $y \in Y$.

THEOREM 3.9. Let $T \in B(X)$, $X = X_1 \oplus X_2$ and let P_1 be a bounded projection operator of X onto X_1 commuting with T.

If E is an ASR for T, then the map $E_k=P_k\circ E$ (k=1,2) are ASR for T_k (k=1,2), where $P_2=I-P_1$, $T_k=T|X_k$ for k=1,2.

Proof. We note that the condition $TP_1=P_1T$ is equivalent to $TX_1 \subset X_1$, $TX_2 \subset X_2$. Obviously, $E_k(G)=P_kE(G)$ is a closed subspace for k=1,2.

Since $TE(G) \subset E(G)$ $(G \in \mathcal{U})$, $P_kTE(G) \subset P_kE(G) = E_k(G)$, we have $TE_k(G) \subset E_k(G)$. Hence $T_kE_k(G) = (T|X_k)E_k(G) = TE_k(G) \subset E_k(G)$.

Now we will show that $E_k(G) \in AI(T|E(G))$, k=1,2. Putting A=T|E(G), $A:E(G)\to E(G)$ have the SVEP by Lemma 3.8. $P_kT=TP_k$ implies that $P_kA=AP_k$. Therefore $P_kE(G)=E_k(G)$ (k=1,2) are considered as subspaces of E(G) invariant under A, and $E_k(G) \in AI(A)=AI(T|E(G))$ by Lemma 3.7, (2), (ii) and (iv).

It follows that

$$\sigma(T_1|E_1(G)) = \sigma(T|E_1(G)) = \sigma([T|E(G)]|E_1(G)) \subset \sigma(T|E(G)),$$

the last inclusion relation follows from Lemma 3.7, (i) and every analytically invariant subspace is a ν -space. Thus we have

$$\sigma(T_1|E_1(G)) \subset \overline{G}$$
, and similary $\sigma(T_2|E_2(G)) \subset \overline{G}$.

Obviously $E_k(\phi) = \{0\}$, k=1,2. It remains to prove that $\sum_{i=1}^n E_k(G_i) = X_k$ for every $\{G_i\}_{i=1}^n \in \text{Cov}[\sigma(T_k)]$ (k=1,2).

We choose $G \in \mathcal{U}$ such that $\sigma(T_1) \cap \overline{G} = \phi$ and satisfying $\left(\bigcup_{i=1}^n G_i\right) \cup G$ $\supset \sigma(T)$.

By Lemma 3.7, (1), $E_1(G) \oplus E_2(G) = E(G) \in AI(T)$ if and only if $E_k(G) \in AI(T_k)$ for k=1, 2. Thus $\sigma(T_1|E_1(G)) \subset \overline{G} \cap \sigma(T_1) = \phi$. Therefore,

$$\sigma(T_1) \cap \overline{G} = \phi$$
 implies that $E_1(G) = \{0\}$.

Since $\{G_1, G_2, \dots, G_n, G\} \in \text{Cov}[\sigma(T)], \sum_{i=1}^n E(G_i) + E(G) = X$. So we

have $\sum_{i=1}^{n} E_1(G_i) = X_1$. Similary $\sum_{i=1}^{n} E_2(G_i) = X_2$ for any $\{G_i\}_{i=1}^{n} \in \text{Cov}[\sigma(T_2)]$. We have proved the Theorem.

THEOREM 3.10. Let E be an ASR for $T \in B(X)$, let Y be another Banach space. If T is similar to $S \in B(Y)$, then the map $\mathcal{E} = VE$ defined by $\mathcal{E}(G) = VE(G)$ ($G \in \mathcal{U}$) is an ASR for S, where $V \in B(X, Y)$ is an invertible operator such that VT = SV.

Proof. We propose to show that $\mathcal{E}(G) = VE(G) \in AI(S)$. Clearly, VE(G) is a closed subspace of X for each $G \in \mathcal{U}$, and invariant under S.

Let $f: D \rightarrow X$ be analytic and satisfy

$$(\lambda I - S) f(\lambda) \in VE(G)$$
 on D .

