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EXTENSIONS OF HIGHER ANTI-DERIVATIONS
TO MODULES OF QUOTIENTS

SEOG HOON RIM

1. Introduction

Throughout the following, R will denote an assocIative ring with
unit element 1 and R-Mod will denote the category of all unitary left
R-modules. And let w : R-R be an involution (i. e. w is an end­
omorphism of R whose square is identity map.) Then anti-derivation
with respect to w of R is a mapping d: R-R such that d(a+b) =
d(a) +d(b) and d(ab) =d(a)b+w(a)d(b) for all elements a, bER
([4J). If w is an identity map, then d is called an ordinary derivation.
If M is a unitary left R-module and if d is a fixed anti-derivation (with
respect to w) on R then anti-d-derivation on M is a mapping (l: M
-M satisfying the condition that (l(m+n) =(l(m) +(l(n) and (l(am)
=d(a)m+w(a)(l(m) for all elements m,nEM and aER. If w is an
identity map, then (l is called a d-derivation on M ([3J).

Let S be a segment of N, i. e. S= to, 1, 2, ... , s} for some s~O. A family
d= (dn)nEs of mappings d n : R-R is called anti-d-derivation of order
s of R (where, s = sup S;;;;, 00) if the following properties are satisfied
(i) dn(a+b)=dn(a)+dn(b) (ii) dn(ab)=dn(a)b+ ~ di(a)dj(b)+

i+j=n-l

w(a)dn(b) for all a,bER (iii) do=identity map on R ([4,5J).
If d is a fixed anti-d-derivation of order s on R, then anti-d-deriva­

tion of order s on M is a family (l = ((In) nES of mappings satisfying that
(i) dn(m+m')=dn(m)+dn(m') (ii) (In(am)=dn(a)m+ ~ di(a)(lj(m)

i+j=n-l

+w(a)(ln(m) for all aER and m, m'EM (iii) (lo=identity map on M
([3J).

LEMMA 1. ([4,5J) The set of ordinary derivations of R corresponds
bijectively to the set of derivations of order 1 of R. And the set of der-
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ivations of order infinite corresponds bijectively to the inverse limit of the
set of derivations of finite orders.

2. Preliminaries

Notations and terminology concerning (hereditary) torsion theories on
R-Mod will follow [2J. In particular, if 7: is a torsion theory on R­
Mod then a left ideal H of R is said to be 7:-dense in R if and only
if the cyclic left R-module RIH is 7:-torsion. If M is a left R-mod­
ule then we denote by T r (M) the unique largest submodule of M
which is 7:-torsion. If E (M) is the injective hull of a left R-module

. M then we define the submodule Er (M) of E (M) by Er (M) IM = T r
(E (M) I M). The module of quotients of M with respect to 7:, denoted
by Qr(M), is then defined to be Er(MjTr(M». Note that, in parti­
cular, if M is 7:-torsionfree then Qr (M) = Er (M) , and this is a left

, R-module containing M as a largest submodule. In general, we have
a canonical R-homomorphism from M to Qr(M) obtained by composing
the canonIcal surjection from M to MI T r (M) with the inclusion map
into Q.(M).

If R is the endomorphism ring of the left R-module Qr (RR) then
Qr (M) is canonically a left R-module for every R-module and the
canonical map R~Rr is a ring homomorphism, the ring Rr is called

, as the ring of quotients or localization of R at 7:. A torsion theory on
R-Mod is said to be faithful if and only if R, considered as a left
module over itself, is 7:-torsionfree. In this case, R is canonically sub­
ring of Rr.

Before entering our discussion, we assume that any anti-derivations
are related with a fixed involution w.

LEMMA 2. ([2J) Let H be a 7:-dense ideal in R, and let aH,q be R­
module homomorphism defined on H into Qr (M) , then RIH is 7:-torsion
and there exist unique R-module homomorphism f3R,q : R~Qr (M) which
makes the diagram

O~H~R

aH.q 1 /~.q
Qr(M) /

commutes.
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LEMMA 3. ([2J) Let Hand K be r-dense ideals of R then we have
the following results.

(1) H nK is r-dense ideal.
(2) (H: a) = {rER IraEH} is r-dense ideal.
(3) Homomorphic image of H is r-dense ideal.

LEMMA 4. ([2J) Let Hand K be r-dense ideals of R and let aH,q :
H-Q", (M) and aK.q: K -Q", (M) be defined as in the Lemma 2.
Then aH.q and aK.q define the same element in Q", (M).

3. Extension theorems

In this section we consider extensions of higher anti-d-derivation to
modules of quotients, in the case module M is r-torsionfree left R­
module, where r is a torsion theory on R-mod. We begin with a
Lemma.

