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COMMON FIXED POINTS OF MAPS ON TOPOLOGICAL
VECTOR SPACES HAVING SUFFICIENTLY MANY
LINEAR FUNCTIONALS

Senie PARK

Fixed point theorems for upper semicontinuous (u. s. c.) multimaps
on a nonempty compact convex subset of various topological vector
spaces (t.v.s.) were obtained by S. Kakutani [9], Bohnenblust and
Karlin [3], Ky Fan [11], Glicksberg [6], and others. Recently, W.
K. Kim [10] and S. Park [14] generalized those results for a t.v.s.
having sufficiently many linear functionals.

On the other hand, Itoh and Takahashi [7] proved a common fixed
point theorem for a continuous map and an u.s.c. multimap on a
compact convex subset of a locally convex space (l.c.s.) under some
additional conditions.

In the present paper, we generalize their theorem for a t. v.s. having
sufficiently many linear functionals, and also obtain a generalized version
of the classical Markov-Kakutani theorem.

Let E be a Hausdorff t.v.s. and E* its topological dual. E is said
to have sufficiently many linear functionals if for every x€E with x#0
there exists a continuous linear functional /€ E* such that I(z) #0. By
the Hahn-Banach theorem, every l.c.s. has sufficiently many linear
functionals. An example of a t.v.s. having sufficiently many linear
functionals which is not locally convex is the Hardy space H? with 0<
<l

The following is a consequence of results in [14, 1, 2].

THEOREM 1. Let K be a nonempty compact convex subset of a Hausdorff
t.v.s. E having sufficiently many linear functionals, and F : K — 2K
a map such that Fx is nonempty, closed, and convex for each x&K.
Then F has a fixed point if one of the following holds:
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(1) F is continuous (u.s.c. and l.s.c.)

(i) E is real and F is u.s.c.

(iii) E is locally convex and F is u.s.c.

(iv) E is real, locally convex and F is upper hemicontinuous.

In case where F is a single-valued map f : K—K, Theorem 1 reduces
to Ky Fan’s theorem in [12]. Note that Theorem 1 includes results
of Brouwer [4], Schauder [15], Tychonoff [16], Kakutani [9],
Bohnenblust and Karlin [3], Glicksberg [6], Ky Fan [11, 12], and
others.

By Theorem 1, the set A=Fix(f)={z=K|z=fz} is nonempty
compact if f: K — K is continuous, and the set B=Fix(F)= {zxcK]|
xz€Fz} is nonempty compact if one of (i), (ii), and (iii) holds.

We say that f and F commute [7] if for each 2K,

f(Fz) CF(fx).

THEOREM 2. Under the hypothesis (i), (ii), or (@iii) of Theorem 1,
if f: K—K is continuous, f and F commute, and A=Fix(f) or B=
Fix(F) is convex, then f and F have a common fized point 2K, that
is, 2=fz&Fz.

Proof. Suppose that A is convex. Since f(Fz)CF(fzx)=Fz for
each x= A, f is a continuous selfmap of a nonempty compact convex
subset Fzx of E. Therefore, by Theorem 1, there is a y€ Fz such that
y=fy. Hence, Fz A is nonempty. Define a multimap G : A— 24 by
Gz=FzNA for z€A. If F is continuous [resp. u.s.c.], then G is
continuous [resp. u.s.c.] on the nonempty compact convex subset A
of E and Gz is nonempty closed convex for each zeA. Thus, by
Theorem 1, there exists a fixed point 2 of G in A. For this 2z, we
have z=fz& Fz.

Suppose that B is convex. For any z&B, we have fzref(Fz)C
F(fz). Hence, f is a continuous selfmap of the nonempty compact
convex subset B of E. Therefore, by Theorem 1, there exists a point
2€B such that z=fz Fz. This completes our proof.

For f=1k, Theorem 2 reduces to Theorem 1, and for F=lg,
Theorem 2 reduces to Ky Fan’s theorem in [12].
A map F: K — 2% is said to be affine [7] if for any =z, y&K and
acs[0,1],
aFz+(1—a)Fy € Flaz+(O—a)y).
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COROLLARY 1. Under the hypothesis (1), (ii) or (iii) of Theorem 1,
if f: K— K is continuous and affine, and f and F commute, then f
and F have a common fixed point.

Proof. Since f is affine, the set A is convex.
For f=1g, Corollary 1 reduces to Theorem 1.

COROLLARY 2. Under the hypothesis (1), (ii), or (iii) of Theorem 1,
if f: K — K is continuous, f and F commute, and F is affine, then f
and F have a common fixed point.

Proof. Since F is affine, the set B is convex.

For F=1g, Corollary 2 redulces to Ky Fan’s theorem in [12].

In [7], Itoh and Takahashi proved Theorem 2 and Corollaries 1 and
2 for locally convex E. Qur proofs are slight modifications of theirs.

As an application of Theorem 2, we give the Markov-Kakutani
theorem for a Hausdorff t.v.s. having sufficiently many linear
functionals.

THEOREM 3. Let K be a nonempty compact convex subset of a Hausdorff
t.v.s. E having sufficiently many [linear functionals. Let F be a com-
muting family of continuous affine sel fmaps of K. Then F has a common

fized point.

Proof. From Corollary 1, we know that for any f, g€&, Fix(f)
NFix(g) is nonempty compact convex. Hence so is any finite
intersection of sets Fix(f), f&€J. Since K is compact, the intersection
of all sets Fix(f) is nonempty.

Theorem 3 for locally convex spaces was first given by Markov [13]
with the aid of the Tychonoff fixed point theorem [16]. Kakutani [8]
found a direct elementary proof of Theorem 3 (valid in any t.v.s.),
and demonstrated the importance of the result by giving a number of
applications; he also showed that Theorem 3 implies the Hahn-Banach
theorem (see [5]). Our proof of Theorem 3 uses Ky Fan’s theorem
in [12] (i.e., the single-valued case of Theorem 1).

COROLLARY 3. Let F be the same in Theorem 3 and g: K —>K a
continuous map. If g commutes with any fEF, then FU {g} has a common
fized point.
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Proof. The set Fix(&) of all common fixed points of & is nonempty

compact convex by Theorem 3. Since gz=gfz=fgz for any 2€Fix (&)
and f€&, g maps Fix(¥) into itself. Thus g has a fixed point in
Fix(¥) by Theorem 1. This completes our proof.

In fact, Corollary 3 shows that in Theorem 3 we can allow one map

SfoEF to be non-affine; there will still be a common fixed point for
all maps f in & '
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