Abstract
Solvent effects on gas phase reactions of methoxide ion with substituted ethylenes, $CH_2$ = CHR where R = CN, CHO and $NO_2$, are investigated theoretically using the AM1 method. Results show that the methoxide approaches in-plane in all reactions, but subsequently rotate out-of-plane to form tetrahedral complexes in additon reactions. All reactions of a bare methoxide are found to be exothermic, the exothermicity being the greatest in the ${\beta}$-addition, in which the excess energy is forced to be contained within the ${\beta}$-adduct rendering extreme instability. However a part of the excess energy can be removed by a solvate molecule giving a stable complex prior to the product formation. The hydride transfer processes were found to be unfavorable due to the high activation barriers. The ${\alpha}-H^+$ abstraction process from acrylonitrile becomes endothermic as a result of monosolvation of the methoxide, in agreement with experimental results.