Then

$$V^{-1}(\lambda I - S)f(\lambda) \in E(G)$$
 and $(\lambda I - T)V^{-1}f(\lambda) \in E(G)$ on D .

And since $V^{-1}f(\lambda)$ is analytic on D and $E(G) \in AI(T)$, we have $V^{-1}f(\lambda) \in E(G)$, thus $f(\lambda) \in VE(G)$, $\lambda \in D$.

Now, for any $\{G_i\}_{i=1}^n \in \operatorname{Cov}[\sigma(T)] = \operatorname{Cov}[\sigma(S)],$

$$\sum_{i=1}^{n} VE(G_i) = V \sum_{i=1}^{n} E(G_i) = VX = Y, \text{ i. e. } \sum_{i=1}^{n} \mathcal{E}(G_i) = Y.$$

Furthermore, $S \mid VE(G)$ is similar to $T \mid E(G)$; this follows from the facts that

$$\lceil V \mid E(G) \rceil \lceil T \mid E(G) \rceil = \lceil S \mid VE(G) \rceil \lceil V \mid E(G) \rceil$$
, and

 $V \mid E(G)$ is invertible. Theorefore,

$$\sigma(S|VE(G)) = \sigma(T|E(G)) \subset \overline{G} \cap \sigma(T) \text{ i.e. } \sigma(S|\mathcal{E}(G)) \subset \overline{G} \cap \sigma(S).$$

Hence $\mathcal{E}: \mathcal{U} \rightarrow AI(S)$ is an ASR for S.

In difinition of the ASR E for T if n=2 then E is said to be two-ASR for T. Author previously proved that if T has a two-ASR E, then the dual operator T^* has also a two-ASR E^* , where $E^*: \mathcal{U} \to AI(T^*)$ is defined by $E^*(G) = E(C \setminus \overline{G})^{\perp}$ ([12], p. 77, Theorem 6).

References

1. C. Apostol, Some properties of spectral maximal spaces and decomposable operators, Rev. Roum. Math. Pures et Appl. (1967), Tome XII, No. 5, 607-610.

- 2. C. Apostol, Spectral decompositions and functional calculus, Rev. Roum. Math. Pures et Appl., Tome XIII, 10(1968), 1481-1528.
- 3. I. Colojoara and C. Foias, Theory of Generalized spectral operators, Gordon and Breach, NY, 1968.
- 4. N. Dunford, J.T. Schwartz, *Linear operators III*, Wiley interscience, NY (1971).
- I. Erdelyi, Spectral resolvents, Research notes in Mathematics, No. 38, Pitman advanced pub. program, San Francisco, London (1979), 51-70.
- 6. I. Erdelyi, R. Lange, Spectral decompositions on Banach spaces, Lecture notes in Mathematics, #623, Springer-Verlag, NY, 1977.
- I. Erdelyi and Wang Shengwang, On the strongly decomposable operators, Pacific J. Math., 110(1984), 287-296.
- 8. S. Frunza, A duality theorem for decomposable operators, Rev. Roum. Math. Pures et Appl., Tome XVI, 7(1971), 1055-1058.
- 9. R. Lange, Analytic decomposable operators, Trans. Amer. Math. Soc., 244 (1978), 225-240.
- R. Lange, Duality and asymptotic spectral decompositions, Pacific J. Math. Vol. 121, No. 1 (1986), 93-108.
- M. Radjabalipour, Equivalence of decomposable and 2-decomposable operators, Pacific J. Math. Vol. 77 (1978), 243-247.
- 12. J. C. Rho, T. G. Cho, H. K. Cha, Analytic spectral resolvents, J. Korean Math. Soc. Vol. 22, No. 1 (1985), 75-85.
- G. Shulberg Spectral resolvents and decomposable operators, Research notes in Mathematics, No. 38, Pitman Advanced pub. program, San Francisco, London (1979), 71-80.
- 14. J.C. Snader, Strongly analytic subspaces and strongly decomposable operators, Pacific J. Math., Vol. 115, No. 1 (1984), 193-202,

Sogang University Seoul 121, Korea