An Extended Large Deviation Theorem for Empirical Distributions

by Yong Kab Choi

Gyeongsang National University, Korea

T. Introduction

Fu(1985) states as follows: if F_n is an empirical distribution resulting from a sample of independent observations from a common population F_o and if A is an well-defined subset of probability distributions which does not contain F_o , then

$$\lim_{n\to\infty}\frac{1}{n}\log\ P(F_n\in A|F_o)=-K(A,F_o),$$

where

$$K(A, F_o) = \begin{cases} \inf |K(F, F_o): F \in A|, & \text{if } A \neq \emptyset \\ \infty, & \text{if } A = \emptyset \end{cases}$$

and $K(F, F_o)$ is a Kullback-Leibler information number of F with respect to F_o . He proves simply this result by a new method of K-regular technique.

In this paper, we shall generalize this Fu's result by using some theorems in [1] - [6].

- Ⅱ. Preliminaries

Let X be a sample space of points X, and (X, β) be a measurable space. Let p and q be probability measures on β . If $q \ll p$ on β , that is, q is absolutely continuous with respect to p on β , let r(x) be a density, $0 \le r(x) < \infty$, i.e. dp = r(x) dp on β . We define a Kullback-Leibler information number of q with respect to p by

$$K(q, p) = \begin{cases} flog \ r(x) \ dq \ if \ q \ll p \\ \infty \ otherwise. \end{cases}$$

If $q \ll p$ and $p \ll q$, then $dq = \frac{1}{r(x)} dq$ on β , where $\frac{1}{r(x)}$ is a density. Hence we define a Kullback-Leibler information number of p with respect to q by

$$K(p,q) = \begin{cases} f \log \frac{1}{r(x)} dp & \text{if } p \ll q \\ \infty & \text{otherwise.} \end{cases}$$

We note that K(p,q) and K(q,p) are well-defined.

Lemma 2.1 [1], [6] Let $q \ll p$ and $p \ll q$. For real $t \in [0,1]$, let $f(t) = \int exp(t) dt$

log r(x)) dp. Then we have

- (i) f(0) = f(1) = 1,
- (ii) f(t) is a continuous and strictly convex function [0, 1],
- (iii) $f'(0^+) = -K(p,q)$ and $f'(1^-) = K(q,p)$, where $f'(0^+)$ and $f'(1^-)$ are right and left hand limits of f'(t) at t=0, t=1, respectively.
- (iv) For all $t \in [0,1]$, $f(t) < \infty$ iff $K(q,p) < \infty$ and $K(p,q) < \infty$.

Now, suppose that Y = Y(x) is a real-valued measurable function on (X, β) . Let the moment generating function of Y(x) be

$$\phi(t) = \int exp(t Y(x)) dp, t \in [0, 1],$$
 (2, 1)

and let for real a

$$I(a) = \inf \{ \phi(t) \exp(-ta) \colon t \in [0,1] \}.$$

Define a set A by

$$A = \{q: fY(x) | dq | exists | and \ge a\},$$

and let

$$K(A, p) = \begin{cases} \inf \{K(q, p) : q \in A \} & \text{if } A = \emptyset \\ \infty & \text{if } A = \emptyset, \end{cases}$$

where K(q, p) is a Kullback-Leibler information number of q with respect to p.

Lemma 2.2 [3], [4], [5] For real a, I(a) = exp(-K(A, p)).

III. Main Results

Let Λ be a family of all probability distributions defined on the real line X, and X_1, \ldots, X_n be a sequence of identically independent distributed (i. i. d.) random variables from the distribution function $F \in \Lambda$. Let F_n be an empirical distribution generated by these observations.

Definition 3.1 [2] Let A be a subset of Λ and $F_o \notin A$. The subset A is said to be K-regular with respect to F_o if there exists an $F^* \in A$ such that $F^* \ll F_o$ and $A \subset H^{\oplus}(F^*, F_o)$,

where

$$H^{\bigoplus}(F^*, F_o) = \{ F \in \Lambda : and flog \frac{dF^*}{dF_o} dF \ge K(F^*, F_o) \},$$

$$K(F^*, F_o) = flog \frac{dF^*}{dF_o} dF^*$$

and $\frac{dF^*}{dF_o}$ is the Radon-Nikodym derivative of F^* with respect to F_o .

Theorem 3.2 [2] Let $F_o \in \Lambda$. If A is a subset with nonempty interior which does not contain F_o and satisfies conditions:

- (i) A is K-regular with respect to Fo,
- (ii) $K(A, F_o) = K(int(A), F_o)$, where int(A) stands for the interior of A, then $\lim_{n\to\infty} \frac{1}{n} \log P(F_n \in A \mid F_o) = -K(A, F_o).$

Let $T: \Lambda \to R$ be a functional and F_n be an empirical distribution on (X, β) .

Let $U(\varepsilon) = |F \in \Lambda: T(F)$ exists and $\ge \varepsilon|$ for given real ε .

Then we can obtain a generalized theorem (Theorem 3.3).

