The existence of a lower solution of \(\frac{4(n-1)}{n-2} \Delta u + Ku \frac{n+2}{n-2} = 0 \)

on compact manifolds

by Yoon-Tae Jung

Ph. D. Students of Seoul National University

1. Introduction

A basic problem in Riemannian geometry is that of studying the set of curvature functions that a manifold possesses. In this generality there has been such a great deal of work [2,3,4,5]. However, in this paper we shall be concerned with the existence of a solution of

\[
(1.1) \quad \frac{4(n-1)}{n-2} \Delta u + Ku \frac{n+2}{n-2} = 0, \quad u > 0.
\]

Let \((M, g)\) be a Riemannian manifold of dimension \(n\) and \(K\) be a given function on \(M\). One may ask the following question: can we find a new metric \(g_1\) on \(M\) such that \(K\) is the scalar curvature of \(g_1\) and \(g_1\) is conformal to \(g\) (i.e., there exists \(u > 0\) on \(M\) such that \(g_1 = u^{n-2} g\))?

If \(M\) admits \(k \equiv 0\) as the scalar curvature of \(g\), then this is equivalent to the problem of solving the elliptic equation

\[
(1.1) \quad \frac{4(n-1)}{n-2} \Delta u + Ku \frac{n+2}{n-2} = 0, \quad u > 0,
\]

where \(\Delta\) is the Laplacian in the \(g\) metric.

In [4], J.L. Kazdan and F.W. Warner have studied the necessary conditions of the solvability of \((1.1)\), i.e., \(K\) changes sign and \(\bar{K} < 0\). In this paper we shall prove the existence of a lower solution of \((1.1)\).

2. Main result

Let \((M, g)\) be a compact connected manifold of dimension \(n\), which is not necessarily orientable. We denote the volume element of this metric by \(dV\), the gradient by \(\nabla\), and the mean value of a function \(f\) on \(M\) is written \(\bar{f}\), that is,

\[
\bar{f} = \frac{1}{\text{vol}(M)} \int_M f \, dV.
\]
We let $H_{s, p}(M)$ denote the Sobolev space of functions on M whose derivatives through order s are in L_p. The norm on $H_{s, p}(M)$ will be denoted by $\| \cdot \|_{s, p}$. The usual $L_2(M)$ inner product will be written \langle , \rangle.

It turns out that (1.1) is easier to analyze if we free it from geometry and consider instead

\[(2.1) \quad \Delta u + Hu^{a} = 0, \quad u > 0,\]

where H is an arbitrary function and $a > 1$ is a constant.

Lemma 1. Let $\dim M \geq 3$ and $p > \dim M$. Then there exists a constant $C > 0$ such that for any $u \in H_{1, p}(M)$, $\| u \|_{2} \leq C \| u \|_{1, p}$.

Proof. See 2.22 in [5] or equation (3.8) in [3].

Lemma 2. If a positive solution u of (2.1) exists and $H \equiv 0$, then H must change sign and $\bar{H} < 0$.

Proof. See Lemma 2.5 and Prop. 5.3 in [4].

Theorem. (*Existence of a lower solution*)

Let $H(\not\equiv 0)$ belong to $C^\alpha(M)$ such that H changes sign and $\bar{H} < 0$. Then there exists a lower solution $u > 0$ of (2.1).

Proof. Taking the change of variable $u = e^v$, v satisfies

\[\Delta v + |\nabla v|^2 + He^{cv} = 0,\]

where $c = a - 1 > 0$ is a constant. We claim that there exists $v \in H_{1, p}$ such that $\Delta v + He^{cv} = 0$. For this claim, define a set of functions B by $B = \{ v \in H_{1, p}(M) : \int_M He^{cv} \, dV = 0, \quad \bar{v} = 0 \}$.

Since H changes sign, it is easy to see that B is not empty. We shall minimize the functional

\[J(v) = \int_M |\nabla v|^2 \, dV = \| \nabla v \|_2^2 \quad \text{for} \quad v \in B.\]

Clearly $J \geq 0$. Let $b = \inf_{v \in B} J(v)$. Say $\{ v_n \} \subset B$ is a minimizing sequence, so $J(v_n) \downarrow b$. Because B is not empty, there is some $v_0 \in B$. Let $b_1 = J(v_0)$. Then we can assume $J(v_n) \leq b_1$ for all n. Since M is compact, the Hölder inequality implies that $v_n \in H_{1, 1}(M)$ for each n. But $\bar{v}_n = 0$, so the Poincaré inequality also implies that $\| v_n \|_1 \leq \text{constant} \times J(v_n) \leq \text{constant}$ for all n. Because the unit ball in any Hilbert space is weakly compact, we conclude that there is some $v \in H_{1, 1}(M)$ such that a subsequence of the v_n's, which we relabel v_n, converges weakly to v. This implies that $\bar{v} = 0$.

