SPECTRA OF WEIGHT SHIFT OPERATORS ON THE SPACE $l_2(q)$

JONG-KWANG YOO and JAE CHUL RHO

1. Introduction

In this paper, we proved mainly that the spectra of weight shift operators on the space $l_2(q)$ depend on the weight and q, where $l_2(q)$ is the set of all sequences $x = (x_1, x_2, x_3, \dots)$ such that $x_n \in C$ for all n and $\sum_{n=1}^{\infty} |x_n|^2 q^{-n} < \infty$. Throughout this paper, we denote L(E) for the set of all bounded linear operators, where E is a normed space over the complex field C, we write $\sigma(A)$, $\sigma_p(A)$, $\sigma_{com}(A)$, $\sigma_{ap}(A)$, $\sigma_r(A)$ and $\sigma_c(A)$ for the spectrum, point spectrum, compression spectrum, approximate point spectrum, residual spectrum and continuous spectrum of an operator $A \in L(E)$ respectively.

It is well-known that $\sigma_{\mathsf{r}}(A) = \sigma_{\mathsf{com}}(A) \setminus \sigma_{\mathsf{p}}(A)$, $\sigma_{\mathsf{c}}(A) = \sigma(A) \setminus \{\sigma_{\mathsf{p}}(A) \cup \sigma_{\mathsf{com}}(A)\}$ and $\sigma(A) = \sigma_{\mathsf{p}}(A) \cup \sigma_{\mathsf{r}}(A) \cup \sigma_{\mathsf{c}}(A)$, where $\sigma_{\mathsf{p}}(A)$, $\sigma_{\mathsf{r}}(A)$ and $\sigma_{\mathsf{c}}(A)$ are mutually disjoint.

2. Main results

We will investigate the spactra of the shift operators on the Banach space $l_1(q)$ and the spectra of the weight shift operators on the Hilbert space $l_2(q)$.

We begin with the first part. Let q>0 be given, and let $l_1(q)$ be the set of all sequences $x=(x_1, x_2, x_3, \dots)$ such that $\sum_{n=1}^{\infty} |x_n| q^{-n} < \infty$ and $x_n \in C$ for all n. we define a norm $||x||_q = \sum_{n=1}^{\infty} |x_n| q^{-n}$, then clearly $l_1(q)$ is a Banach space.

THEOREM 2.1. Let A be the left shift operator on $l_1(q)$. Then we have the following;

Received August 20, 1986.

(1)
$$\sigma(A) = \sigma_{ap}(A) = \{\lambda \in \mathbb{C} : |\lambda| \le q\}$$
 and $\sigma_{p}(A) = \{\lambda \in \mathbb{C} : |\lambda| < q\}$,

(2)
$$\sigma_{\text{com}}(A) = \sigma_{\text{r}}(A) = \phi$$
 and $\sigma_{\text{c}}(A) = \{\lambda \in \mathbb{C} : |\lambda| = q\}$.

Proof. Clearly A is a bounded linear operator with ||A||=q. Suppose that $Ax=\lambda x$ for $x=(x_n)\in l_1(q)$. Then $(x_2,x_3,x_4,\cdots)=(\lambda x_1,\lambda x_2,\lambda x_3,\cdots)$, that is; $x_{n+1}=\lambda x_n$ for all n. If $x_1=0$, then x=0 in $l_1(q)$. Let $\lambda\in\sigma_p(A)$. Then there exists a non-zero element $x=(x_n)$ in $l_1(q)$ such that $Ax=\lambda x$. Since $x_1\neq 0$, $||\lambda x||_q=||Ax||_q< q||x||_q$ and so $\sigma_p(A)\subset \{\lambda\in C: |\lambda|< q\}$. Let $|\lambda|< q$, and let $x=(q^{-1}, \lambda q^{-1}, \lambda^2 q^{-1}, \cdots)$. Then $||x||_q=q^2(\sum_{n=1}^\infty \left|\frac{\lambda}{q}\right|^n)<\infty$, $Ax=\lambda x$ and so $\{\lambda\in C: |\lambda|< q\}\subset\sigma_p(A)$. Hence $\sigma_p(A)=\{\lambda\in C: |\lambda|< q\}$.

