DOI QR코드

DOI QR Code

Non-Newtonian Intrinsic Viscosities of Biopolymeric and Nonbiopolymeric Solutions (I)

  • Jang, Chun-Hag (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jong-Ryul (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Ree, Tai-Kyue (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • Published : 1987.08.20

Abstract

Experimental results for viscous flow of poly (${\gamma}$ -methyl L-glutamate) solutions have been published elsewhere. The data of $[{\eta}]^f / [{\eta}]^0$ are expressed by the following equation, $\frac{[{\eta}^f]}{[{\eta}^{\circ}]}=1-\frac{A}{\eta^\circ}{1-\frac{sin^{-1}[{\beta}_2(f/{\eta}_0)\;{e}xp\;(-c_2f^2/{\eta}_0^2kT)]}{{\beta}_2f/{\eta}_0}$ (A1) where $[{\eta}]^f\; and\; [{\eta} ]^0$ are the intrinsic viscosity at shear stress f and zero, respectively, $ A{\equiv}lim\limits_{C{\rightarrow}0}[(1/C)(X_2/{\alpha}_2)({\beta}_2/{\eta}_0)],{\eta}_0$ viscosity of the solvent, ${\beta}_2$ is the relaxation time of flow unit 2, $c_2$ is a constant related to the elasticity of flow unit 2. The theoretical derivation of Eq.(A1) is given in the text. The experimental curves of $[{\eta}]^f / [{\eta}]^0$ vs. log f are compared with the theoretical curves calculated from Eq.(A1) with good results. Eq.(A1) is also applied to non-biopolymeric solutions, and it was found that in the latter case $c_2 = 0.$ The reason for this is explained in the text. The problems related to non-Newtonian flows are discussed.

Keywords

References

  1. Polym. J. v.16 J. R. Kim;T. Ree
  2. Polym. J. v.16 J. R. Kim;T. Ree
  3. J. Polym. Sci. Polym. Chem. Ed. v.23 J. R. Kim;T. Ree
  4. J. Polym. Sci.: Polym. Chem. Ed. v.24 C. H. Jang;J. R. Kim;T. Ree
  5. J. Appl. Phys. v.26 T. Ree;H. Eyring
  6. Rheology, Theory and Application I F. R. Eirich(ed.)
  7. Trans. Soc. Rheol. v.5 A. F. Gabrysh;T. Ree;H. Eyring;D. Makee;I. Cutler
  8. J. Eng. Mech. Div. Proc. Am. Soc. Civ. Engr. v.EMI F. H. Ree;T. Ree;H. Eyring
  9. Bull. Korean Chem. Soc. v.5 C. H. Jang;C. H. Kim;T. Ree
  10. Ind. and Eng. Chem. v.51 S. J. Hahn;T. Ree;H. Eyring
  11. Bull. Korean Chem. Soc. v.7 D. A. Sohn;E. R. Kim;S. J. Hahn;T. Ree
  12. Bull. Korean Chem. Soc. v.4 J. H. Bang;E. R. Kim;S. J. Hahn;T. Ree
  13. J. Polym. Sci. v.47 E. Passaglia;J. T. Yang;N. J. Wegemer
  14. J. Chem. Phys. v.4 H. Eyring
  15. The Theory of Rate Processes S. Glasstone;K. J. Laidler;H. Eyring
  16. Deformation Kinetics A. S. Krausz;H. Eyring
  17. Optimization Techniques with Fortran J. L. Kuester;J. H. Mize
  18. J. Am. Chem. Soc. v.80 J. T. Yang
  19. J. Am. Chem. Soc. v.81 J. T. Yang
  20. Biochemistry L. Stryer
  21. Statistical Mechanics of Chain Molecules P. J. Flory
  22. Z. physik. Chem. v.A145 B. Rabinowitsch
  23. J. Rheol. v.2 M. Mooney
  24. Principle and Application of Rheology A. G. Frederickson
  25. Rheology, Theory and Application III S. Oka;F. R. Eirich(ed.)
  26. Rheology, Theory and Application I H. L. Frisch;R. Simha;F. R. Eirich(ed.)
  27. Rheology, Theory and Application II B. A. Toms
  28. J. Am. Chem. Soc. v.62 W. Kausmann;H. Eyring
  29. Rheology, Theory and Applications, I T. G. Fox;S. Gratoh;S. Loshack;F.R. Eirich(ed.)
  30. Viscoelastic Properties of Polymers J.D. Ferry