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SINGULARITIES IN THE COMPLEXES OF
PSEUDODIFFERENTIAL OPERATORS

Jonesik KiM, TAcksUN JuNGg and Q-HeuNG Cuor

1. Introduction

Treves [7] introduced the complex of pseudodifferential operators of
the type
¢)) D : AC”(Q; E) — AP 1C™(Q; E).
Here Q is an open subset of R», E is one of the spaces H*", E°* and
D=d,+d,B(t,D;) (t€Q, z=R"). The operator D acting on functions
is defined as follows
Du(t, z) d,u+d,B(t, DJu

}"_. dt,+ Z} b; (¢, Dx)udt;,
where d,B(t, &)=, b; (¢, £)dt; and
-

by (6 Dult, ) =k e, (5, 082, ) de.

(2 )"
In particular, when y=n and 4;(¢, D)= v—1.s— (j=1, -, n), the

operator %D becomes the Cauchy-Riemann operator 0.

The solvability (at the p—th step in the complex (1)) of the operator
D was determined by Treves [7], using the (¢) condition. The H**-
hypoellipticity of the operator D, in dimension 0, was determined by
Maire [6]. In this paper we concern the H**-hypoellipticity of the
operator D. In 83,4, we obtain the necessary and sufficient condition
for the H=*"-hypoellipticity (or the E°*-hypoanalyticity) -of D in
dimension 0. In 85, we find the necessary and sufficient condition for
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the H*"-hypoellipticity of D in dimension p(p>1).

2. Preliminaries

Let Q be an open subset of R* and R, the dual of an n~dimensional
Euclidean space R*. For any real number s we denote by Hs=Hs(R"®)
the standad Sobolev space on R”, i.e., the space of tempered
distributions # in R® whose Fourier transform # is a measurable
functions in R,, satisfying

lull = @)= ([ L+ 1§19512(8) 124 ¥ 2<+- 0.

Starting with H* we build the following spaces
H"= URH-‘, Ht~=Hs,
E

sSER
For any real s, let E* denote the subspace consisting of the generalized

functions # whose Fourier transform # is a measurable function in R,
satisfying

lull = @)= ([e2eet | ae) 128) v 2< +-oo.

As with the Sobolev spaces, we form the union and intersection of the
spaces Ef, but for s going to zero:

Et= Es, E--=NE™>.
S0 S0

Let #=(¢y, -+~ £,) denote the variable point in an open set QCR».
Let E be any one of the spaces H*=, E%. If p is any integer such
that 0<p<y, we denote by A?C~(Q;E) the sapce of C* p—forms
valued in the space E. Thus to say that u belongs to A2C~(Q;E) is
the same as the saying that

u(ta x) = Z qutJa
="
where J is an ordered multi-index (i, +--,j,) of integers such that 1<
71<-<j,<v, and u; are C* functions from Q to E.

Now we consider a C* one form in 2, depending on the parameter
& of R,;

b(t, &)= 2 b; (¢, £)dt;.

We assume that the one form 5(z, &) is exact in Q. Thus there exists
a primitive B of b such that 5(¢, &) =d,B(t,&). We also assume that
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(a) B(t, &) is real valued and positive homogeneous of degree one
with respect to & and

(b) B(z,&) is a C~ function of ¢ in Q with values in C1(R,\0).

We form a pseudodifferential operator
D=d,+b(z, D,) A
For each p(0<p<v—1), it defines a linear operator
D? : ApC=(Q;E) — AIC~(Q;E),

and D#*1oD?=0 for any p(0<p<y—1). We note that D=¢"B®0d,eB¢.O
It is evident that D, hence also D, generates a complex.

Our purpose is to study the equations

2.1 Du=f,
where f is a C*(p+1)-form (p<y—1) in Q, or in subsets of Q, with
values in E. Here E is one of the spaces H**, E%, By the Fourier
transformation with respect to x we see that (2.1) is equivalent to

2.2) d,(eBi) =eBf (for a.e. £ in R,).

Thus, if a solution u€ 42D’ (Q;FL?,.) (cf.[7]) exists, we must have
that
(2.3) for a.e. £ in R,, the (p+1)—form eB%Of(£,8) is a
coboundary.