It is well-known that $\sigma_{p}(A) \subset \sigma_{ap}(A) \subset \sigma(A) \subset \{\lambda \in \mathbf{C} : |\lambda| \leq ||A|| = q\}$. Since $\sigma_{ap}(A)$ and $\sigma(A)$ are closed subsets of \mathbf{C} , we have $\sigma_{ap}(A) = \sigma(A) = \{\lambda \in \mathbf{C} : |\lambda| \leq q\}$.

For (2), it is known that $\sigma_{\text{com}}(A) = \sigma_p(A')$, where A' is the conjugate operator of A. Let $\lambda \in \sigma_p(A')$. Then there exists a non-zoro element f in the dual space $[l_1(q)]'$ of $l_1(q)$ such that $A'f = \lambda f$. Since $Ae_1 = 0$, $Ae_{n+1} = qe_n$ for all n and $f(Ae_n) = \lambda f(e_n)$ where $\{e_n : e_n = (0, 0, 0, \cdots, q^n, 0, 0, 0, \cdots), n = 1, 2, 3, \cdots \}$. Thus f = 0, a contradiction. It follows that $\sigma_{\text{com}}(A) = \sigma_p(A') = \phi$. Moreover, $\sigma_r(A) = \sigma_{\text{com}}(A) \setminus \sigma_p(A) = \phi$, $\sigma_c(A) = \sigma_{\text{com}}(A) \setminus \sigma_p(A) = \phi$.

THEOREM 2.2. Let V be the right shift operator on $l_1(q)$. Then we have the following;

(1)
$$\sigma_p(V) = \phi$$
, $\sigma_{com}(V) = \left\{ \lambda \in C : |\lambda| < \frac{1}{q} \right\}$ and
$$\sigma(V) = \left\{ \lambda \in C : |\lambda| \le \frac{1}{q} \right\},$$

(2)
$$\sigma_{ap}(V) = \sigma_c(V) = \left\{ \lambda \in \mathbb{C} : |\lambda| = \frac{1}{q} \right\} \text{ and } \sigma_r(V) = \sigma_{com}(V).$$

From (1) and (2), we see that $\sigma_{ap}(V) \cap \sigma_{com}(V) = \phi$.

Proof. Clearly V is a bounded linear operator with $||V|| = \frac{1}{q}$. If $\lambda \in \sigma_p(V)$, then there exists a non-zoro element $x = (x_n)$ in $l_1(q)$ such that $Vx = \lambda x$. Thus $(0, x_1, x_2, x_3, \dots) = (\lambda x_1, \lambda x_2, \dots)$, that is; $\lambda x_1 = 0$ and $\lambda x_{n+1} = x_n$ for all n. This implies x = 0 in $l_1(q)$, a contradiction. Hence $\sigma_p(V) = \phi$. It is known that $\sigma_{\text{com}}(V) = \sigma_p(V')$ where V' is the

conjugate operator of V. Let $|\lambda| < \frac{1}{q}$. We define $f: l_1(q) \to \mathbb{C}$ by $f(x) = \sum_{n=1}^{\infty} x_n \lambda^{n-1}$ for $x = (x_n)$, then $|f(x)| \leq \sum_{n=1}^{\infty} |x_n| |\lambda|^{n-1} \leq \sum_{n=1}^{\infty} |x_n| |q^{-n+1} = q||x||_q < \infty$. Thus f is a bounded linear functional on $l_1(q)$ and $V'f = \lambda f$. Hence $\left\{\lambda \in \mathbb{C}: |\lambda| < \frac{1}{q}\right\} \subset \sigma_p(V')$. For a $\lambda \in \sigma_p(V')$ there exists a nonzero bounded linear functional f on $l_1(q)$ such that $V'f = \lambda f$, and so $|\lambda| < \frac{1}{q}$. Therefore $\sigma_{\text{com}}(V) = \{\lambda \in \mathbb{C}: |\lambda| < \frac{1}{q}\}$. Since $\sigma_{\text{com}}(V) \subset \sigma(V) \subset \left\{\lambda \in \mathbb{C}: |\lambda| \leq \|V\| = \frac{1}{q}\right\}$, $\sigma(V) = \left\{\lambda \in \mathbb{C}: |\lambda| \leq \frac{1}{q}\right\}$.