LEMMA 5. For each q in Q",(M), the map aH.q : H-Q",(M) d,efined
by h-dn(w(h)q)- 1: d/(w(h»d/(q)-dn(w(h»qisan R-module

i+j=n-l

homomorphism for every hE H, where d/ is a derivation of order i on
Rand d/ is derivation of order j on Q", (M) which restricts to M is d j •

Moreover the map defined by k-(k)aK.aq- (kw(a»)aK,q is an R-module
homomorphism.

Proof. The proof is routine use the definition of higher anti-d-deri­
vation and higher derivation.

THEOREM 6. Let d be an anti-d-derivation of order son R and let r be
a torsion theory on R-Mod and M be r-torsionfree left R-module on which
we have defined an anti-d-derivation d of order s. Then there exists an
anti-d-derivation of order s, d defined on Qr (M), the restriction of which
to M is d.

Proof. In the case of finite order, we use the mathematical induction
on the order s. For s=O, the statement is trivial. For s=l, if qEQ",
(M), then there exists a ..-dense left ideal H of R satisfying Hqr;;;;M.
Define a function aH,q: H-Q",(M) by setting h-d(w(h)q) -dew
Ch) )q, by the Lemma 2 we see that aH,q extends uniquely to R-homo­
morphism from RR to Q", (M) and so there exists unique element q of
Q",(M) satisfying the condition that d(q) =q. This function is well-defined
and becomes anti-d-derivation of order 1, moreover restricts to M is d.
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Assume that for the case of s=n-l, the statement is true. If q is
an element of Q" (M) then there exists 'Z'-dense left ideal H of R sati­
sfying Hqr;;:,M and w(H)qr;;:,M. Let aH,q be as in the Lemma 5, then
by the Lemma 2, we see that aH,q extends uniquely to R-homomorp­
hism from RR to Q" (M) and so there exists unique element qE Q" (M)
satisfying the condition that (h)aH,q=hq for all element hEH. We
define a function d n : Q,,(M)~Q,,(M) by setting dn(q)=q. This fun­
ction is well-defined. Indeed, suppose that q is an element of Q" (M)
and let Hand K be 'Z'-dense left ideals of R satisfying Hqr;;:,M and
Kq r;;:, M. Then (H nK) q r;;:, M and H nK is 'Z'-dense left ideal of R, by
the Lemma 4 aH,q and aK,q define the same element q.

Now we claim that such dn is anti-d-derivation of order n on Q" (M) .
Indeed, let q and q' be elements of Q" (M) and let a be an element
of R, then there exist 'Z'-dense left ideals Hand H' of R satisfying
Hqr;;:,M and H'q'r;;:,M. Take K=HnH', then we have Kqr;;:,M and
Kq' r;;:, M, so K(q+q') r;;:,M. MOleover, for each element kEK we have

(k)aK,q+q,=dn(w(k) (q+q'» -. ?: d;'(w(k»d/(q+q')
%+J=n-1

-dn (w (k» (q+q')
= (k)aK,q+ (k)aK,q'
= (k) (aK,q+aK,q')'

By the Lemma 2, the uniqueness of extension, this implies that dn (q

+q') =dn(q) +dn(q'). Similary there exists a 'r-dense left ideal H of
R satisfying conditions that Hqr;;:,M, Haqr;;:,M, w(H)qr;;:,M and w(H)
aq c;::;. M, let K=Hnw(H) n (H;a) n (w(H) :a), by the Lemma 3, K is
a 'r-dense left ideal of R, we therefore have an R-homomorphism from
RK to Q,,(M), which can be extended to from RR into Q,,(M). We see
that (k)aK,aq- (kw (a) )aK,q=dn(w(k)aq) - ..L: {d;' (w(k» d/ (aq)} -dn

%+J=n-1

(w (k» aq-dn (w (k) aq) + L: {d;' (w (k) a) d/ (q)} +dn(w (k) a) q= - L:
i+j=n-! i+j=n-!

{di(w(k» L: ds(a) d t (q)} -dn(w(k»aq+ L: {L: ds(w (k»dt (a)dj (q)}
s+t=j i+j=n-! s+t=i

+dn(w(k»aq+ L: {ds(w(k»dt(a)} +kdn(a)q=kdn (a)q+k L: {di(a)
$+t=n-l i+j=n-l

dj (q)}, and so by the Lemma 2, this implies that d n (aq) =dn (a) q+
L: {di (a) dj (q)} +w (a) d n (q), thus dn is an anti-d-derivation of order

i+j=#-l

n on Q,,(M).

