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I. Introduction

Fu(1985) states as follows : if F, is an empirical distribution resulting from a
sample of independent observations from a common population F, and if A is an well-

defined subset of probability distributions which does not contain F,, then
1
lim,... — log P(F, €A|F,)=—K(A,F,),
n

where
inflK(F,Fo):F €Al if A ¢
{ o , if A =¢,
and K(F, F,) is a Kullback-Leibler information number of F with respect to F,. He

K(A, Fo) =

proves simply this result by a new method of K-regular technique.

In this paper, we shall generalize this Fu’s result by using some theorems in

(1] - [8].

. . Preliminaries

Let X be a sample space of points X, and (X, 8) be a measurable space. Let p
and ¢ be probability measures on 8. If ¢<<p on A, that is, g is absolutely continuous
with respect to p on g, let 7(x) be a density, 0=r(x)< o0, i.e. dp=r(z)dp on B.

We define a Kullback-Leibler information number of ¢ with respect to p by
x) dg if << p

otherwise.

K(q,p)={ OfOIOg r

1 i
If g<<p and p<<gq, then dg=—— dq on B, where — is a density. Hence we define
r(x) r(x)

a Kullback-Leibler information number of p with respect to q by

[log —— dp if p<<q
K(p, q) = | r(x) :

o otherwise.
We note that K(p,q) and K(q,p) are well-defined.
temma 2.1 [1], [6] Let ¢<<p and p<<q. For real t€[0,1], let f(t)= fexp(t
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log v(x)) dp. Then we have
(i) flo)=f(1)=1,
(i) f(1) #s a continuous and strictly convex function [0,1},
(iii) F(0*)=K(p,q) and f(1"Y=K(q, p), where ['(0*) and f{(17) are right and
left hand limits of f'(t) at t=0, t=1, respectively.
(iv) For all t€]0,1), f(1)<oo iff K(q.p)< and K(p,q)<oo.
Now, suppese that Y=Y(x) is a real-valued measurable function on (X,8). Let
the moment generating function of Y(x) be
#(1) = fexp(t Y(x)) dp, tE€]0,1], (2,1)
and let for real a
Ia)=infl¢(t)exp(—ta): tE€][0,1]}.
Define a set A by
A=1{q: [Y(x) dg exists and Zal,
and let
inflK(q,p): q€E Al if A=¢
Kan-| if A=9,
where K(q,p) is a Kullback-Leibler information number of ¢ with respect to p.
Lemma 2.2 [3), [4), [5) For real o, I{a)=exp(—K(A,p)).

. Main Results

Let A be a family of all probability distributions defined on the real line X, and
X.,..., Xn be a sequence of identically independent distributed (i.i.d.) random variables
from the distribution function FE 4. Let F, be an empirical distribution generated by
these observations.

Definition 3.1 (2] Let A be a subset of 4 and F,&A. The subset A is said to
be K-regular with respect to F, if there exists an F*€A such that F*<< F, and AC

H®(F* F,),
where
D¢ * aF* *
HY(F*, F,)=|F€d:and [log o dF 2 K(F*,F.) ),
dF*
K(F*, Fo)= [l dF*
/log o,
*
and is the Radon-Nikodym derivative of F* with respect to Fo.

Theorem 3.2 [2] Let F,€4. If A is a subset with nonempty interior which does
not contain F, and satisfies conditions:
(i) A is K~regular with respect to F,,
(i) K(A, F,)=K(int(A), F,), where int(A) stands for the interior of A, then

1
limg.. — log P(F,€A|F,)=—K(A, F,).
n

Let T: 4 — R be a functional and F, be an empirical distribution on (X, 8).
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et U(e)=|Fe€ 4: T(F) exists and =¢| for given real e.

Then we can obtain a generalized theorem (Theorem 3.3).

Theorem 3.3 If U(e) is a subset with nonemply interior which does nol contain
Fo and K(U(e), Fo)=K(int(U(e)),F,), then for given real ¢

1
limp.. — log P(T(Fa)2 € |F,)=—K(U(e),Fo).
n

dF*(x)

dF.(x).

To prove that Ul(e) is K—regular w.r. 1. Fo, we take for FEU(¢)
T(F)= fY(x) dF.

Proof For F*,F,€ 4, let F*<F, and put ¥{(x)=log

Then FEU(e) iff

dF*
= Ze.
T(F)= [log aF. dF Z¢

“rom Lemma 2.2, we have
K(U(e), Fo)=—1log I(e). (3.1)
According to the definition of (2.1), let

dF*
e(t)=
(t)= fexp(t log IF.

Then by Lemma 2.1, ¢(t)<oofor all t€][0, 1]. Since
: 3

) dF., 0=t=1.

Jexp(t(log i —¢)) dFo

dFo
is a strictly convex function of t on [0, 1], there exists A>0 such that
e} =infoes19{t) exp(—1t &)
=¢(h)exp(—h ¢), say. (3.2)
This h>0 is a unique number so that

¢'(h)exp(—h e)—ed(h)exp(—h ¢) =0,

that is,
¢'(h)/¢(h) = e. (3.3)
Thus I(¢) satisfies ¢'(h)/¢(h) =& for some h>0. Put
d K
h
explh log dFo)
dF* = dFo.
#(h) (3.4)

*

dF,
3y our definition of T(F), and from (3.3) and (3.4), we have for F*€ 4

*

Then the quantity exp(hlog )/#(h) represents a density w.r. t. Fo.

T(F*) = flong

<3
dF, aF
d *
_f(l dF*) exp(h log dFo)
0og aF. dF.

¢(h)
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¢'(h)
LSO R 3.5
O (3.5)
Thus F* € U(e) and [log ZF dF 2 K(F*, F.).

Therefore, U(e) is K—regular w.r.t. F,. From Theorem 3.2, we have

1
liMmnw ; lOg P(T(Fn) = Fo)

1
= [iMnas '1: lOg P(Fne U(E)‘FO)

4

—K(U(e), Fo).

Thus, the proof is complete.

Remark 3.4 From (3.2), (3.4) and (3.5),

K(F*,F.)= Jlog AF” pe

dF,
%
exp(h log %)
= [l 4 *
Stos =0 aF
- dF* _ *
J(h log ey log ¢(h)) dF
=h e—log ¢(h)
=~—]og I(e).

Thus from (3.1)

K(U(e), Fo)=—1log I(¢)=K(F*, Fo).
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