 $(2) \text{ It is known that } \left\{ \lambda \in \mathbf{C} \colon |\lambda| = \frac{1}{q} \right\} = \partial \sigma(V) \subset \sigma_{\mathtt{ap}}(V). \text{ Let } |\lambda| \neq \frac{1}{q}. \text{ Then } \|(V - \lambda I)x\|_q \geq \|\|Vx\|_q - \|\lambda x\|_q \| = \|\frac{1}{q} - \|\lambda\| \|\|x\|\|_q \text{ for all } x \in l_1(q). \text{ Thus } V - \lambda I \text{ is bounded below, and so } \lambda \notin \sigma_{\mathtt{ap}}(V). \text{ Hence } \sigma_{\mathtt{ap}}(V) = \left\{ \lambda \in \mathbf{C} \colon |\lambda| = \frac{1}{q} \right\}. \text{ Moreover, } \sigma_{\mathtt{r}}(V) = \sigma_{\mathtt{com}}(V) \setminus \sigma_{\mathtt{p}}(V) = \sigma_{\mathtt{com}}(V).$ $\sigma_{\mathtt{c}}(V) = \sigma(V) \setminus \{\sigma_{\mathtt{com}}(V) \cup \sigma_{\mathtt{p}}(V)\} = \left\{ \lambda \in \mathbf{C} \colon |\lambda| = \frac{1}{q} \right\}.$

Now, we discuss the spectra of the weight shift operators on the Hilbert space $l_2(q)$.

PROPOSITION 2.3. Let q>0 be given, and let $l_2(q)$ be the set of all sequences $x=(x_1, x_2, x_3, \cdots)$ such that $x_n \in \mathbb{C}$ for all n and $\sum_{n=1}^{\infty} |x_n|^2 q^{-n} < \infty$. Define an inner product of vectors $x=(x_n)$ and $y=(y_n)$ by $(x|y) = \sum_{n=1}^{\infty} x_n \bar{y}_n q^{-n}$. Then $l_2(q)$ becomes a Hilbert space.

Proof. Obviously $||x||_q = 0$ if and only if x = 0 in $l_2(q)$, $||\alpha x||_q = |\alpha|$ $||x||_q$ for all $\alpha \in \mathbb{C}$ and $x \in l_2(q)$. For the triangular inequality, let $x = (x_n)$ and $y = (y_n)$ be elements of $l_2(q)$. By the Cauchy-Schwarz inequality, $\sum_{n=1}^{\infty} |x_n y_n| q^{-n} \le \left(\sum_{n=1}^{\infty} |x_n|^2 q^{-n}\right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} |y_n|^2 q^{-n}\right)^{\frac{1}{2}}$ we have $||x+y||_q \le \left(\sum_{n=1}^{\infty} |x_n|^2 q^{-n} + 2\sum_{n=1}^{\infty} |x_n y_n| q^{-n} + \sum_{n=1}^{\infty} |y_n|^2 q^{-n}\right)^{\frac{1}{2}} \le ||x||_q + ||y||_q$.

Let (x_n) be any Canchy sequence in the space $l_2(q)$, where $x_n = (\alpha_1^{(n)}, \alpha_2^{(n)}, \cdots)$. Then for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $\left(\sum_{j=1}^{\infty} |\alpha_j^{(n)} - \alpha_j^{(m)}|^2 q^{-j}\right)^{\frac{1}{2}} < \varepsilon$ for n, m > N. It follows that

(*) $|(\alpha_j^{(n)} - \alpha_j^{(m)})q^{-j}| < \varepsilon$ for every $j=1,2,\cdots$, and for n,m>N. For a fixed j, $(\alpha_j^{(m)})_m$ is a Cauchy sequence in C. Let $\beta_j = \lim_{\substack{m \ m}} \alpha_j^{(m)}$. Using this limits, we define $x = (\beta_1, \beta_2, \cdots)$ and show that $x \in l_2(q)$ and $||x_n - x||_q \to 0$ an $n \to \infty$.