Theorem 3.3 If $U(\varepsilon)$ is a subset with nonempty interior which does not contain F_o and $K(U(\varepsilon), F_o) = K(int(U(\varepsilon)), F_o)$, then for given real ε

$$\lim_{n\to\infty}\frac{1}{n}\log P(T(F_n)\geq \varepsilon | F_o)=-K(U(\varepsilon),F_o).$$

Proof For $F^*, F_o \in A$, let $F^* \ll F_o$ and put $Y(x) = log \frac{dF^*(x)}{dF_o(x)}$

Γο prove that U(ε) is K-regular w.r.t. $F_ο$, we take for F∈U(ε)

$$T(F) = \int Y(x) dF$$
.

Then $F \in U(\varepsilon)$ iff

$$T(F) = \int log \frac{dF^*}{dF_0} dF \ge \varepsilon.$$

From Lemma 2.2, we have

$$K(U(\varepsilon), F_o) = -\log I(\varepsilon).$$
 (3.1)

According to the definition of (2.1), let

$$\phi_l(t) = \int exp(t \log \frac{dF^*}{dF_o}) dF_o, \ 0 \le t \le 1.$$

Then by Lemma 2.1, $\phi(t) < \infty$ for all $t \in [0, 1]$. Since

$$\int exp(t(\log \frac{dF^*}{dF_o} - \varepsilon)) dF_o$$

is a strictly convex function of t on [0, 1], there exists h > 0 such that

$$I(\varepsilon) = i n f_{0 \le t \le 1} \phi(t) exp(-t \varepsilon)$$

= $\phi(h) exp(-h \varepsilon)$, say. (3.2)

This h>0 is a unique number so that

$$\phi^{1}(h) \exp(-h \ \varepsilon) - \varepsilon \phi(h) \exp(-h \ \varepsilon) = 0$$

that is,

$$\phi'(h)/\phi(h) = \varepsilon. \tag{3.3}$$

Thus $I(\varepsilon)$ satisfies $\phi^{1}(h)/\phi(h) = \varepsilon$ for some h > 0. Put

$$dF^* = \frac{exp(h \log \frac{dF^*}{dF_o})}{\phi(h)} dF_o. \tag{3.4}$$

Then the quantity $exp(hlog \frac{dF^*}{dF_o})/\phi(h)$ represents a density $w. r. t. F_o$.

By our definition of T(F), and from (3.3) and (3.4), we have for $F^* \in \Lambda$

$$T(F^*) = \int log \frac{dF^*}{dF_o} dF^*$$

$$= \int (log \frac{dF^*}{dF_o}) \frac{exp(h log \frac{dF^*}{dF_o})}{dF_o} dF_o$$

$$=\frac{\phi^{1}(h)}{\phi(h)}=\varepsilon. \tag{3.5}$$

Thus $F^* \in U(\varepsilon)$ and $f \log \frac{dF^*}{dF_o} dF \ge K(F^*, F_o)$.

Therefore, $U(\varepsilon)$ is K-regular w.r.t. Fo. From Theorem 3.2, we have

$$\lim_{n\to\infty} \frac{1}{n} \log P(T(F_n) \ge \varepsilon \mid F_o)$$

$$= \lim_{n\to\infty} \frac{1}{n} \log P(F_n \in U(\varepsilon) \mid F_o)$$

$$= -K(U(\varepsilon), F_o).$$

Thus, the proof is complete.

44

Remark 3.4 From (3.2), (3.4) and (3.5),

$$K(F^*, F_o) = \int log \frac{dF^*}{dF_o} dF^*$$

$$= \int log \frac{exp(h log \frac{dF^*}{dF_o})}{\phi(h)} dF^*$$

$$= \int (h log \frac{dF^*}{dF_o} - log \phi(h)) dF^*$$

$$= h \varepsilon - log \phi(h)$$

$$= - log I(\varepsilon).$$

Thus from (3.1)

$$K(U(\varepsilon), F_o) = -\log I(\varepsilon) = K(F^*, F_o).$$

References

- 1. Bahadur, R.R.: Some limit theorems in statistics. Regional conference series in applied mathematics, Society for industrial and applied mathematics, Philadelphia (1971).
- 2. Fu, J.C.: On probabilities of large deviations for empirical distributions. Statistic & Decisions 3, 115-142 (1985).
- 3. Groeneboom, P., Oosterhoff, J., Ruymgaart, F.H.: Large deviation theorems for empirical probability measures. *Ann. Prob. Vol.* 7, 553-586, (1979).
- 4. Hoadley, A.B.: On the probability of large deviations of functions of several empiric cdf's. *Ann. Math. Statist.* Vol. 38, 360-381, (1967).
- 5. Hoeffding, W.: On probabilities of large deviations, Proc. Fifth Berkeley Symp. Math. Statist. Prob. 1, 203-219, (1965).
- 6. Steinebach, J.: Large deviation probabilities and some related topics, Carleton Mathematical Lecture Notes No. 28, (1980).