HERMITIAN ELEMENTS OF A BANACH ALGEBRA

BYUNG-DO KIM and KIL-WOUNG JUN

1. Introduction

Throughout this paper, A denotes a complex unital Banach algebra. An element h of A is Hermitian if its numerical range is real. Let H be the set of all Hermitian elements of A. This paper deals with the following question; If $a, b, ab \in H$, does it then follow that ab = ba?

Berkson [1] has proved various partial positive results, one is that, if a, b, ab, a^2 and b^2 are all Hermitian, then ab=ba. Murphy [4] extended Berkson's result, that is, if a, b and ab are Hermitian and also either a^2 or b^2 is Hermitian, then ab=ba.

2. Main results

The following three lemmas contain the elementary properties of the Hermitian elements, which can be found in [2].

LEMMA 2.1. (1) H is a real linear subspace of A. (2) $H \cap iH = \{0\}$.

LEMMA 2.2. If $h, k \in H$, then $i(hk-kh) \in H$.

LEMMA 2.3. (Sinclair's Theorem) If $h \in H$, then r(h) = ||h||, where r denotes spectral radius.

We use the following lemma, which was proved by Kleinecke [3].

LEMMA 2.4. Let B be a Banach algebra. Let $x, y \in B$. Let x commute with xy-yx. Then xy-yx is quasinilpotent, that is, r(xy-yx)=0.

Now we have the main theorem.

THEOREM 2.5. Let $a, b, ab \in H$. Suppose also that either $i(bxb-xb^2) \in H$ and $a^2+xb \in H$ for some x in A or $i(aya-ya^2) \in H$ and $b^2+ya \in H$ for some y in A. Then ab=ba.

Received May 28, 1986.

Proof. Suppose first that $i(bxb-xb^2) \in H$ and $a^2+xb \in H$ for some x in A.

Apply Lemma 2.2 with h=a, k=b. So

$$i(ab-ba) \in H. \tag{1}$$

Apply Lemma 2.2 with h=-a, k=i(ab-ba). So

$$a(ab-ba)-(ab-ba)a \in H. \tag{2}$$

Apply Lemma 2.2 with h=a, k=ab. So

$$i(a^2b - aba) \in H. \tag{3}$$

Apply Lemma 2.2 with h=b, $k=a^2+xb$. So $i(ba^2-a^2b+bxb-xb^2) \in H$.

Since $i(bxb-xb^2) \in H$,

$$i(ba^2 - a^2b) \in H. \tag{4}$$

Taking twice (3) plus (4), we conclude that

$$i(a^2b-2aba+ba^2)\in H.$$

i. e.
$$i(a(ab-ba)-(ab-ba)a) \in H$$
. (5)

Apply Lemma 2.1(2) to (2) and (5) to deduce that a(ab-ba)=(ab-ba)a.

Hence, by Lemma 2.4 ab-ba is quasinilpotent. So, by (1), i(ab-ba) is both Hermitian and quasinilpotent. Sinclair's Theorem then applies to i(ab-ba) to prove that ab=ba.

The same conclusion follows when $i(aya-ya^2)$ and b^2+ya for some y in A are Hermitian by considering A with its multiplication reversed.

COROLLARY 2.6. Let $a, b, ab \in H$. Suppose also that either $a^2 + rb^n \in H$ for some real number r and positive integer n or $b^2 + sa^n \in H$ for some real number s and positive integer n. Then ab = ba.

Proof. Apply Theorem 2.5 to $x=rb^{n-1}$ and $y=sa^{n-1}$.

We obtain Murphy's Theorem as a corollary.

COROLLARY 2.7. (Murphy's Theorem) Let $a, b, ab \in H$. Suppose also that either $a^2 \in H$ or $b^2 \in H$. Then ab = ba.

Proof. Apply Corollary 2.6 to r=0 and s=0.

COROLLARY 2.8. Let $a, b, ab \in H$. Suppose also that either $a^2+xb \in H$, bx=xb for some x in A or $b^2+ya \in H$, ay=ya for some y in A. Then ab=ba.

Proof. It is trivial by Theorem 2.5.

References

- 1. E. Berkson, Hermitian projections and orthogonality in Banach spaces, Proc. London Math. Soc., 24(1972), 101-118.
- 2. F.F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras (Cambridge University Press, 1971).
- 3. D.C. Kleinecke, On operator commutators, Proc. Amer. Math. Soc., 8 (1957), 535-536.
- 4. I.S. Murphy, A note on Hermitian elements of a Banach algebra, J. London Math. Soc. (3), 6(1973), 427-428.

Chungnam National University Taejon 300-31, Korea