From (*), we have $\left(\sum_{j=1}^{k} |\alpha_{j}^{(n)} - \alpha_{j}^{(m)}|^{2}q^{-j}\right)^{\frac{1}{2}} < \varepsilon$ for all n, m > N ($k = 1, 2, 3, \cdots$). Letting $m \to \infty$, we obtain $\left(\sum_{j=1}^{k} |\alpha_{j}^{(n)} - \beta_{j}|^{2}q^{-j}\right)^{\frac{1}{2}} \le \varepsilon$ for n > N, for $k = 1, 2, \cdots$.

Let $k\to\infty$. Then $\left(\sum_{j=1}^{\infty}|\alpha_j^{(n)}-\beta_j|^2q^{-j}\right)^{\frac{1}{2}}\leq \varepsilon$ for m>N. This implies $x_n\to x$ and $x_n-x=(\alpha_j^{(n)}-\beta_j)\in l_2(q)$. Since $x_n\in l_2(q)$, we have $x=(x-x_n)+x_n\in l_2(q)$. Hence $l_2(q)$ forms a Banach space. It is enough to show that the norm satisfies the parallelogram law.

For $x=(\alpha_n)$ and $y=(\beta_n)$ in $l_2(q)$, $||x+y||_q^2+||x-y||_q^2=\sum\limits_{j=1}^{\infty}|\alpha_j+\beta_j|^2$ $q^{-j}+\sum\limits_{j=1}^{\infty}|\alpha_j-\beta_j|^2q^{-j}=2\left(\sum\limits_{j=1}^{\infty}|\alpha_j|^2q^{-j}+\sum\limits_{j=1}^{\infty}|\beta_j|^2q^{-j}\right)=2||x||_q^2+2||y||_q^2$. Therefore, $l_2(q)$ becomes a Hilbert space.

LEMMA 2.4. Let A be the left shift operator on $l_2(q)$. Then A is a bounded linear operator with $||A|| = \sqrt{q}$ and $A^* = qV$, that is, $V^* = \frac{1}{q}A$, where V is a right shift operator on $l_2(q)$.

Proof. Clearly A is a linear and $||Ax||_q^2 = \sum_{j=1}^{\infty} |x_{j+1}|^2 q^{-j} \le q ||x||_q^2$ for all $x = (x_n)$ in $l_2(q)$. If $x_0 = (0, q^2, 0, 0, \cdots)$, then $||Ax_0||_q^2 = q ||x_0||_q^2$. Hence A is a bounded linear operator with $||A|| = \sqrt{q}$.

Define $Q: l_2(q) \times l_2(q) \rightarrow C$ by $Q(x, y) = (\overline{x \mid Ay})$. Then Q is a sesquilinear functional and

$$\|Q\| = \sup_{\substack{||x||_q \le 1 \\ ||x||_q \le 1}} \frac{|Q(x,y)|}{\|x\|_q \|y\|_q} = \sup_{\substack{||x||_q \le 1 \\ ||x||_q \le 1}} \frac{|(x|Ay)|}{\|x\|_q \|y\|_q} \le \sup_{\substack{||y||_q \le 1 \\ ||y||_q}} \frac{\|Ay\|_q}{\|y\|_q}.$$

On the other hand,

$$||Q|| = \sup_{\substack{||z||_q \le 1 \\ ||y||_q \le 1}} \frac{|(x|Ay)|}{||x||_q ||y||_q} \ge \sup_{||y||_q \le 1} \frac{|(Ay|Ay)|}{||Ay||_q ||y||_q} = \sup_{||y||_q \le 1} \frac{||Ay||_q}{||y||_q}.$$

Hence we have $||Q|| = ||A|| = \sqrt{q}$.