Vice versa, if (2.3) holds, such a solution =« exists, which shows, if
it was needed, that (2.3) is independent of the choice of the primitive
B. We shall systematically refer to (2.3) as the compatibility conditions
for the equation (2.1). We denote by 8,2*:C~(Q; E) the space of
elements of A4271C~(Q; E) which satisfies the compatibility condition
2.3).

3. Singularities of solutions of the homogeneous equations
in dimension 0
Throughout this section we shall limit ourselves to the case where
the system of operators D acts upon functions, i.e., O-forms. Thus D
is an operator defied by
3.1 D :C=(Q; E) — A'C*(Q;E).
where E one of the four spaces H**, E%*,

First we shall consider the null E%*-hypoanalyticity, the definition of
which will be given below. We recall the spaces E* in the section 2
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and their relations:

(3. 2) EVY={ Es’ E'-=( E—s,
>0 S0

(3. 3) EfFr={ EH’, Ef= Ek—s,
>0 >0

3.4 < DEIDEDEIDE2D---,

DEFINITION 3.1. D is said to be null E®*-hypoanalytic in Q if, given
any open subset O of Q

(3.5) Du=0,2=C”(0;E*)=>uc=C>(0; E*).

THEOREM 3.1. The following properties are equivalent:

3.6) The operator D is null E’*-hypoanalytic in Q.
@E.7 Given any open subset O of Q and £=R,\0,
B(, &) >i7_z(])”B(s, &) for all t<O.

DEerFINITION 3.2. The operator D is H**-hypoelliptic in the open set
OXP, PcS,-;, if D is globally H*>-hypoelliptic in every open subset
OXP of QXP.

DEFINITION 3.3. The operator D is globally null H*>*-hypoelliptic in
OXPCOXS,—; if

D=0 in OXP>ucC>(0XP).

DEFINITION 3.4. The operator D is null H**-hypoelliptic in the open
set QXP, PcS,;, if D is globally null H=*>-hypoelliptic in every
open subset of QXP.

The necessary and sufficient condition for the null H*>~hypoellipticity
of D in OXP will simplify the inequality (1) in Proposition 3 of Maire
[6], since Da=0 in OXP.

PrOPOSITION 3.1. The operator D is globally null H**-hypoelliptic in
OXPCOXS,—1 if and only if, to every compact subset K XL of OXP
there exist a compact set K'”O and a constant C>>0 such that, for any
0>0, £€€L and veC=(0),

(3.8 0 sug e B o) | <C sug e PB&O y(p) .
Now we can define that D is null H**-hypoelliptic in 2, in dimension

0, if D is globally null H**-hypoelliptic in any open subset OXP of
92X S,-1. Hence we have the following.
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COROLLARY. The necessary and sufficient condition that D is null H>>-
hypoelliptic in Q, in dimension 0, is that D satisfies the inequality (3. 8)
in any open subset OXP of QXS,-1.

ReEMARK. If the inclusion relation

(3.9 EV-H>H"DOE'=HYDH ™D E
holds, then we can show that the necessary and sufficient condition for
the null H*>~hypoellipticity of D in @ in dimension 0, 1is equivalent
to the condition (8.7). Unfortunately the relation (3.9) does not hold

and hence the condition (3.7) can not guarantee the null H=**-
hypoellipticity of D in Q, in dimension 0.

4. Singularities of solutions of the inhomogeneous equations
in dimension 0

In this section we look at the singularities of the solution z&
C*(Q;E) of the equations, in £,

4.1 Du=f,

where f is a given element of A'C*(Q; E). Here E is one of the spaces
H-=, E°-. When we refer below to the operator D, we regard it as
an operator

D : AC=(Q; E) — AC~(Q; E).
Here E is one of the spaces H*=, E*. The sets SS() and SA(x)
are defined at the end of the section 1.1 in Choi [1].

DEerFINITION 4.1. We say that the operator D is E°*~hypoanalytic in
Q, in dimension 0, if given any open subset O of @ and any function
u€C(0; E*),

(4.2) Duc A1C=(0; E*) > ucsC~(0; E*).

THEOREM 4.1. The following conditions are the nccessary and sufficient
conditions for D to be E°*—hypoanalytic in Q, in dimension 0.

