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RECURRENCE IN PSEUDO-NONEXPANSIVE FLOWS

KEON-HEE LEE

1. Introduction

R. Knight [3, 4J proved that a flow on a locally compact Hausdorff
space X is recurrent if and only if it is (positively, negatively) Poisson
stable and each point is approximated by compact (positive, negative)
weak attractors relative to its orbit closure. In this paper, to get
another necessary conditions for a Poisson stable flow to be recurrent,
wc introduce the notions of "(orbitally) Pseudo-nonexpansive flows".
It is shown, in section 2, that the concepts of recurrence and
negatively Poisson stability coincide when the flow is orbitally pseudo­
nonexpansive and the phase space X is locally compact. In section 3,
a characterization of recurrent motions is obtained under the pseudo­
nonexpansiw' flows, and finally we have some geometric properties of
compact minimal sets which are deeply concerned with recurrent orbits
in the nonexpansive flows.

Throughout the paper we let (X,;:) denote a flow on a metric space
X with a metric d. The orbit, orbit closure, limit, and weak attractor
relations are denoted, respectin.'ly, by 0,0, L, and A w with the
unilateral versions carrying the appropriate -+ or - superscript. A point
.1' of X is called recurrent if and only if, given any 0:>0, there is T

~O such that B(.r,c) ny[O, TJ*9 for ewry pointyin OCr). A point
x in X is said to be positi'1.'ely (negatively) Poisson stable provided
xC'. L' (x) (.:re L - (.1.')), and x is (bilaterally) Poisson stable if it is
both positively and negatively Poisson stable. If one of the properties
above holds at each point of the phase space X, then the flow (X, n)
is said to haw that property. A set Mc X is called minimal if and
only if it is a closed invariant set containing no nonempt y proper subset
with these properties.
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2. OrbitaIly pseudo-nonexpansive flows

DEFINITION 2.1. An orbit O(x), XEX, is called pseudo-nonexpansive
if and only if there exists a continuous function a : R --- R+ with
aCt) -+M, O<M<oo, as t-++oo such that for each y,zEO(x) and
tER+, d(yt, zt) ~a(t)d(y,z). When each orbit is pseudo-nonexpansive,
(X, x) is said to be orbitally pseudo-nonexpansive.

Throughout the section, a.., denote a continuous function satisfying
the assumption of the pseudo-nonexpansive orbit O(x), xEX.

LEMMA 2. 2. The negatively Poisson stable point whose orbit is pseudo­
nonexpansive is positively Poisson stable.

Proof. Let x be a negatively Poisson stable point in X, and let
O(x) be pseudo-nonexpansive. Then there is a sequence {tn} in R- such
that tn-+- 00 and xtn-+x. For such a sequence {tn} , it is enough to
show that x(-tn)-+x. Suppose x(-tn)~ x. Then there is e>O such
that

(1) d(x,x(-tn»>e for all n.

Since O(x) IS pseudo-nonexpansive and xtn -+ x, there exists n such
that

d(x, xC-tn» ~a.:z:(-tn)d(xtm x) <e.
This contradicts to (1). Consequently x is a positively Poisson stable
point.

As we see in Example 2. 5, the orbit closure of a negatively poisson
stable point need not be minimal. However the orbit closure of a
negatively Poisson stable point is minimal if the orbit is pseudo­
nonexpanslve.

THEOREM 2. 3. The orbit closure of a negatively Poisson stable point
whose orbit is pseudo-nonexpansive is minimal.

Proof. Let x be a negatively Poisson stable point in X, and let 0 (x)
be pseudo-nonexpansive. Suppose yEO(x), Then it is enough to show
that o (x) =O(y). Since o (x) is closed and invariant, it is clear that
O(y) cO(x). Now we prove that o (x) cO(y): Since x is negatively
Poisson stable, we have that yEL-(x). Hence there is a sequence {tn}
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in R- such that t n ~ - 00 and .xtn ~ y. Without a loss of generality we
may assume that the sequence {tn} is decreasing. Let zE O(x). Then
B(z, e) nO(x) *ifJ for any e>O, and so there is r in R such that xE
B(z,e)(-r). Choose 0>0 such that B(x,o)cB(z,e)(-r). Since ()
(x) is pseudo-nonexpansive and xtn~ y, there is tm<O such that if tn
<tm then

d(x, x(tn-tm» ~ax(-tm)d(xtm, xtn) <0.