For each $x \in l_2(q)$, defining $F_x : l_2(q) \to C$ by $F_x(y) = Q(x, y)$. Then F_x is a bounded linear functional. We put $G = \{y \in l_2(q) : F_x(y) = 0\}$,

then G is a closed linear subspace of $l_2(q)$. If $G=l_2(q)$, then clearly $F_x=0$; we choose $h=(0,0,0,\cdots)$, then $h\in l_2(q)$ and $||F_x||=||h||_q=0$. If $G\subseteq l_2(q)$, then there exists a non-zero element $h_0\in [l_2(q)\ominus G]$. Since $F_x(F_x(y)h_0-yF_x(h_0))=0$ for all $y\in l_2(q)$, $F_x(y)h_0-yF_x(h_0)\in G$ for all $y\in l_2(q)$. Moreover, $F_x(y)(h_0|h_0)-F_x(h_0)(y|h_0)=(F_x(y)h_0-yF_x(h_0)|h_0)=0$ for all $y\in l_2(q)$.

We put
$$h = \frac{\overline{F_x(h_0)}}{\|h_0\|_q^2} h_0$$
 then $F_x(y) = (y|h)$ for all $y \in l_2(q)$,
$$\|h\|_q = \frac{|F_x(h_0)|}{\|h_0\|_q^2} \|h_0\|_q \le \|F_x\| \text{ and } \|F_x\| = \sup_{\||y|\|_q \le 1} |F_x(y)| = \sup_{\||y|\|_q \le 1} |(y|h)| \le \|h\|_q$$
. Thus $\|F_x\| = \|h\|_q$.

Therefore for each $x \in l_2(q)$, there exists $h_x \in l_2(q)$ such that $F_x(y) = (y|h_x)$ and $||F_x|| = ||h_x||_q$. We define $A^*l_2(q) \to l_2(q)$ by $A^*x = h_x$. Then A^* is a bounded linear operator with $||A^*|| = ||Q|| = \sqrt{q}$. Also $(Ay|x) = Q(x, y) = F_x(y) = (y|h_x) = (y|A^*x)$ for all $x, y \in l_2(q)$. Let $e_1 = (q\frac{1}{2}, 0, 0, 0, \cdots)$ and choose $h_0 = (0, 1, 0, 0, 0, \cdots)$, then $h_0 \notin \ker(F_{e_1})$ and $||h_0||_q^2 = \frac{1}{q^2}$.

Thus
$$h_{e_1} = \frac{(e_1 | Ah_0)}{||h||_q^2} h_0 = q(0, q^{\frac{1}{2}}, 0, 0, \dots) = q Ve_1.$$

We have $A^*e_1=qVe_1$. Let $e_2=(0, q, 0, 0, 0, \cdots)$. Choose $h_0=(0, 0, 1, 0, 0, \cdots)$, then $h_0 \notin \ker(F_{e_1})$ and $||h_0|| = \frac{1}{a^3}$.

Thus $h_{e_1}=qVe_2$, and so $A^*e_2=qVe_2$. Continuing this process, we have $A^*e_n=qVe_n$ for all n, where $\{e_n:e_n=(0,0,0,\cdots,q^{n/2},0,0,\cdots),n=1,2,3,\cdots\}$ is a complete orthonormal system of the $l_2(q)$. Hence $A^*=qV$ and $A=(A^*)^*=(qV)^*=qV^*$. Therefore we have $V^*=\frac{1}{q}A$. This completes the proof.

Now, we determine the spectra of the weight shift operators on the space $l_2(q)$ using the above Lemma 2.4. The results are as following.

THEOREM 2.5. Suppose that $0 < |\alpha_1| \le |\alpha_2| \le |\alpha_3| \le \cdots$ such that $r = \sup |\alpha_n| < \infty$. Let $A : l_2(q) \rightarrow l_2(q)$ be the operator defined by $A(x_1, x_2, x_3, \dots) = (\alpha_2 x_2, \alpha_3 x_3, \alpha_4 x_4, \dots)$.