(4.3) Given any open subset O of Q and any f&Im D
Bp(0; E), there exists at least on U€C>(0; E®F)
with DU=}.

(4.4) Given any open subset O of Q and any £€8,-4,
B, E)>is7é£"B(s, &) holds for all t<0.
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Proof. Suppose that the conditions (4.3), (4.4) hold. Assume that
given any open subset O of Q, #=C*(0;E*) and Dau=fecAC*(0;
E*). Then DucsImD NA&BpC~(0;E*). By the assumption (4.3), there
exists #,€C~(0; E**) with Duyy=Du. On the other hand #;—z is a
solution of Du=0 and hence by the assumption (4. 4)u; —u=C~(0; E*).
Therefore u=u;+ (u—u;) belongs to C*(0; E**).

Conversely if (4.3) or (4.4) does not hold, then clearly D is not
E°*~hypoanalytic.

DEFINITION 4.2. We say that the operator D is H *“-hypoelliptic in
Q, in dimension 0, if given any open subset O of Q and any function
usC=(0; H™),
4.5) Ducs AC~(0; H**) D usC=(0; H*™).
THEOREM 4.2. The following conditions are the ncessary and sufficient
conditions for D to be H**-hypoelliptic in Q, in dimension 0.
(4.6) Given any open subset O of Q, for any fEIm D &Bp!C™
(O; H™), there exists at least one USC>(0; H*™) with
DU=f.

(4.7) Given any open subset OXP of 2QXS,-1, to every compact
subset K XL of OXP there exist a compact K'CO and
a constant C>0 such that, for any p>0, &E€L and veE
Cm (0)’

o sup e ?BEE |y (1) | <C sup e #B4O v (2)|.
ek K’

The proof of this theorem is similar to that of Theorem 4. 1.

REMARK. Under the hypothesis that D has property ¢(0) stated in
Kim [5] the necessary and sufficient condition for the E°*-hypoanaly-
ticity (or H**-hypoellipticity) of D in @, in dimension 0, is equivalent
to the condition (4.4) (or (4.7)).

EXAMPLE 4.1. Let B(t, &) = (#3—£:3)&, t€R?2, E€R,. Then, clearly,
B(z, &) satisfies the condition (4. 4) and (4. 7) for all ¢€8,-;, in an
open set Q= (—‘ Tl, Tl) X ("" Tz, Tz) CR2 Given Du=f with fE £D1C°°
(Q; E), we can construct a solution 2€C=(Q; E) of this equation using
the integral representation in Choi [1]. Here E is one of the spaces
H*=, E%. Therefore D satisfies the conditions .(4.3), (4.6). So D is
E%*-hypoanalytic and H **-hypoelliptic in @, in dimension 0.

ExampLE 4.2. The simple operator D=9/0t—it2 8/0zx in (—T, T),
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z€R!, is E%-hypoanalytic and H*>-hypoelliptic since B(¢, &) =#¢/3
satisfies the conditions (4.3), (4.4), (4.6), (4.7). That this operator
D is hypoanalytic and hypoelliptic in the usual sense in a well known
fact.

5. Singularities in dimension p(p>1)

We consider the complex of sheaves

G.1) e A0C=(Q; B) s A841C2(Q; E) e,
$»=0,1,--,v—1. Here E is one of the spaces H*~, E°*., When p>0,
we note that given any u€ A#C>(Q; H~=) and any fe A?*1C~(Q; H™),
the equation

Du=f, f€&p**1C~(Q; H*>),
can not guarantee u€ A2C~(Q; H**) even if B(¢,&) is sufficiently nice.
In fact, if u€&p?C*(Q; H-*) and p>0, then Du=0. So there can be
an element v A2C=(Q; H~), p>0, such that Dv=0 but v& A2C~(Q;
H**), even if B(t,& 1is a nice function. Therefore the natural
generalization of the H **-hypoellipticity in Q, in dimension p(p>0),
can be stated as follows; namely, if, given any open subset O of Q,
Du=f in O and feAs71C=(0; H*>),

then there exists vEA#2~1C* (0; H~) such that

u—DvE A2C~(0; H™™).