Since $H_{1, 1}(M) \subset L_2(M)$ is compact (the Kondrakov's imbedding theorem there is some $v_0 \in L_2(M)$ such that $v_n \rightharpoonup v_0$ strongly to v_0. So $v_n \rightharpoonup v_0$ weakly in $L_2(M)$, i.e., $v_n = v_0$. For each n, $v_n \in H_{1, p}$. Let $\bar{a} = \inf_{v_n} \| v_n \|_{1, p}$. There exists a subsequence $\{ v_{n_k} \}$ of v_n's such that $\| v_{n_k} \|_{1, p} \rightharpoonup \bar{a}$. Let $b_2 = \| v_{n_2} \|_{1, p}$. Then we may assume that $\| v_{n_k} \|_{1, p} \leq b_2$ for all n_k. Because $H_{1, p}$ is reflexive, the unit ball in $H_{1, p}$ is weakly sequentially compact, so we conclude that there is some $\bar{v} \in H_{1, p}$ such that v_{n_k} converges \bar{v} weakly.

Since $H_{1, p} \subset C^\alpha$ is compact for some small $\alpha > 0$, there is some $\bar{v}_0 \in C^\alpha(M)$ such that
The Existence of a Lower Solution of \(\frac{4(n-1)}{n-2} \Delta u + Ku^{\frac{n+2}{n-2}} = 0 \)

a subsequence of the \(v_{n_k} \)'s, which we relabel \(v_{n_k} \), converges strongly to \(\tilde{v}_o \). But \(\|v_{n_k} - \tilde{v}_o\|_p \leq \|v_{n_k} - v_o\|_p \leq \|v_{n_k} - v_o\|_{C^0} \) so \(v_{n_k} \rightarrow \tilde{v}_o \) strongly in \(L_p \). There \(\tilde{v}_o = \tilde{v} \). Since \(\|v_{n_k}\| \) is a subsequence of \(v_n 's \) and \(\|v_{n_k} - \tilde{v}_o\|_1 \leq \text{constant} \times \|v_{n_k} - \tilde{v}_o\|_p \), \(v_{n_k} \rightarrow \tilde{v}_o \) strongly in \(L_1(M) \).

Hence \(v = v_o = \tilde{v} = \tilde{v}_o \), i.e., \(v \in H_{1, \rho} \cap H_{1,1} \).

Combining these facts and using the inequality \(|e^t - 1| \leq |t| e^{|t|} \), we find that

\[
\|f\|H \|e^{cv} - e^{cv_n}\| \leq \int f |e^{cv} - e^{cv_n}| \leq \int f |e^{cv} - e^{cv_n}| \leq \|H\|_{\infty} \int |1 - e^{cv_n - cv}| \leq \|H\|_{\infty} \sup_{v \in B} |1 - e^{cv_n - cv}| \leq \|e^{cv} - e^{cv_n}\|_{C^0} \to 0
\]

Since \(\|v_n - v\|_{C^0} \to 0 \),

Hence \(\int f e^{cv} \, dV = 0 \) and \(v = 0 \), i.e., \(v \in B \).

To conclude that \(v \) minimizes \(J \) for all \(v \in B \), we use the general result that whenever \(v_n \) converge to \(v \) weakly in a normed space, \(\|v\| \leq \liminf \|v_n\| \). (See theorem 3.17 in 5)

Hence \(\|v\|_{1,1} \leq \lim inf \|v_n\|_{1,1} \). Since \(\tilde{H}_{1,1}(M) = \{ v \in H_{1,1}(M) : \tilde{v} = 0 \} \) is a Hilbert subspace, \(\mathcal{J}(v) \) is a norm equivalent to the norm \(\| \cdot \|_{1,1} \) on \(\tilde{H}_{1,1}(M) \). Therefore \(J(v) \leq \mathcal{J}(v_n) \) for all \(n \). Thus \(v \) minimizes \(J \) in \(B \).

Since \(v \) minimizes \(J \) in \(B \), by the standard Lagrange multiplier theory, we find that there are constants and such that for any \(\varphi \in H_{1, \rho}(M) \),

\[
\int [2\nabla v \varphi + \lambda e^{cv} \varphi + \mu \varphi] \, dV = 0.
\]

This is the Euler-Lagrange equation. Since \(H \subseteq C^\infty(M) \), by \(L^p \) regularity theory, \(\varphi \subseteq C^\infty(M) \). \(\varphi \equiv 1 \) gives \(\mu = 0 \). And \(\varphi = e^{-cv} \) and \(\tilde{H} < 0 \) show that \(\lambda < 0 \). So we can write \(\lambda = 2e^r \) for some constant \(r \). Then \(u = v + r \) is the desired solution \(u \in C^\infty(M) \) of \(\Delta u + He^{cu} = 0 \).

Thus \(u \) is the lower solution of \(\Delta u + Hu^a = 0 \), \(u > 0 \).

References