Then we have the following:

(1)
$$\sigma_p(A) = \{\lambda \in \mathbb{C} : |\lambda| < r\sqrt{q}\}$$
 and $\sigma(A) = \sigma_{ap}(A) = \{\lambda \in \mathbb{C} : |\lambda| \le r\sqrt{q}\}$

$$r\sqrt{q}$$
,
(2) $\sigma_{com}(A) = \sigma_r(A) = \phi$ and $\sigma_c(A) = \{\lambda \in \mathbb{C}: |\lambda| = r\sqrt{q}\}$.

Proof. (1) Suppose that $Ax=\lambda x$ for $x=(x_n)$ in $l_2(q)$. Then $(\alpha_2 x_2, \alpha_3 x_3, \alpha_4 x_4, \dots) = (\lambda x_1, \lambda x_2, \lambda x_3, \dots)$, that is, $\alpha_{n+1} x_{n+1} = \lambda x_n$ for all n. If $x_1=0$, then x=0 in $l_2(q)$. Let $\lambda \in \sigma_p(A)$. Then there exists a non-zero element $x=(x_n)$ such that $Ax=\lambda x$. Since $x_1 \neq 0$, $\|\lambda x\|_q = \|Ax\|_q = \left(\sum_{j=2}^{\infty} |\alpha_j x_j|^2 q^{-j+1}\right)^{\frac{1}{2}} < r\sqrt{q} \|x\|_q$.

Hence $\sigma_{\mathbf{p}}(A) \subset \{\lambda \in \mathbf{C} : |\lambda| < r\sqrt{q}\}$. Let $|\lambda| < r\sqrt{q}$. Choose $x_0 = \left(\sqrt{q}, \frac{\lambda\sqrt{q}}{\alpha_2}, \frac{\lambda^2\sqrt{q}}{\alpha_2\alpha_2}, \cdots\right) \in l_2(q)$, then $Ax_0 = \lambda x_0$, that is, $\lambda \in \sigma_{\mathbf{p}}(A)$, and so $\{\lambda \in \mathbf{C} : |\lambda| < \sqrt{q}\} \subset \sigma_{\mathbf{p}}(A)$. We have $\sigma_{\mathbf{p}}(A) = \{\lambda \in \mathbf{C} : |\lambda| < r\sqrt{q}\}$. Clearly $\sigma_{\mathbf{p}}(A) \subset \sigma_{\mathbf{ap}}(A) \subset \sigma(A) \subset \{\lambda \in \mathbf{C} : |\lambda| \le r\sqrt{q}\}$. Since $\sigma_{\mathbf{ap}}(A)$ and $\sigma(A)$ are closed subsets of C. Hence $\sigma(A) = \sigma_{\mathbf{ap}}(A) = \{\lambda \in \mathbf{C} : |\lambda| \le r\sqrt{q}\}$.

(2) It is known that $\sigma_{\text{com}}(A) = (\sigma_{\text{p}}(A^*))^* = q(\sigma_{\text{p}}(V))^*$, where $V: l_2(q) \rightarrow l_2(q)$ is the operator dfined by $V(x_1, x_2, x_3, \dots) = (0, \alpha_1 x_1, \alpha_2 x_2, \alpha_3 x_3, \dots)$. It is enough to show that $\sigma_{\text{p}}(V) = \phi$. Suppose that $Vx = \lambda x$ for $x = (x_n)$ in $l_2(q)$. Then $(0, \alpha_1 x_1, \alpha_2 x_2, \dots) = (\lambda x_1, \lambda x_2, \lambda x_3, \dots)$, that is, $\lambda x_1 = 0$ and $\alpha_n x_n = \lambda x_{n+1}$ for all n. Hence x = 0 in $l_2(q)$. It follows that $\sigma_{\text{p}}(V) = \phi$. Also $\sigma_{\text{r}}(A) = \sigma_{\text{com}}(A) \setminus \sigma_{\text{p}}(A) = \phi$ and $\sigma_{\text{c}}(A) = \sigma_{\text{com}}(A) \setminus \sigma_{\text{p}}(A) = \phi$.

