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COMMON FIXED POINTS OF MAPS ON TOPOLOGICAL
VECTOR SPACES HAVING SUFFICIENTLY MANY

LINEAR FUNCTIONALS

SEIIIE PARK

Fixed point theorems for upper semicontinuous (u. s. c.) multi maps
on a nonempty compact convex subset of various topological vector
spaces (t. v. s.) were obtained by S. Kakutani [9J, Bohnenblust and
Karlin [3J, Ky Fan [l1J, Glicksberg [6J, and others. Recently, W.
K. Kim [10J and S. Park [14J generalized those results for a t. v. s.
having sufficiently many linear functionals.

On the other hand, Itoh and Takahashi [7J proved a common fixed
point theorem for a continuous map and an u. s. c. multimap on a
compact convex subset of a locally convex space (1. c. s.) under some
additional conditions.

In the present paper, we generalize their theorem for at. v. s. having
sufficiently many linear functionals, and also obtain a generalized version
of the classical Markov-Kakutani theorem.

Let E be a Hausdorff t. v. s. and E* its topological dual. E is said
to have sufficiently many linear functionals if for every xE E with x*,O
there exists aeontinuous linear functional lE E* such that l (x) *' O. By
the Hahn-Banach theorem, every 1. c. s. has sufficiently many linear
functionals. An example of a t. v. s. having sufficiently many linear
functionals which is not locally convex is the Hardy space HP with 0<
p<1.

The following is a consequence of results in [14, 1,2].

THEOREM 1. Let K be a nonempty compact convex subset of a Hausdorff
t. v. s. E having sufficiently many linear functionals, and F: K ~ 2K

a map such that Fx is nonempty, closed, and convex for each xE K.
Then F has a fixed point if one of the following holds:
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( i) F is continuous (u. s. c. and l. s. c. )
(ii) E is real and F is u. s. c.
(iii) E is locally convex and F is u. s. c.
(iv) E is real, locally convex and F is upper hemicontinuous.

In case where F is a single-valued mapj: K~K, Theorem 1 reduces
to Ky Fan's theorem in [12]. Note that Theorem 1 includes results
of Brouwer [4J, &hauder [15J, Tychonoff [16J, Kakutani [9J,
Bohnenblust and Karlin [3J, Glicksberg [6J, Ky Fan [11, 12J, and
others.

By Theorem 1, the set A=FixCf) = {xEKlx fx} is nonempty
compact if f: K ~ K is continuous, and the set B=Fix(F) = {xEK[
xE Fx} is nonempty compact if one of (i), (ii) , and (iii) holds.

We say that f and F commute [7J if for each xE K,
f(Fx) cF(jx).

THEOREM 2. Under the hypothesis (i), (ii) , or (iii) of Theorem 1,
if f: K~K is continuous, f and F commute, and A=Fix(f) or B=
Fix(F) is convex, then f and F have a common fixed point zEK, that
is, z fZEFz.

Proof. Suppose that A is convex. Since f(Fx) cFCfx) =Fx for
each xEA, f is a continuous sel£map of a nonempty compact convex
subset Fx of E. Therefore, by Theorem 1, there is a yEFx such that
y fy. Hence, FxnA is nonempty. Define a multimap G: A~ 2A by
Gx= Fx nA for x E A. If F is continuous [resp. u. s. c. J, then G is
continuous [resp. u. s. c. J on the nonempty compact convex subset A
of E and Gx is nonempty closed convex for each xE A. Thus, by
Theorem 1, there exists a fixed point z of G in A. For this z, we
have z jZEFz.

Suppose that B is convex. For any xEB, we have fXEf(Fx) c
FCfx). Hence, f is a continuous sel£map of the nonempty compact
convex subset B of E. Therefore, by Theorem 1, there exists a point
zEB such that z-jzEFz. This completes our proof.

For f=lK , Theorem 2 reduces to Theorem 1, and for F=lK ,

Theorem 2 reduces to Ky Fan's theorem in [12].
A map F : K ~ 2K is said to be affine [7J if for any x, yE K and

aE[O,lJ,
aFx+(l-a)Fy c F(ax+(l-a)y).
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COROLLARY 1. Under the hypothesis (i), (ii) or (iii) of Theorem 1,
if f : K ~ K is continuous and affine, and f and F commute, then f
and F have a common fixed point.

Proof. Since f is affine, the set A is convex.

For f = 1K , Corollary 1 reduces to Theorem l.

COROLLARY 2. Under the hypothesis (i), (ii) , or (iii) of Theorem 1,
if f : K ~ K is continuous, f and F commute, and F is affine, then f
and F have a common fixed point.

Proof. Since F is affine, the set B is convex.

For F=h, Corollary 2 redu1ces to Ky Fan's theorem in [12J.
In [7J, Itoh and Takahashi proved Theorem 2 and Corollaries 1 and

2 for locally convex E. Our proofs are slight modifications of theirs.
As an application of Theorem 2, we give the Markov-Kakutani

theorem for a Hausdorff t. v. s. having sufficiently many linear
functionals.

THEOREM 3. Let K be a nonempty compact convex subset of a Hausdorff
t. v. s. E having sufficiently many linear functionals. Let ;;; be a com­
muting family of continuous affine selfmaps of K. Then;;; has a common
fixed point.

Proof. From Corollary 1, we know that for any f, gE 'J, Fix (f)
nFix(g) is nonempty compact convex. Hence so is any finite

intersection of sets Fix(f), fE'J. Since K is compact, the intersection
of all sets Fix (f) is nonempty.

Theorem 3 for locally convex spaces was first given by Markov [13J
with the aid of the Tychonoff fixed point theorem [16]. Kakutani [8J
found a direct elementary proof of Theorem 3 (valid in any t. v. s. ),
and demonstrated the importance of the result by giving a number of
applications; he also showed that Theorem 3 implies the Hahn-Banach
theorem (see [5J). Our proof of Theorem 3 uses Ky Fan's theorem
in [12J (i. e., the single-valued case of Theorem 1).

CoROLLARY 3. Let 'J be the same in Theorem 3 and g: K ~ K a
continuous map. If g commutes with any fE'J, then 'J U {g} has a common
fixed point.
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Proof. The set Fix (;]) of all common :fixed points of;] is nonempty
compact convex by Theorem 3. Since gz=gfz fgz for any zEFix(;])
and lE;], g maps Fix(;]) into itself. Thus g has a :fixed point in
Fix(;]) by Theorem 1. This completes our proof.

In fact, Corollary 3 shows that in Theorem 3 we can allow one map
loE;] to be non-affine; there will still be a common fixed point for
all maps I in ;].
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