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ON WC-CONTINUOUS FUNCTIONS

F. CaMMAROTO and T. NoOIRI &%

1. Introduction

In 1970, Gentry and Hoyle [5] defined a function f: X—Y to be
C-continuous if for each x&X and each open set V containing f(x)
and having the compact complement, there exists an open set U con-
taining x such that f(U)cC V. These functions have been investigated
by Long and Hendrix [6] and Long and Herrington [8]. In 1980,
Long and Hamlett [7] called a function H-continuous by replacing
“compact” in the definition of C—continuous functions with “H-closed”
(quasi H-closed relative to Y [10]). The investigation of H-continuous
functions has been continued by the second author [9] of the present
paper.

Recently, Lo Faro and the first author [1,2] have introduced and
investigated a new weak form of compactness in topological spaces,
called weakly compact spaces. In this paper, we introduce and charact-
erize sets called weakly compact relative to a topological space. Then
we define a new class of functions called WC-continuous functions
analogous to H-continuous functions and C-continuous functions. It will
be shown that WC-continuity implies H-continuity and they are equi-
valent if the range of the function is almost-regular [11].

2. Definitions

Throughout this paper X and Y represent topological spaces on which
no separation axioms are assumed unless explicitly stated. Let S be a
subset of a space X. The closure and the interior of § in X are deno-
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ted by Clx(8) and Intx(S) (or simply C1(S) and Int(S)), respectively.
A subset S is said to be regular open (resp. regular closed) if Int(Cl
(8)) =S (resp. Cl(Int(S))=S). For definitions and notations used in
this paper, readers can find them in [2] except for the following.

DEFINITION 2.1. An open cover {V,|lacF} of a space X is said to
be regular [2] if for each eV there exists a nonempty regular closed
set F, in X such that F,CV, and X=U {Int(F,) lasl}.

DEFINITION 2.2. A space X is said to be weakly compact [2] (resp.
quasi H-closed [10]) if every regular (resp. open) cover of X has a
finite subfamily whose closure is a cover of X.

In [12], Singal and Singal called quasi H-closed spaces almost com-
pact. A quasi H—closed Hausdorff space is usually called H-closed. Ur-
ysohn—closed spaces are characterized by weakly compact Urysohn spaces
[38]. It has been shown in [2] that almost compactness is strictly stro-
nger than weak compactness.

DEFINITION 2.3. A space X is said to be almost-regular [11] if for
each regular closed set F of X and each point x&X—F, there exist
disjoint open sets U and V such that FC U and z€ V.

DEFINITION 2.4. A subset K of a space X is said to be weakly com-
pact relative to X if for each cover {V,lacFP} of K by open sets of
X satisfying the following property (P), there exists a finite subset Iy
of 7 such that Koy {Clx (V) |aEF,}.

(P) For each eV, V, contains a nonempty regular closed set F, of
X and Kc U {Intx(F,) lasl}.

DerINITION 2.5. Let & be a filter on a space X. A point z€X is
called a y—adherence point of &F [2] if FNUUx) 0.

DEFINITION 2.6. Let A be a subset of a space X. A point z&X is
called a 7—adherence point of A if AN V+¢ for every Vel (lly). The
set of all y-adherence points of A is called the y—closure of A. If A
contains the y—closure of A, then it is called y—closed.

3. Sets weakly compact relative to a space

DEFINITION 3.1. A filter & on a space X is said to be quasi-regular
[2] if there exists an open filter @ on X such that F=U(@).
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REMARK 3.2. It is obvious that for any subset A of a space X tryF
#0 if try@+#0, where tr,J denotes the trace of F on A. However,
the converse is not true in general as the following example shows.

ExaMpLE 3.3. Let X={x, 9, 2, ¢}, =10, X, {2}, {2}, {&, 8, (2,2},
{x, 2}, {x,2,6}) and A= {z,¢}. Let @:l {2} | Then the filter F=1 @
= {{z, y, 2}, X} is quasi-regular [2, Controesempio 4]. Moreover, tr &
= {{}, A} #0 but try¢=0 because '{z} N {z, £} =¢.

THEOREM 3.4. For a subset A of a space X, the following are equiva-
lent:

(1) A is weakly compact relative to X.

(2) Every open filter @ with tr,Q+0 has a y—adherence point in A.

(3) Every filter @ such that @ is an open filter and try@+0 has an
r—adherence point in A.

(4) Every quasi-regular filter F=1U(G) such that tr,@+0 has an ad-
herence (5-adherence or r—adherence) point in A.

(5) Every filter F such that F is a quasi-regular filter F=1(G) with
tra@+Q has an adherence (0-adherence) point in A.

(6) Every filter F such that F is a quasi-regular filter F=U(@) with
tra@+Q has an adherence (6—adherence or r—adherence) puint in A.

(7) Every open ultra filter @ with tr G+ 0 r—converges.

(8) Let {C,la€V} be a family of closed sets of X such that for each
aSlV there exists an open set A, of X satisfying C,CA, and N {CI(4,)
laclV} X —A. Then there exists a finite subset Vi of V such that  {Int
CY lacslVy <X —A.