COROLLARY 2.6. Let A be the left shift operator on $l_2(q)$. Then

- (1) $\sigma_{p}(A) = \{\lambda \in \mathbb{C} : |\lambda| < \sqrt{q}\} \text{ and } \sigma(A) = \sigma_{ap}(A) = \{\lambda \in \mathbb{C} : |\lambda| \leq \sqrt{q}\},$
- (2) $\sigma_{com}(A) = \sigma_r(A) = \phi$ and $\sigma_c(A) = \{\lambda \in \mathbb{C} : |\lambda| = \sqrt{q} \}$.

COROLLARY 2.7. Let A be the left shift operator on $l^2 = \left\{ x = (x_n) : \sum_{n=1}^{\infty} |x_n|^2 < \infty \right\}$. Then

- (1) $\sigma_{\mathbf{p}}(A) = \{\lambda \in \mathbb{C}: |\lambda| < 1\}$ and $\sigma(A) = \sigma_{ap}(A) = \{\lambda \in \mathbb{C}: |\lambda| \le 1\}$,
- (2) $\sigma_{com}(A) = \sigma_r(A) = \phi$ and $\sigma_c(A) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$.

THEOREM 2.8. Let (α_n) be as in Theorem 2.5, and let $V: l_2(q) \rightarrow l_2(q)$ be the operator defined by $V(x_1, x_2, x_3, \dots) = (0, \alpha_1 x_1, \alpha_2 x_2, \alpha_3 x_3, \dots)$. Then

(1)
$$\sigma_p(V) = \phi$$
, $\sigma_{com}(V) = \sigma_r(V) = \left\{ \lambda \in \mathbf{C} : |\lambda| < \frac{r}{\sqrt{g}} \right\}$ and $\sigma(V) = \int_{-\infty}^{\infty} |\lambda| \left\{ \frac{r}{\sqrt{g}} \right\}$

$$\left\{ \lambda \in \mathbf{C} \colon |\lambda| \leq \frac{r}{\sqrt{q}} \right\}.$$
(2) $\sigma_{ap}(V) = \sigma_c(V) = \left\{ \lambda \in \mathbf{C} \colon |\lambda| = \frac{r}{\sqrt{q}} \right\}.$

Proof. (1) Clearly V is a bounded linear operator with $||V|| \le \frac{r}{\sqrt{q}}$. By Theorem 2.5, $\sigma_{p}(V) = \phi$. It is known that $\sigma_{com}(V) = (\sigma_{p}((V^{*})^{*})^{*}) = \frac{1}{q}(\sigma_{p}(A))^{*}$, where $A(x_{1}, x_{2}, x_{3}, \dots) = (\alpha_{2}x_{2}, \alpha_{3}x_{3}, \dots)$. Since $\sigma_{p}(A) = \left\{\lambda \in C: |\lambda| < r\sqrt{q}\right\}$, $\sigma_{com}(V) = \left\{\lambda \in C: |\lambda| < \frac{r}{\sqrt{q}}\right\}$. It follows that $\sigma_{r}(V) = \sigma_{com}(V) \setminus \sigma_{p}(V) = \sigma_{com}(V)$. Since $\sigma_{com}(V) \subset \left\{1 + \frac{r}{\sqrt{q}}\right\}$.

It follows that $\sigma_{\mathbf{r}}(V) = \sigma_{\mathrm{com}}(V) \setminus \sigma_{\mathbf{p}}(V) = \sigma_{\mathrm{com}}(V)$. Since $\sigma_{\mathrm{com}}(V) \subset \sigma(V) \subset \left\{ \lambda \in \mathbf{C} : |\lambda| \leq \frac{r}{\sqrt{q}} \right\}$ and $\sigma(V)$ is a closed subset of \mathbf{C} , we have $\sigma(V) = \left\{ \lambda \in \mathbf{C} : |\lambda| \leq \frac{r}{\sqrt{q}} \right\}$.