Hence we have that xtnEB(x,o)tm, for each tn<tm. Consequently we
get that

yEB(x, o)tmcB(x, o)tmcB(z, c) (-r)tm=B(z, e) (tm-r).

Thus we obtain that B(z, e) nO(y)*ifJ, i.e. zEO(y). This completes
the proof.

THEOREM 2.4. An orbitally pseudo-nonexpansive flow on a locally
compact space X is recurrent if and only if it is negatively Poisson
stable.

Proof. Let (X,1I:) be an orbitally pseudo-nonexpansive and negatively
Poisson stable flow, and let x be a point of X. We shall proceed by
showing that O(x)=Aw+(x). Let yEAw+(x). Then we have that xE
L+(y) =O(y) =O(x) =L+(x), by Lemma 2.2 and Theorem 2.3. Hence
we get that yEO(x).Conversely, let zEO(x). Similarly we obtain that
L + (x) =O(x) =O(z) =L+ (z), and so xEL+ (z). Consequently zE Aw+ (x).
Hence we proved that each point of O(x) is weakly attracted to
x. In [lJ, it is noted that if each point of 0 (x) is weakly attracted
to x then O(x) is compact when the phase space X is locally compact.
Thus O(x) is compact minimal for each xEX. Since each orbit in a
compact minimal set is recurrent by [2, Theorem 3.3. 8J, (X,1I:) IS

recurrent. The converse is immediate.

Here we give an example to show that our results make sense.

EXAMPLE 2.5. Let (T,1I:) be a toral flow given in Example 3.2.7 of
[2J consisting of one critical point p and dense regular orbits. In this
example, there is exactly one orbit 0 1 such that L - (01) = {p}, and exactly
one orbit O2 such that L + (02) = {P}. For any other orbit 0, L + (0) =
L - (0) = T. Further L + (01) = L - (02) = T. Then it is not hard to show
that this toral flow (T,1I:) does not satisfy the properties of the orbitally
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pseudo-nonexpansive flow in neighborhoods of the critical point p.
Morever we know that the points on the orbit O2 are n.egatively Poisson
stable but not poisitively Poisson stable, and the orbit closure O2 is not
minimal. Also we can see that this toral flow (T, 71:) is not recurrent and
the only recurrent point is the critical point p. Finally we have that
the positive limit set of points of the orbit 0 1 is not minimal and also
the negative limit set of points of the orbit O2 is not minimal.

3. Pseudo-nonexpansive flows

DEFINITION 3.1. A flow (X,7I:) is said to be pseudo-nonexpansive
provided there exists a continuous function a: R~ R+ with a(t)-.
M, O<M< 00, as t -. + 00 such that for each x, yE X and tE R+,
d(xt, yt) ~a(t)d(x, y). Specially, (X, 71:) is called nonexpansive if
aCt) =1.

Clearly, the pseudo-nonexpansivity implies the orbitally pseudo-nonex­
pansivity, but the converse does not hold.

Throughout section, a" denote a continuous function satisfying the
assumption of the pseudo-nonexpansive flow (X, 71:).

As we know in Example 2.5, the nonempty positive limit sets (or
nonempty negative limit sets) of points of X need not be minimal.

THEOREM 3. 2. The nonempty positive limit sets (or nonempty negative
limit sets) of points of a pseudo-nonexpansive flow are minimal.