Proof. (1)=>(2): Let @ be an open filter on X with try@+0. We
suppose that @/A\U(#,) =0 for every = A. Then, there exist open sets
G.€9, U,€, and A, (ll,) such that G,NA,=¢ and U,cCl(U,)
cA,. By G,NA,=¢, we obtain CI(G,) N A,=¢ and hence ClI(G,) NCl
(U,)=¢. Let us put B,=X—CIl(G,), then C1(U,) B, and B,=UU,).
The family {B,lx€ A} is a cover of A by open sets of X and Ac
U Int(C1(U,)) |z= A}. Therefore, there exists a finite number of points
25, T3, 0, T, In A such that Ac U {CI(B,) |i=1,2, ---, n}. Therefore,
we have

™ N{X—Cl(B,) |i=1,2,--, s} C X —A.

For each i=1,2,--,n, G,,cInt(Cl(G,,)), hence we have
X—Cl(B,,) =Int(X—B,,) =Int(Cl1(G,)) 4.
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Therefore, by (*) we obtain X—Ae@. This is a contradiction.
2=>B)>@W>B)20)>@D=> () =>1) : These implications are
proved similarly to the proof of [2, Lemma 2.1].
(4)=>(8) : Let I'(’) be the family of all finite subsets of . We
suppose that

N {Int(C,) lac 4} ZX—A for every deI' ).
Then, F={ QA Int(C,) |del'(F)} is an open filter base with tr,F+

0. Thus, %(§) is a quasi-regular filter on X such that tr,&#0. By
(4), there exists a point x& A such that %(F) AU, #0. Put

L={N A4l (")},

then it is an open filter base such that % (&) =#4. Therefore, £/\U,+#0
and hence z&Cl(4,) for every acl. Thus, we obtain z& N {Cl1(4,) |
acV}. This is a contradiction because N {Cl(4,) lacV}cX—A.

(8)=> () :Let {A,|lacVF} be an open cover of A with Property (P).For
each acV, there exists a nonempty regular closed set C, such that C,C A,
and Ac U {Int(C,) |lacF}. We consider the family {X—A,|lasl} of
closed sets. For each aeV, X—C, is open in X, X—C,=X—A, and

N{CIX—Cy lacl}=X— {Int(Cy) lacsP} cX—A.
By (8), there exists a finite subset Vy of I/ such that
N {Int(X—A4,) lacV cX—A.

Therefore, we obtain A< U {Cl(4,) lasF,}. This shows that A is
weakly compact relative to X.

4. W(C-continuous functions

DEFINITION 4.1. A function f: X—Y is said to be WC~continuous if
for each z&X and each open neighborhood V of f(z) having the
complement weakly compact relative to Y, there exists an open neigh-
borhood U of z such that fF(U)CV.

THEOREM 4.2. For a function f: X—Y the following are equivalent:

) f is WC—continuous.

@) If V is open in Y and Y—V is weakly compact relative to Y,
then f~1(V) is open in X.

(3) If F is closed in Y and weakly compact relatwe to Y, then f-1(F)

is closed in X.
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Proof. (1)=>(2) : Let V be an open set of Y such that Y—V is
weakly compact relative to Y. Let z&f-1(V). Then f(z) € V and there
exists an open neighborhood U of z such that f(U)c V. Therefore,
we have ze Ucf~1(V). This shows that f~1(V) is open in X.

(2) <= (3) : This is obvious.

(3)=> (1) : Let z&X and V an open neighborhood of f(z) such
that Y—V is weakly compact relative to Y. By (3), f-1(Y—V) is
closed in X and hence U=f-'(V) is an open set containing z such
that F(U)C V.

LEMMA 4.3. If A; and A, are weakly compact relative to a space X,
then A U Ay is weakly compact relative to X.

Proof. Let W= {V,lacV} be a cover of A, U A4; by open sets of X
satisfying Property (P). Then O is a cover of 4,, 4, satisfying (P)
and hence for each i=1,2 there exists a finite subset ¥/; of I such that
A, c U {CI(V) lael;}. Therefore, we have

A1UA2C U {Cl(Va) laEVIUVz} .
This shows that A;U A, is weakly compact relative to X.

Let (X,7) be a topological space. It follows from Lemma 4.3 that
the family of open sets having the complement weakly compact relative
to (X,7) may be used as a base for a topology zwc. It has been shown
that the family of open sets having the compact (resp. quasi H—closed)
complement may be used as a base to generate a topology 7c (resp.
TH) on X [57 7]-

REMARK 4.4. For a topological space (X,7), we have r¢CtyCryc
.

THEOREM 4.5. A function f: X—(Y,0) is WC—continuous if and only
if f: X—(Y,o0wc) is continuous.

Proof. This is obvious from the definition of oyec.

REMARK 4.6. It is obvious that continuity implies WC—-continuity and

WC—continuity implies H-continuity. The following example shows that
WC-continuity does not necessarily imply continuity.