For (2), it is well-known that $\left\{\lambda \in C : |\lambda| = \frac{r}{\sqrt{q}}\right\} = \partial \sigma(V) \subset \sigma_{ap}(V)$ $\subset \sigma(V)$. It is enough to show that $\sigma_{ap}(V) \subset \{\lambda \in C : \frac{r}{\sqrt{q}} \le |\lambda|\}$. For a λ with $|\lambda| < \frac{r}{\sqrt{q}}$, $||(V - \lambda I)x||_q \ge ||Vx||_q - |\lambda|| ||x||_q| \ge |\frac{m}{\sqrt{q}} - |\lambda|| ||x||_q$ for all $x \in I_2(q)$, where $0 < m < |\alpha_1|$ and $\frac{m}{\sqrt{q}} \ne |\lambda|$. Thus $V - \lambda I$ is bounded below, that is; $\lambda \notin \sigma_{ap}(V)$. Hence $\sigma_{ap}(V) \subset \left\{\lambda \in C : \frac{r}{\sqrt{q}} \le |\lambda|\right\}$. It follows that $\sigma_{ap}(V) = \left\{\lambda \in C : |\lambda| = \frac{r}{\sqrt{q}}\right\}$. Also we have $\sigma_c(V) = \sigma(V) \setminus \{\sigma_{com}(V) \cup \sigma_p(V)\} = \left\{\lambda \in C : |\lambda| = \frac{r}{\sqrt{q}}\right\}$.

From the Theorem 2.8, we have the following immediate consequences.

COROLLARY 2.9. Let V be the right shift operator on $l_2(q)$. Then $\sigma_p(V) = \phi$, $\sigma_{com}(V) = \sigma_r(V) = \left\{ \lambda \in \mathbb{C} : |\lambda| < \frac{1}{\sqrt{q}} \right\}$, $\sigma(V) = \left\{ \lambda \in \mathbb{C} : |\lambda| \le \frac{1}{\sqrt{q}} \right\}$ and $\sigma_{ap}(V) = \sigma_c(V) = \left\{ \lambda \in \mathbb{C} : |\lambda| = \frac{1}{\sqrt{q}} \right\}$.

COROLLARY 2.10. Let V be the right shift operator on l^2 . Then we have $\sigma_p(V) = \phi$, $\sigma_{com}(V) = \sigma_r(V) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}$, $\sigma(V) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$ and $\sigma_{ap}(V) = \sigma_c(V) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$.

By the calculation, the matrices representations of the resolvent_operators $(\lambda I - A)^{-1}$, $(\lambda I - V)^{-1}$ have the following forms.

$$(\lambda I - A)^{-1} = \begin{pmatrix} \lambda^{-1} & \alpha_2 \lambda^{-2} & \alpha_2 \alpha_3 \lambda^{-3} & \alpha_2 \alpha_3 \alpha_4 \lambda^{-4} \cdots \\ 0 & \lambda^{-1} & \alpha_3 \lambda^{-2} & \alpha_3 \alpha_4 \lambda^{-3} \cdots \\ 0 & 0 & \lambda^{-1} & \alpha_4 \lambda^{-2} \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

$$(\lambda I - V)^{-1} = \begin{pmatrix} \lambda^{-1} & 0 & 0 & 0 & \cdots \\ \alpha_1 \lambda^{-2} & \lambda^{-1} & 0 & 0 & \cdots \\ \alpha_1 \alpha_2 \lambda^{-3} & \alpha_2 \lambda^{-2} & \lambda^{-1} & 0 & \cdots \\ \alpha_1 \alpha_2 \alpha_3 \lambda^{-4} & \alpha_2 \alpha_3 \lambda^{-3} & \alpha_3 \lambda^{-2} & \lambda^{-1} \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

References

- Akhiezer, N. I. and Glazman, Thoery of Linear operators in Hilbert space, Pitman Advanced Pub. Program, Boston-London-Melbourne., 1980.
- 2. Berberian, S.K., Lectures in Functional Analysis and Operators Theory, Springer-Verlag, New York., 1974.
- 3. Conway, J.B., A course in Functional Analysis, Springer-Verlag., 1980.
- 4. Yosida, K., Functional Analysis, 6th ed., Springer-Verlag-Berlin., 1980.

Sogang University Seoul 121, Korea