The above property can be stated in microlocal version. We note

that the space of micro p—forms in O is by definition

APC=(0Q; H~) [ A#C~(0; H*™)
Then our complex {A#C~(0; H->); D} induces in a natural way, a
complex of micro forms, namely,

(5.2) D? : APC=(0; H~>)/A#%1C=(0; H*™)

— APYIC*(0; H-=)/A?F1C~(0; H*™).
Via the system D? we can define H*~-hypoellipticity in p—th step(p>
0) as follows.

DEeFINITION 5.1. D is H**-hypoelliptic in dimension p, p=1,2, ---,
v—1, in Q if, given any open subset O of Q
Im D#-'=Ker D?
in the complex (5.2).
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These ideas for the definition of the H**-hypoellipticity in dimension
p(p>0) are quoted from the paper of Kim [3].

- We note that the above definition is a true generalization of the H*>-
hypoellipticity defined when »=0 in Definition 5.2 if we set A-1C*
(0; E) =0 for E=H* or H™.

We consider the following three complexes

(5.3) 0—> Ker D° — C~(0; H~) 25> 41¢~(0; H=) 2 ...
(5.4) 0—> Ker D01H+.».i> C°°(0 H*)
Dl pee(o; me=) 2
(5.5) 0—>Ker D%/Ker D¥lp- 2, c=(0; H-)[C(03 H'™)
2, ne=0; H-=)/mc0; H=) 2 ...
where 0,i, D?|gz+~ denote any open subset of Q, an inclusion, a

‘restriction of D? to A?C*(0; H*>), respectively. Let #=a cochain
complex (5.3),

?

’

&B=a cochain complex (5.4),
@=a cochain complex (5.5).

In the following commutative diagram the row sequences are exact

(5.6)

0 0 0
! . l !

0—> Ker DUy 5 KerD* I  Ker D" —> 0
0—-+C°°(0;lH+°°)—i>C°° 0 ?’”)L’C‘” (VH Il-I““) /C=(0; H)—>0

0->4C (05 H*) 4 4C=(0; 1) L, 41C (03 Ho<) [ 403 H') =0,

That is, 0 > &— 4 —> €— 0 is an exact sequence,
Therefore we obtain a long exact cohomology sequence

6.7

0—> HO@ =5 HI(@) — H'©) s HI®) — 1)
B, 2 Ha(R) -2 Hp(A) —2> H2(0) R PR —>

where 0, is a connecting homomorphism. Here i,*, r, are induced
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homomorphisms. The cohomology space in the sequence (5.7) are
defined in the standard manner; that i§,
HO (&) =Ker D]+, HO(#)=Ker D°, HO(0)=Ker D° if p>>0,
Ht(R)=Ker D#|gy+e/Im D=1 p+e,
H?(d)=Ker D?/Im D¢},
H? (@) =Ker D#/Im Dr-1,

REMARK 5.1. Definition 5.1 that D is H**~hypoelliptic in dimension
p, p=1,-,v—1, in Q is equivalent to H?(0)=0. In paticular the
H*>-hypoellipticity of D? is equivalent to H%(@)=0.

First we consider the H*>-hypoellipticity of D° By the following
exact sequence

0—> HO(8) — H(A) —> HO(@) —> H'(&) —> H' (1) —>~
the necessary and sufficient condition for H°(@)=0 is that H(#4)=
HO (8) and i;* : H1(8) — H'(#) a monomorphism. We recall that
HO (4) =Ker D% H(&)=Ker D% H%(&)=Ker D°|,+~. We note that

H°(d)=H°(8) for any given open subset O of Q
<> Ker D°=Ker D°| 4+~ for any given open subset O of @
&> DPu=0, u=C>(0; H™=) implies that

u=C>(0; H**) for any given open subset of Q
&= DO is null H**-hypoelliptic in Q.
Therefore the necessary and sufficient condition for H® (&) =H%(&) is
equivalent to the necessary and sufficient condition for the null H**-
hypoellipticity of D°. Thus, by Proposition 3.1, the necesay and
sufficient condition for H?(®) =H%(&) is that for any £€S,-; and all
t€0, B(t, &) satisfies the inequality (3.7).