Proof. Let (X,7I:) be pseudo-nonexpansive. Suppose L+(x) *0/, xE

X, and yEL+(x). Then we ~ish to show that L+(x)=O(y). Since
L+(x) is closed and invariant, it is clear that O(y) cL+(x). Suppose
zEL+ (x) -O(y). Then there is a sequence {t,,} in R+ such that t,,-'
+ 00 and xt" -. z. Since yE L + (x), there exists a sequence {s,,} in R+
such that S" -. + 00 and xs" -. y. Since z $. 0 (y) , there is c>0 such
that

(1) d(z, yt»c for all tER.

Since (X,7I:) is pseudo-nonexpansiye, there are tn and s'" with t">s,,,
such that

d(z, xt,,)<s/2 and d(y, xSn)<c/2a,,(t),
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where t=tn-sn>O. Given t>O, we have that

57

d (z, yt) ~d (z, xtn) +d (xtm yt)
~d(z, xtn) +d(x(sn+t), yt)
<e/2+a,,(t)d(xsn, y)<e.

This contradicts to (1). Hence we have that L+(x)cO(y).
Consequently, L + (x) is minimal. Similarly we can prove that the
nonempty negative limit set L - (x) is minimal.

COROLLARY 3.3. Let (X, n-) be pseudo-nonexpansive and L- (x) *cjJ,
xEX. Then the orbit closure Oex) is minimal.

Proof. Suppose yEL-ex). Then there is a sequence {tn} in R- such
that tn - - 00 and xtn - y. For such a sequence {tn1, we can easily
see that y(-tn ) - x, using the pseudo-nonexpansivity of (X, n-).
Consequently xEL+(y). Since L-ex) is closed and invariant, we have
that xEL+(y) cOey) cL-(x). Hence L-(x)=Oex). By Theorem 3.2,
the orbit closure 0 ex) is minimal.

COROLLARY 3.4. Let eX, n-) be pseudo-nonexpansive. Then a nonempty
compact subset M of X is minimal if and only if M=L+ (x) for each
xEM.

Proof. Let McX be minimal, and let xEM. Then M=O(x).
Since Oex) is compact, L+(x) *9. By minimality of M, M=L+(x).
The converse is trivial by Theorem 3. 2.

TIIEORE:\1 3.5. A pseudo-nonexpansive flow on a locally compact space
X is recurrent if and only if each negative limit set of points of X is
nonempty.

Proof. Since the necessity is clear, we only shO\v that the sufficiency.
Suppose L-(x) *cjJ, for xEX. Then each orbit closure O(x), xEX,
is minimal and negatively Poisson stable by Corollary 3. 3. As in the

proof of Theorem 2.4, we can show that 0 ex) is compact. Namely,
(X,;r) is recurrent.

That the concept of recurrence is deeply concerned with that of
compact minimal set is seen from the following Birkhoff's theorem:
"Every compact minimal set is the closure of a recurrent orbit" [2,
Theorem 3. 3. 8J. Hence the study of compact minimal sets in a flow is
crucial in the theory of recurrence. Now we study some properties
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of compact minimal sets in the nonexpansive flows.

THEOREM 3.6. Let (X,1C) be nonexpansive, and let M and N be two
nonempty disjoint compact minimal subsets of X. Then, for any xEM,
there exists yEN satisfying d(M, N) =d(x, y).

Proof. Choose aEM and bEN such that d(M,N)=d(a,b). By
Corollary 3.4, we have that L+(a) =M and L+(b) =N. Let x be an
arbitrary point in M. Then there exists a sequence {tn} in R+ such that
tn~ + 00 and atn~ x. Since {btn} is a sequence of points in the
compact set N, we may assume that the sequence {btn} converges to a
point of N, say btn~ yEN. Since (X,1C) is nonexpansive, for any
given e>0, we have that

d(x, y) ";;'d(x, atn) +d(atm btn) +d(btn, y)
<e/2+d(a, b) +e/2
";;'d(a, b) +e.

Since e>O is arbitrary, we get that d (x, y) ,,;;,d (a, b). This completes the
proof.

CoROLLARY 3.7. Let (X,1C) be nonexpansive, and let p be a critical
point in X. Then any other compact minimal sets in X lie on the surface
of a sphere centered at p.
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