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The Modeling of Equations of Mathematical Physics

by Dong Jin Yoo

Kyung Hee University, Seoul, Korea

1. introduction '

Partial differential equations arise in connection with various ptysical and geo-
metrical problems when the functions involved depend on two or more independent variables.
These variables may be the time and one or several coodinates in space. The present
chapter will be devoted to some of the most important partial differential equations
occuring in engineering applications.

We shall derive these equations from physical principles.

2. The modeling of two-dimensional wave equation

To derive the differential equation which governs the motion of the membrane,
we consider the forces acting on a small portion of the membrane as shown in Fig.
Since the deflections of the membrane and the angles of inclination are small, the sides
of the portion are approximately equal to Ax and Ay. The tension T is the force per
unit length.

Hence the forces acting on the edges of the portion are approximately Tax and TAy.
Since the membrane is perfectly flexible, these forces are tangent to the membrane.

The horizontal components of the forces are obtained by multiplying the forces by

the cosines of the angles of inclination.
Since these angles are small, their cosines are close to L.
Hence the horizontal components of the forces at opposite edges are approximately

equal. Therefore, the motion of the particles of the membrane in horizontal direction
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From this we conclude that we may regard the motion of the membrane as transversal,
that is, each particle moves vertically.

The vertical components of the forces along the edges parallel to the yu-plane
are TAy sin f and -TAy sin a;
Here the minus sign appears because the force on the left edge is directed downward.
Since the angles are small, we may replace their sines by their tangent. Hence the
resultant of those two vertical components is

(1) Toay(sin B ~ sin @ =TAy(tan B—tan a)

=Toy(Udx+ox, y)—Udx, y)) where y<y, y<y+Ay.

The resultant of vertical components of the forces acting on the other two edges
of the portion is

(2) Toax(Us(x, y+2y) —Ufx, y)] where <z, z,<x+A=x

y Newton’s second law, the sum of the forces given by (1) and (2) is equal to the

&
—':;here p is the mass of the undeflec-

ot

ted membrane per unit area and AA=Ax Ay is the area of the portion.

mass pAA of the portion times the acceleration

g .
Thus pazaoy é{ =TayU{x+ox, y)—Ulzx, ¥,)]

+Tox(Ufx, y+oy) —Ulz,y) ).
Division by pAxAy yields
U _T3IU T Udxtoxy)—Udxy) + Ufx,y+ Aoy —Uyx,y)

o g p Ax Ay J-
FU U T
We obtain 5 - C'(-—at—; + -éy—;) as Ax, Ay~—0 C' = -‘;
This equation is called the two-dimensional wave equation.
aiPU—F 3U— VU=aU is the Laplaci f U
o P is the Laplacian o .

ex. Boundary and initial valve problem for the two-dimensional wave equation.
Ui CaU=F(z, 5,1 (x5 €R; >0
B(u)=0 on C; t>0: (boundary condition)
Ulx,y,0)=fx,y), U{x,y,0) =g(x,y) in R: (initial condition).

Here F, f and g are given functions.

The solution is the form of Ulx, v, t)= i Ca(t) @n (x, 5 (@(x,3) =h(x)q(y)].
n=1 .

3. The modeling of the three-dimensional heat equation

We discuss the supplementary conditions that must be specified in order to deter-
mine the temperature distribution in the body.
Let £ denote the interior of the body and u(x, y, 2, t) denote the temperature at the poir
(x,y, 2z) of the body at the time ¢. w(x, % 2z t) is C° with respect to the space variabl

x, 5,z and C' with respect to the time variable .
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The process of heat conduction is based on the following physical law. Let S be a
smooth surface in £ and n denote a unit normel vector om S.
The amount of heat energy g that crosses S to the side of the normal 2 in the time

interval from t, to #, is given by the formula

B.1) o= = JH [T K(n3 ) —odo d.

Ju . .
n denotes the directional derivative of « in direction of the normal = at the point
n

(x,5 2) of S and at the instant ¢.

The function K(x, y, z) is positive and is called the thermal couductivity of the body at

the point(x, y, z).

The heat flows in the direction of decreasing temperature.

The change in the amount of heat in the subregion A of Q from ¢t=¢, to t=¢ is given by
(3.2) JI] Clz 3 2) p(x 5, 2) Uz, y, 2 8.) = Uz, 3 2,8,)) dxdyds.

A

C is the specific heat and p is the density of the bedy at the point(x, y, 2).
According to the law of conservation of thermal energy, this change of heat in A must
be equal to the amount of heat that enters intc A across the boundary S in the time

interval from ¢, to ¢, and this amount of heat is given by
Ju
(3.3) i S K(x, 5, 2) — dodi
< an

Equating the quantities (3,2) and (3,3) we obtain
B.4) [ff Clx,yv,2)fxy 2 UNxyzt)—Ulxyzt)) didydz
A

5]
~ I8 JT Kz 2 -2 dodt
on

S
y, OU
now, Ulx, y,2,t,)—Ulx, y,2 t)=[1 —a—t-(r,y,z,t) di

. ou . .
and, since o =u.n, the divergence theorem applied to the vector field V=KVu
n

yields
o
JI KZ2do = JT K ~Vu-ndo=JI V-ndo=/[/] - Vv
s an s s A
=JfI] < :(KVu)dxdyds.
A

Hence, equation (3,4) becomes

. d s
v J/] Ce a—’; dz dy dz di= J%  [ff Y -(KVw dx dy dz dt.
A A

B /IS (CPZE—V - (KVW) dx dy ds di=o.
A

v

u ou o du 9 ou o ou
Thus Co 2% o . (Kouw =0 or CP 22 (2 k2% + 2 (k2% + 2 (k2%
HRPY (Kvu)=0 or Co-m = (o (Koo + 5o (K50 + 50 (K52))
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If K, p and C are constant, we takes the form
_C_,g_a_u o'u o'u d'u

== 7 +—)=0.
K ot {aI' oy az)
If put k= —5—, o =k(_a_i: +_a_': + _a_':).
cp Ot ox oy oz
811 2“’; i": = V'uw = Au is Laplacian of u.
ox 3y oz
ou

gt—= ks is called the three-dimensional heat equation.

ex. The boundary and initial-value problem for three-dimensional heat equation.
U —K u=F(z,521) in R; 1>0 '
B(u)=H(x,y,2,t) on S; t >0(boundary condition)
Ux,y,2,0) =flx, v, 2) in R (initia) condition).
Here F, H and f are given functions, and B{u)=H Symbolizes the bouadary condition,
and [ describes the initial temperature.
Assume the boundary condition in above problem is homogeneous.
In order to derive a formal series solution we can represent to
Wy t)= 3 Colt) Pl 2, 3, 2)
"™ where the C,(t) are to Be determined.
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