On the other hand, that the map #* : HY(R) — HY(#4) is a
monomorphism is equivalent to that for any f&€Im D*N&,1C~(0; H*™)

there exists at least one U=C>(0; H**) with DU=f. Therefore we
have

THEOREM 5.1. D° is H=*-hypoelliptic in 2 if and only if the
following conditions (a) and (b) hold.
(a) Given any open subset O of Q, for any f&ImD°(\&p'C*(0;
H*>*) there exists at least one USC*(0;H**) with D*U=Ff.
(b) Given any open subset OXP of 9X8,-1, to every compact subset
KXL of OXP there exist a compact K'TQ and a constant C>0
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such that, for any p>>.0, é€L and v=C=(0)
psug e BaD|y() | £C sug e PBED |y () |.
F1=3 teK’

ReEMARK 5.2. Theorem 5.1 is the same as Theorem 4. 2.

Next we consider the H*>-hypoellipticity of D?(p>0) in Q. We
recall that the necessary and sufficient condition for the H**-hypoellip-
ticity of D? in Q is that H?#(@) =0 for any given open subset O of Q.

We consider the following exact sequence

(.8) - —> HI1(0) —2 HP(&) 25 HF (1) —> H? (0)

ipi1

— HP () 25 Hr () —>--

The necessary and sufficient condition that H?(C) =0 is that i,+ : H?(&)
— H?(d) is an epimorphism and i,.* 1 H#YI(R) —» H?™l (d) is a
monomorphism. Therefore we obtain the following theorem.

THEOREM 5.2. D is H*~hypoelliptic, in dimension p(p>0), in Qif
and only if given any open subset O of Q, in the sequence (5.8).
ip* 1 H?(B) — H?(d) is an epimorphism and
ipr1% ¢ HPPU(B) — HPY(A) is a monomorphism.

REMARK 5.3. In the above we set
H?(B) =Ker D?|g+=/Im D# !|g4+o and
H?(4) =Ker D#/Im D#-1,

That i, : H?(8) — H?(4) is an epimorphism is equivalent to the fact
that for any f€Ker D? there exists at least one f’EKer D?|y+~ with
f—f'eIm D1,

On the other hand, that i, % : H?*1(8) - H#*1(4) is a monomorp-
hism is equivalent to the fact that given any open subset O of Q, for
any felm D?Q&p2"1C~(0;H™) there exists at least one UE A2C~(0;
H™) with D?u=f. Therefore Theorem 5.2 can be restated as follows.

THEOREM 5.2". D is H**~hypoelliptic, in dimension p(p>>0), in Q if
and only if the following conditions (@) and (b) hold.
(@) Given any open subset O of Q, for any f&Ker D? there exists at
least one f'EKer D?|py+= with f—f’€Im Dr!
(B) Given any open subset O of Q, for any
f€Im DN Bp?TIC=(0; H*™) there exists at least one
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Ue2C=(0; H*™) with D*U=f.

ExaMPLE. Let B(z, &) = (¢,°—¢t*)¢ (6€R,) and D=d,+d, B(t,D,).
Then D is H*>-hypoelliptic, in dimension 1, in Q= (—T;, T)) X
(=T Ty CRA

Proof. Given any open subset O of @, let f be an element of Ker
D {or the given open set 0. Take any element f’€Ker D!|g+= for
the open set 0. To show that D satisfies the condition (a) in Theorem
5.2/, in dimension 1, it suffices to show that for any ¢, €0 there exist
an open neighborhood O’ of #; in 0 and UeC*(0’; H-*) with DU
=f—f" in (/. But we can construct such U using the integral
representation in Choi [1]. Therefore D satisfies the condition (a) in
Theorem 5.2°, in dimension 1. Also we can see that D satisfies the
condition (b) in Theorem 5.2/, in dimension 1, by using the integral
representation in Choi [1]. Hence D is H**-hypoelliptic, in dimension
1, 1n Q.

REMARK 5.4. If we follow all the discussions in this section with
replating H** by E%, we can obtain the necessary and sufficient
condition for the E°*-hypoanalyticity of D? (p=1,2,---,v—1) In Q
with replacing H** by E% in Theorem 5.2 and Theorem 5. 2’.
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