Now we prove that d restricts to d on M. Indeed, for every mEM,
then we take H equal to R itself and so we see that for any aER we
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have dn(am) - ~ di(a)aj (m) -dn(a)m=w(a)an(am), which implies
i+j=n-l

that d n(am) =dn(am) for each nES.
In the case of infinite order, we use the Lemma 1 not only ring R,

but also module M and Q, (M), i. e. for any infinite order (anti-d-)
derivation d""(a",, or d",,) on R(M or Q,(M», then there exists unique
sequence(anti-d-)derivations dn(dn or dn) on R(M or Q,(M» such that
we can write d",,=lim d n (dn=lim d n or d",,=limdn). For the given d""

~ ~ +--

there is unique sequence {dn} nEN on M which we can write a",,=lim.--
d m by the finite order case we can extend each an to d n on Q,(M)
which restricts to dn to M. Now take d"" as an inverse limit of such
{a n} nEN on Q, (M) , then d"" satisfies all results.

For the anti-d-derivations (of order 1) d on a ring R, then there
exists a unique anti-d-derivation d defined on Rn the restriction of
which to R is d, in the case 1: is a faithful torsion theory on R-Mod
([6J). Now we generalize this result to the higher order case.

THEOREM 7. Let d be an anti-d-derivation of order s on R and let 1:

be a faithful torsion theory on R-Mod. Then there exists a unique anti­
d-derivation d of order s defined on Rn the restriction of which to R is d.

Proof. The existence of a follows from the Theorem 6 and the fact
that Q,,(R) and R, are isomorphic, as left R-modules. To show uniqu­
eness assume that d' and d" be anti-d-derivations of order s defined on
R" and" d' =d" on R. For any non zero element qE R, there is a 1:­

dense left ideal H of R satisfying conditions Hqc;;;R and w(H)qC;;;R,
take K=Hnw(H) as ,,-dense ideal of R, then for any element kEK
we have 0= (dn' -dn") (kq) =w (k) (dn' -dn") (q), for each nES. Thus
we have w(K) (dn'-dn") (q) =0, for each nES. Since w(K) is a 1:­

dense ideal of R, this implies that d/(q)=dn"(q) for all qER".

CoROLLARY 8. Let d be an anti-d-derivation of order s on Rand d
be anti-d-derivation of order s on a left R-module M. Suppose that 1:

is a torsion theory on R-Mod satisfying the condition, for each nES,
an(T,,(M» C;;; T,,(M). Then there exist an anti-d-derivation J of order
s on Q" (M) in such manner that the diagram

M--Q" (M)

d 1 1J
M--Q"(M)
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commutes.
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Proof. Define d' on M/Tr(M) by denotting for each nES, dn': m
+Tr(M)-dn(m) +Tr(M), by the condition dn(Tr(M» ~Tr(M),

such a map is well-defined. And M/ T r (M) is 'Z"-torsionfree left R­
module, by the Theorem 6, this derivation d' can be extended to anti­
d-derivation J on Qr (M) making the diagram commutes.

Now we consider inner derivation of order s on R, if there exists an
element a= (an)nESERXRX '" XR(s+ 1-times) such that d=L1 (a), where
d1 (x) =L1 (a) 1 (x) =alx-xab d2(x) =L1 (a) 2=a12x-alxal +a2x-xa2' d3
(x) =L1 (a) 3 (x) =a13x-a12xal+ala2x+xa2al-alxa2-a2xal+a3x - xa3, ••••

we call d as an inner derivation of order s of R. ([1,4J)

COROLLARY 9. The extension of any inner derivation d of order s of
R to a derivation J on ~ is again inner. In particular, if 'Z" is torsion­
free, such extension d is unique and which restricts to d on R.

Proof. Let d be any inner derivation of order s on R, then there
exists a sequence a= (an) nES such that d=L1 (a). Since R is 'Z"-torsionfree
Tr(R) =0, so for each nES dn(Tr(R»=O~Tt:(R). Take w=identity
map on R in the Corollary 8, there exists an exension J on Qr (R) ,
so we can define a derivation J on Qr (R) for the element a= (an) nES
as follows J (q) = L1 (a) (q), then J is an inner derivation of order s.
On the other hand 'Z" is faithful, by the Theorem 7, such extension is
unique and which restricts d on R.

If we take S = {O, 1}, by the Lemma 1 we have following Corollary.

CoROLLARY 10. If la : R-R is the inner derivation of R defined
by an element a and if 'Z" is a faithful torsion theory on R-Mod then a
defines an inner derivation la on ~ which restricts to la on R. ([3J).
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