ExAMPLE 4.7. Let X be the set of real numbers with the usual top-
ology and f: X—X a function defined as follows: f(z)=1/z if z+0;
f(0)=1/2. Then f is C—continuous [5, Example 2] and by Theorem
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4.17 (below) f is WC—continuous. However, f is not continuous.

For a function f : X—Y, the set {(z, f(z)) |z X} is called the graph
of f and denoted by G(f).

THEOREM 4.8. If f: XY is an open function and G(f) is y—closed
in the product space X XY, then f is WC—continuous.

Proof. We suppose that f is not WC-continuous at some point z&
X. Then there exists an open set V containing f(z) and having the
complement weakly compact relative to Y such that f(U) N (Y— V) +#¢
for every open set U containing z. Since f is open,

={f(U)|xz€U and U is open in X}
is an open filter base with try_y@#0. Since Y—V is weakly compaet
relative to Y, by (2) of Theorem 3.4 @ has a y-adherence point ye
Y— V. Therefore, y#f(z) and (xz,y) is a y—adherence point of G(f).
However, we have (z,y) ¢G(f). This is a contradiction.

The following three theorems are immediate consequences of Theorem
4.5 and the proofs are omitted.

THEOREM 4.9. If f: X—Y is WC—continuous and A is a subset of X,
then the restriction f|A : A—Y is WC-continuous.

TurOREM 4.10. If f: X—Y continuous and g : Y—Z is WC—continuous
then the composition gef : X—Z is WC—continuous.

THEOREM 4.11. Let X be a space and let {A\aEV} be a cover of X
such that

(a) each acV, A, is open in X or

@) each acV, A, is closed in X and the family {A,|a€EV} forms a
neighborhood finite family.
If f: X—Y is a function such that f|A,: A,—Y is WC—contmuous Sfor
each a €V, then f is WC—continuous.

THEOREM 4.12. If X is Urysohn and A is weakly compact relative to
X, then A is closed.

Proof. Let zy be a point of X—A. For each z€ A, there exist open
sets U, and V, containing z, and z, respectively, such that CI1(U,) N
CI(V,) =¢. For each z= A, we have
z€Int(CI(V,)) =Cl(V,) <X —Cl(U,) and Ac U {Int(CI(V,)) |z A}.
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Therefore, the family {X-Cl(U,) |z A} is a cover of A by open sets
of X satisfying Property (P). Since A is weakly compact relative to
X, there exist a finite number of points xy, x5, -, x, in A such that

Ac JCUX~CL(U,) =X~ NInt(CL(U.)).

Thus, we obtain AN[N {Int(C1(U,)) |i=1,2,-,n} ]=¢, where
N {Int(C1(U,)) |i=1,2, ---,n} is a regular open set containing x,. This
shows that A is closed.

REMARK 4.13. The proof of Theorem 4. 12 shows that A is a 6—closed
set due to Veli¢cko [13].

THEOREM 4.14. Let Y be a Urysohn space. Then, a function f: X—
Y is WC-continuous if and only if f~1(K) is closed in X for each set K
of Y weakly compact relative to Y.

Proof. This is an immediate consequence of Theorems 4. 2 and 4. 12.

A subset S of a space X is said to be N-closed relative to X [4] if
every cover of S by regular open sets of X has a finite subcover.

THEOREM 4.15. Let X be an almost-regular space and A a subset of

X. If A is weakly compact relative to X, then it is N—closed relative to
X.

Proof. Let {V,laeP} be a cover of A by regular open sets of X.
For each x€ A, there exists an a(z) &F such that z= V,». Since X
is almost-regular, there exist regular open sets G,«,, and W, such that

2EG, o CCHG, () T W, TCH W, ) € Voo
The family {W, ., |z A} is a cover of A by open sets of X satisfying
Property (P). There exists a finite subset Ay of A such that
AcC U {CH(W, ) |lz€ Ag} -
Therefore, we have AC U {V, |2€ 4y} . This shows that A is N-closed
relative to X.

THEOREM 4.16. Let Y be an almost-regular space. Then, a function
f: XY is WC-continuous if and only if f is H-continuous.

Proof. This is an immediate consequence of Theorem 4.15 and the
fact that N-closed relative to Y implies quasi H-closed relative to Y.

THEOERM 4.17. Let Y be a regular space. Then, for a function
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f: XY the following are equivalent:
(a) WC-continuous.
() H-continuous.
(¢) C-continuous.

Proof. Since Y is regular, Y isalmost-regular and hence by Theorem
4.15 every set weakly compact relative to Y is N-closed relative to Y.
Moreover, every subset of a regular space is compact if it is N—closed
relative to X [4, Theorem 4.1].

THEOREM 4.18. Let Y be a compact space. Then, for a function
f: XY the following are equivalent:

(@) continuous.

(d) WC—continuous.

(¢) H-continuous.

(d) C-continuous.

Proof. By Remark 4.6, it is only necessary to show that (d) implies
(a). Let F be a closed set of Y. Since Y is compact, F is compact
and hence f~1(F) is closed in X [5, Theorem 1]. Therefore, f is con-

tinuous.
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